a comparative study for interpenetrating polymeric

Upload: eddy-diansyah

Post on 02-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    1/20

    AfricanJournalofPharmacyandPharmacology,Vol.4(2)pp.035-054,February2010

    Availableonlinehttp://www.academicjournals.org/ajpp ISSN1996-08162010AcademicJournals

    FullLengthResearchPaper

    Acomparativestudyforinterpenetratingpolymeric

    network

    (IPN)

    of

    chitosan-amino

    acid

    beads

    forcontrolleddrugrelease

    Manjusha

    Rani1,

    Anuja

    Agarwal1,

    Tungabidya

    Maharana2

    and

    Yuvraj

    Singh

    Negi2*

    1Department

    of

    Chemistry,

    J.

    V.

    Jain

    College,

    Saharanpur

    (U.

    P.)

    India.2PolymerScienceandTechnologyProgram,DepartmentofPaperTechnology,

    Saharanpur

    Campus,

    Indian

    Institute

    of

    Technology,

    Roorkee,

    Saharanpur

    (U.

    P.)

    India.

    Accepted

    13

    January,

    2010

    ThepaperaddressesdevelopmentofnovelpHsensitiveinterpenetratingpolymericnetwork(IPN)

    beads

    composed

    of

    chitosan-glycine-glutamic

    acid

    cross

    linked

    with

    glutaraldehyde

    and

    their

    use

    for

    controlled

    drug

    release.A

    comparative

    study

    hasbeen

    carried

    out

    on

    these

    IPN

    beads

    with

    the

    beadsthatofchitosan,chitosan-glycineandchitosan-glutamicacidcrosslinkedwithglutaraldehyde.ThebeadswerecharacterizedbyFTIR toconfirm thecross linkingreactionanddrug interactionwithcrosslinkedpolymer

    inbeads,scanningelectronmicroscopy(SEM)

    tounderstandthe

    surface

    morphologyand

    internalstructureand

    DSCto

    find

    out

    thethermalstabilityof

    beads.Theswelling

    behaviorof

    thebeadsatdifferenttimeintervalswasmonitoredinsolutionsofpH2.0andpH7.4.Thereleaseexperimentswereperformed insolutionsofpH2.0andpH7.4at37Cusingchlorpheniraminemaleate(CPM)asamodeldrug.TheswellingbehaviorandreleaseofdrugwereobservedtobedependentonpH,degreeofcrosslinkingandtheircomposition.TheresultsindicatethatthenewlyconstructedcrosslinkedIPNbeadsofchitosan-glycine-glutamicacidmightbeusefulasavehicleforcontrolledreleaseofdrug.Thekineticsofdrugrelease frombeadswasbest fittedbyHiguchismodel inwhichrelease rateislargelygovernedbyrateofdiffusionthroughthematrix.

    Key

    words:

    Cross-linked

    beads,

    chitosan,

    chlorpheniramine

    maleate,

    glycine,

    glutamic

    acid,

    controlled

    drug

    release.

    INTRODUCTION

    Polymersfrom

    naturalresourceshavebeenstudiedintherecentpastastheimportant

    materialforbiotech-nologicalandbiomedicalapplicationowingtotheiruniquecharacteristicssuchasbiologicalcompatibilitywithnaturalenvironment,non-toxicityandbiodegradability. Deacetylatedproductofchitinprovidesapolysaccharide

    (1

    4)

    2

    amino-2

    deoxy

    -

    D

    glucan

    which

    is

    known

    as

    the

    chitosan

    and

    is

    one

    of

    the

    wellknown

    biodegradable

    polymersmetabolizedbyhumanenzymes.Chitosancanbepreparedashydrogelbeads,havingapositivechargeatmetabolicandphysiologicalpH,bioadhesivityandwaterholdingcapacityenhancedintissuesofhumanbodyforextendedperiodoftime.Threedimensionalhydro-

    *Correspondingauthor.E-mail:[email protected].

    Tel:+91-132-2714328.

    philic

    polymer

    networkofhydrogel

    beads

    are

    capableofretaininglargeamountof

    water

    or

    biofluids.Hydrogelsarethermodynamicallycompatiblewithwaterandexhibitswellinginaqueousmedia.Hydrogelshasresemblancewithnaturallivingtissuesduetotheirhighwaterretentioncapacity.Crosslinkedhydrogelnetworkcanbeobtained

    by

    cross

    linking

    chitosan

    by

    using

    a

    cross

    linker

    likeglutaraldehyde.

    Their

    properties

    depend

    mainly

    on

    thecrosslinkeddensity(theratioofmolesofcrosslinkingagenttothemolesofpolymerrepeatingunits).Formationofhydrogelnetworkrequiresacriticalnumberofcrosslinksperchainand it formsporousstruc-turewhoseporesizedependsuponswellingofbeadswhichinturndependsonexternalenvironment.Currently,chitosanisthepreferred

    materialforcon-trolled

    drug

    delivery

    devices

    (Machida

    et

    al.,

    1989;

    CheinandYie,1983;Yaoetal.,1994;Yujietal.,1996;ChandyandSharma,1992;Chandyand

    Sharma,

    1993;Houetal.,

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    2/20

    036Afr.J.Pharm.Pharmacol.

    Table1.CompositionofIPNbeadsandalignmentofthecolumn(Glutaraldehyde%)

    Beadtype Chitosan(g) Glycine(g) Glutamicacid(g) 2%aceticacid(ml) Glutaraldehyde(%)

    A1

    A2

    A3

    A4A5

    A6

    A7

    1.0

    1.0

    1.0

    1.01.0

    1.0

    1.2

    -

    -

    1.0

    0.50.5

    0.6

    0.5

    -

    1.0

    -

    0.50.5

    0.4

    0.5

    40

    40

    40

    4040

    40

    40

    12.5

    12.5

    12.5

    12.525.0

    12.5

    12.5

    1985;Miyazakietal.,1981;Leeetal.,1997).Theuse inthedevelopmentoforalsustainedreleasepreparationisbasedontheintragastricfloatingtabletsofchitosan(ShethandTossounian,1984;Inouyeetal.,1988).Moreover,theantacidandantiulcercharac-teristicsofchitosanpreventsorweakendrugirritationinthe

    stomach

    (Hou

    et

    al.,

    1985).

    Therefore,

    chitosan

    has

    greatpotentialfor itsuseasasuitablecarrier incontrolleddrug

    deliverysystems.However,therehavebeensomereportsonchitosanbasedbeadscrosslinkedwithglutaraldehyde

    asoral

    drug

    deliverysystemcom-posedofchitosanandoneofthe

    aminoacidslike

    glycine(GuptaandRaviKumar,2000),glycine,glutamic

    acid(KumariandKundu,

    2008)andalanine(KumariandKundu,2007)toobtainbeadsfororaldrugdelivery.Ourpresentstudyisanattempttodevelopcrosslinkedbeadscomposedofchitosanandtwoaminoacidsasspacergroupscrosslinkedwithglutaraldehyde

    forsustainedreleaseof

    chlorpheniraminemaleateasamodeldrug

    and

    to

    compare

    it

    with

    cross

    linked

    beads

    of

    chitosan

    and

    chitosan-amino

    acid.

    We

    have

    prepared

    four

    types

    of

    beadscrosslinkedwithglutaraldehyde(a)chitosan(b)chitosan-glutamicacid(c)chitosan-glycine(d)chitosan-glycine-glutamicacidhavingdifferentcompositiontoinvestigate the comparative swelling behavior andmodelingdrugreleaseproperties.

    MATERIALSANDMETHODS

    Chitosan

    was

    purchased

    by

    India

    Sea

    Food,

    Kerala

    and

    was

    used

    asreceived.Itspercentage

    ofdeacetylation

    afterdrying

    was89%.Chlorpheniraminemaleate(CPM),C16H19ClN2C4H4O4wasobtainedas

    agift

    sample

    fromSarthak

    BiotechPvt.

    Ltd.,

    HSIDC,

    Haryana,

    India.

    Glutaraldehyde,

    glycine

    and

    monosodium

    glutamate

    wereprocured

    from

    SD

    Fine

    Chemicals

    Ltd.,

    Mumbai,

    India,

    SiscoResearchLaboratoriesPvt.Ltd.,IndiaandReidalChemicals, India

    respectively.Allotherchemicalsusedwereofanalyticalgrade.Doubledistilledwaterwasusedinthroughoutthestudies.

    Preparationofsemi-interpenetratingpolymernetwork(IPN)

    beads

    DifferentIPNbeads(A1-A7)varyingincompositionwereprepared

    separately.Theircomposition

    isdescribed

    in

    Table1.

    Weighedquantityofchitosanandaminoacidweredissolvedin40mlof2%

    acetic

    acidbyweight

    andstirredfor

    three

    hours

    usingmagnetic

    stirreratroomtemperature.Thehomogeneousmixturewasextru-dedintheformofdropletsusingasyringeintoNaOH-methanosolution

    (1:20

    w/w)understirring

    condition

    at400

    rpm.The

    beadswerewashedwithhotandcoldwaterrespectively.TheresultantbeadswereallowedtoreactwithglutaraldehydesolutionasgiveninTable1at50Cforabout10min.Finally,thecrosslinkedIPN

    beads

    were

    successively

    washed

    with

    hot

    and

    cold

    water

    followedbyairdrying.

    Drug

    loaded

    beads

    of

    same

    composition

    were

    also

    preparedseparatelybyadding

    aknown

    amount

    of

    CPM(150mg,

    200

    mg)respectivelytothechitosan,aminoacidmixturebeforeextrudingintotheNaOH-methanolsolution.

    Swellingstudies

    Swellingbehaviorofchitosan

    beads(A1-A7)werestudiedin

    differentpH(2.0and7.4)solutions.Thepercentageofswellingforeachsampleattimetwascalculatedusingthefollowingformula.

    Percentageofswelling={(Wt-Wo)/Wo}x100

    Where;

    Wt

    =

    weight

    of

    the

    beads

    at

    time

    t

    after

    emersion

    in

    thesolution.Wo=weightofthedriedbeads.

    Drugloadingassay

    Accuratelyweighed(0.1g)drug loadedsamplewaskept in100m

    of2%aceticacidfor48h.AftercentrifugationtheCPMinthesupernatant

    wasassayedbySpectrophotometerat193.5nm.

    Drugreleasestudies

    The

    drug

    release

    experimentswere

    performed

    at37C

    under

    unstirredconditioninacidic(pH2.0)

    andbasic(pH7.4)solution

    Beads

    (0.1

    g)

    containing

    known

    amount

    of

    the

    drug

    were

    added

    tothe

    release

    medium

    (30

    ml).

    At

    pre

    decided

    intervals,

    samples

    of

    2mlaliquotswerewithdrawn, filteredandassessedby recording theabsorbanceat

    193.5nm.

    ThecumulativeCPMreleasewasmeasuredasafunctionoftime.

    Kineticanalysisofdrugrelease

    A fairamountofworkhasbeenincluded in literatureonkineticsof

    drug

    release

    (Agnihotrietal.,2004;Laszlo

    etal.,2006).A

    largenumber

    of

    modified

    release

    dosage

    forms

    contain

    some

    sort

    ofmatrixsystemandthedrugdissolvesfromthismatrix.Thediffusion

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    3/20

    Ranietal. 037

    Figure1(a).Swellingbehaviorofcross linkedA1-A4beadsasa functionoftimeinsolutionpH2.0andpH7.4at37C.

    patternofthedrugisdictectedbywaterpenetrationrate(diffusioncontrolled)

    andthustheHiguchisequation(Higuchi,

    1963)relationshipapplies

    Mt/M=kt1/2

    Where;Mt/Misthefractionaldrugreleaseattimetandkisa

    constantrelated

    to

    the

    structuraland

    geometricpropertiesof

    thedrug releasesystem.According toHiguchismodel,aninertmatrixshouldprovideasustaineddrugreleaseover

    areasonableperiodoftimeandyieldareproduciblestraightlinewhenthepercentageof

    drugreleasedisplottedversusthesquarerootoftime.

    Characterization

    of

    IPN

    beads

    FTIRspectra ofIPNbeads

    FTIRspectraofIPNbeadswererecordedusingathermoNicolet

    Avatar370FT-IRspectrometersystemusingKBrpellets.

    Scanningelectronmicroscopy (SEM)

    The

    shapeand

    surfacemorphology

    of

    the

    beads

    were

    examined

    using

    FESEM

    QUANTA200

    FEG

    model

    (FEI,

    the

    Netherlandsmake)withoperatingvoltagerangingfrom200Vto30kV.FESEMmicrographsweretakenaftercoatingthesurfacesofbeadsampleswithathinlayerofgoldbyusingBAL-TEC-SCD-005SputterCoater

    (BAL-TECAG,Balzers,Liechtensteincompany,Germany)under

    argon

    atmosphere.

    SEM

    was

    used

    to

    perform

    textural

    charac-terizationoffullandcrosssectionedIPNbeads,magnificationwere

    applied

    to

    each

    sample

    in

    orderto

    estimate

    the

    morphologyand

    interiorofthebead.

    Thermalanalysis

    Thermalgravimetricanalysis(TGA),Differentialthermalgravimetric

    (DTG)and

    Derivative

    thermalanalysis(DTA)were

    carried

    outsimultaneouslybyusinga(PYRISDiamond).TG/DTAthermalanalyzermodelDSC-7,suppliedbyPerkinElmerand thedatawasprocessedandanalyzedbyPYRISmusemeasureandstandardanalysis

    software

    (V.3.3U;#.

    2002Seiko

    instruments

    Inc.).

    The

    sample

    was

    kept

    in

    alumina

    pan,

    the

    reference

    material

    wasaluminapowderandstudywascarriedoutatheatingrateo10C/minunder200ml/min flow rateofairornitrogenatmosphere.Indium

    and

    gallium

    were

    usedas

    standards

    for

    temperaturecalibration.

    RESULTSANDDISCUSSION

    Swellingstudies

    The

    percentage

    swellingofchitosanbeads(A1

    -A4)

    cross linkedwithglutaraldehyde insolutionofpH2.0and7.4isshowninFigure1(a).Itwasobservedthatswellingrate

    followed

    order

    as

    follows

    AtpH-2.0 A2

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    4/20

    038Afr.J.Pharm.Pharmacol.

    Figure

    1(b).

    Swelling

    behavior

    of

    cross

    linked

    A4-A7

    beads

    as

    a

    function

    of

    time

    in

    solutionpH2.0andpH7.4at370C.

    inacidicsolution

    whichmaybeduetothepresenceoffreecarboxylicendsofthechitosan-glutamicacidIPNandthefreecarboxylicendsaremorelikelytobeattackedbybasicsolution.Incaseofchitosan-glycine-glutamicacidbeads,their

    rateofswellingwasalsofoundtobehigheratpH2.0thanchitosan-glutamicacidandchitosan-glycinebeadsandatpH7.4,theirrateofswellingisintermediatebetweenchitosan-glutamicacidandchitosan-glycine

    beads.

    Thus

    it

    was

    concluded

    that

    over

    all

    rate

    of

    swellingwasaffectedbyglycinewhenchitosan-glycine-glutamicacidbeadsweresubjectedtoswellingstudies.Theswelling

    behavior

    ofthe

    cross

    linkedchitosan-glycine-glutamicacid

    beads(A4

    -A7)asa

    functionoftimeinsolution

    pH

    2.0

    andpH

    7.4has

    beenshown

    inFigure1(b).

    Itwasobserved

    that

    the

    swelling

    ratewasdecreasedon

    increasingconcentrationofcrosslinkerglutaraldehyde.Theobservedswellingrates

    ofA4crosslinkedbeadswerefoundtobehigherthantheswellingratesofA5bead,becauseinA5beadsthehigherconcentrationofglutaraldehydeincreasedthedegreeofcrosslinking,whichdecreasedthedegradationofcross

    linked

    polymer.

    Further,

    the

    percentage

    of

    swelling

    wasfound

    to

    be

    higher

    in

    acidic

    solution

    than

    in

    basicsolution.Thechangeinaminoacidscomposition,(thatis,

    decreaseinglutamicacidconcentrationandincreaseinglycineconcentration)ofcrosslinkedbead(A6)havingsame

    concentrationofglutaraldehydeas

    compare

    toA4bead

    hasalso

    been

    studied

    and

    observed

    thattheincrease

    in

    concentration

    ofglycine

    decreased

    the

    swel-lingpercentageof

    chitosan-glycine-glutamic

    acidbeadsinbasicsolutionwhileincreasedinacidicsolution.Thepercentageofswellingof

    thecrosslinkedbeads

    havingthesameconcentrationofcrosslinkerdecreased(A7A4).ItcanbeexplainedasthepercentageofaminoacidsactingasaspacerincreasedinA4beads(25%)ascomparedtoA7beads(22.7%)andalsochitosanpercentagedecreasedinA4beads(50%)ascomparedtoA7beads(54.5%),theporesizeofA7beadsalsodecreasedand thepenetrationofsolutioninto thebeadsbecomedifficult,whichresult in lesserdegreeofswelling

    (Kumari

    and

    Kundu,

    2008).

    SEMstudies

    SEMmicrographsofdriedbeads(A1-A7)andtheir

    surfacemorphologyareshown inFigures2aandbwhile,thecrosssectioneddriedbeadsandtheirinternastructureareshowninFigures3aandb.ItwasconcludedfromFigures2aandbthatthebeadswerenearlysphericalorsomewhatovalinshapeandtheirapproximatesizevariedfrom1.2to1.8mm.Cross linked

    chitosan

    amino

    acid

    beads

    (A2

    -

    A7)

    had

    rough,

    rubbery,fibrous

    and

    folded

    surfaces

    as

    com-pared

    to

    chitosanbeads(A1)whichhadrelativelysmooth

    surfaces

    withfewwrinkles.

    Withthe

    higherconcentrationof

    crosslinker,incaseofA5thechainscomecloser toeachotherandexhibitaregular,fibrousstructureascomparedtoA4having

    lower

    concentrationof

    glutaraldehyde.A7beadsconstituting

    higherconcentration

    ofchitosan

    showedmoreregularfibroussurfacesascomparedtoA4due

    tothesmallerconcentrationofspaceraminoacid.Duetothisreasonthechaincameclosertoeachotherdespiteofhavingthesamedegreeofcrosslinker.Theinternal

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    5/20

    Ranietal. 039

    Figure2a.SEMphotographsofchitosan-aminoacidcrosslinkedbeads(A1A4)andtheirmorphology

    (A1*-A4*).

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    6/20

    040Afr.J.Pharm.Pharmacol.

    Figure2b.SEMphotographs ofchitosan-aminoacidcrosslinkedbeads(A5-A7)andtheirMorphology(A5*-A7*).

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    7/20

    Ranietal. 041

    Figure3a.SEMphotographsofcrosssectionedchitosan-aminoacidcross linkedbeads (A1A4)andtheirinternalstructure(A1*-A4*).

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    8/20

    peak

    at1384cm wasassignedtoCH3symmetricalde-

    deacetylationofchitosan.Peakobservedat2924cm is

    NH-stretchingvibrationsin-NH-COCH3 at1639cm o

    at1567cm ofthenewlyformedstructurebetweenamino

    042Afr.J.Pharm.Pharmacol.

    Figure3b.SEMphotographsofcrosssectionedchitosan-aminoacidcrosslinkedbeads(A5A7)andtheirinternalstructure(A5*-A7*).

    structureofbeadsappearedtohavemicroporesaswere

    seeninSEM(Figures3aandb).

    FTIRstudies

    Figure4(a)showstheFTIRspectraofchitosanpowder,

    glutamicacid,glycineandA1-A7drugunloadedbeads.An

    FTIR

    spectrum

    of

    chitosan

    powder

    curve

    (A)

    has

    showntwopeaksaround894and1171cm-1corres-

    pondingtosaccharidestructure(Yoshiokaetal.,1990).Theobservedpeakat1613cm

    -1canbeassignedas

    aminoabsorptionpeak.Theabsorptionpeakforamidewereobservedat1639and1319cm

    -1andobserved

    -1

    formationmode(Pengetal.,1994;Sannanetal.,1978).

    Abroadbandappearingaround1083cm-1indicated

    the>CO-CH3stretchingvibrationofchitosan.Another

    broad

    band

    at

    3450

    cm-1

    wasdue

    to

    the

    amine

    N-H

    symmetricstretchingvibrationwhichmightbedueto-1

    typicalofC-Hstretchingvibration.simultaneouslythe

    peakassignedforaminoabsorptionat1613cm-1in

    originalchitosanbroadenedordisappearedincrosslinkedbeadsandanewpeakappearingatabout1567cm

    -1

    due

    to

    imine

    bond

    (-C=N-)

    which

    was

    formed

    as

    aresultofcrosslinkingreactionbetweenaminogroupinchitosanandaldehydicgroup inglutaraldehyde(Bellamy,1980;Leeetal.,1999)incurveA5-A7.Howeverthiswas

    due

    tothe

    overlapping

    ofpeaks

    correspondingto

    -1

    theoriginalchitosanwiththatofimino(-C=N-)stretching-1

    groupofchitosanandaldehydegroupofglutaraldehyde

    inA2-A4.Areactiontakingplaceintheformationof

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    9/20

    correspondingto1567cm was sharpened and distinct

    Ranietal. 043

    Figure

    4(a).

    FTIR

    spectra

    of

    glutamic

    acid

    (A),

    glycine

    (B),

    chitosan

    powder

    (C)

    and

    drug

    unloaded

    cross

    linkedbeads(A1-A7).

    cross-linkisasfollows

    -NH2 + O=HC- -N=CH-

    Amino aldehyde imino(Chitosan) (Glutaraldehyde) (Crosslink)On increasingtheglutaraldehydeconcentration, thepeak

    -1

    inA5.AllthecurvesA1toA7showedadditionalpeaksofaminoacid.

    FTIRspectral

    dataof

    drug

    loadedbeads

    inFigure4b

    were

    usedtoconfirmthechemicalstabilityofCPM inchitosanaminoacidbeads.FTIRspectraofpureCPMdrug(curveD)andCPM loadedcross-linkedbeads(A1-A7) inFigure4bwerecomparedwithdrugunloadedcross-linkedbeads(A1-

    A7)

    inFigure4a.

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    10/20

    bandataround864cm duetoaromaticC-Clstretching.

    044Afr.J.Pharm.Pharmacol.

    Figure

    4(b).

    FTIR

    spectra

    of

    pure

    CPM

    drug

    (D)

    and

    drug

    loaded

    cross

    linked

    beads

    (A1

    -

    A7).

    CPMhasshowncharacteristicbandat2966and2917cm

    -1

    due

    to

    aliphaticC-Hstretching.

    The

    band

    at

    1619and1588cm

    -1duetoC=Nstretchingvibration.While

    thoseof1476and1432cm-1areduetoaromaticC=C

    stretchingvibration.CPMhasalsoshowncharacteristic-1

    Whendrugwasincorporatedintothe crosslinked

    chitosan-aminoacidbeads,alongwithallthecharacteris-

    ticband

    ofthe

    crosslinked

    chitosan

    and

    amino

    acidsadditionalbandhave

    appearedduetothepresenceofCPMinthematrix.ItindicatesthatCPMhasnotundergoneanychemicalchangewithinthebeads.

    THERMALANALYSIS

    TGAexperimentswerecarriedoutonchitosan,glutamic

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    11/20

    by

    chitosan

    powder

    (curve

    A)

    below

    100C

    due

    to

    loss

    of

    Ranietal. 045

    Figure5(a).TGcurvesforchitosanpowder(A),glutamic acid(B),glycine(C)anddrugunloadedcrosslinkedbeads(A1-A7).

    acid,glycineandcrosslinkeddrugunloadedbeadsA1-

    A7

    and

    the

    curve

    obtained

    are

    presented

    in

    Figure5awhichclearlyshowsthatapproximately10%

    weight

    loss

    o

    freewater.Afterthis,weightlossremainsconstantupto

    249C.Asuddenweightlossisobservedafter249Cand

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    12/20

    046Afr.J.Pharm.Pharmacol.

    Figure

    5(b).

    TG

    curves

    for

    pure

    CPM

    drug

    (D)

    and

    drug

    loaded

    cross

    linked

    beads

    (A1-A7).

    thetotalweightlossat400Cisabout60%,whereaspurechitosancross linkedbeads (A1)showsweight lossafter200Candweightlossat400Cisapproximately46%,

    lesser

    than

    chitosan

    powder

    thisshows

    thatcrosslinkingofchitosanwithglutaraldehydeincreases

    itsthermalstability.Similarly,chitosan-glutamicacid,

    chitosan-glycineand

    chitosan-glycine-glutamicacidbeadsshowweight lossat400Cabout50,43,and45%respectivelywhichclearlyindicatethatchitosanaminoacidspecially,

    chitosan-glycine-glutamicacidbeadsareasthermallystableaschitosanbeads(A1)andthermalstabilityofchitosan-glycine-glutamicacidbeadsisgreaterthanchitosan-glutamic

    acid

    beads

    and

    slightly

    lesser

    than

    thatofchitosan-glycinebeads.TG

    curvesfor

    CPMmodel

    drug

    (curve

    D)and

    drugloaded

    crosslinked

    beads

    (A1

    -

    A7)

    are

    shown

    in

    Figure5b.CPMdruglostabout67%weightbetween208and274C(curveD)whichwasduetothedecompositionof

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    13/20

    Ranietal. 047

    Figure6(a).DTGcurves forchitosanpowder(A),glutamicacid(B),glycine(C)anddrugunloaded

    cross

    linked

    beads

    (A1

    -

    A7).

    ofdrug

    above

    itsmeltingpoint.

    Melting

    point

    ofCPM

    is134Candsuchahuge loss inweightwasnotshownbydrug loadedbeadsA1-A7.Thisconcluded that thedrugisquitestablewithinthebeads.DTGthermogramsofpurechitosan,glutamicacid,glycineandcrosslinkedbeadsA1-A7arepresentedinFigure6a.Theseindicated

    the

    rate

    of

    weight

    loss

    for

    chitosan

    powder

    washighest

    at

    290C

    and

    cross

    linked

    chitosan

    beadsshowed

    lesserrateofweightlossat244C.Oncomparing

    A1 -A4

    beads

    it

    can

    be

    concluded

    that

    chitosan-glutamicacid-glycinebeadswerefoundtobemoststableasthelossweightathighesttemperature(271C)ascomparedtochitosanbeadsat244C,chitosan-glutamicacidbeadsat249Candchitosan-glycinebeadsat268C.DTGcurves

    for

    CPMdrugand

    drugloadedcrosslinkedbeadsareshown

    inFigure6b.CurveDforpure

    CPM

    drug

    have

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    14/20

    048Afr.J.Pharm.Pharmacol.

    Figure6(b).DTGcurvesforCPMdrug(D)anddrugloadedcrosslinkedbeads(A1-A7).

    peaksforweightlossat134,207and256C.

    ThecomparisonofdrugunloadedbeadsA1-A7in

    Figure

    6a

    and

    drug

    loaded

    beads

    A1

    -

    A7

    in

    Figure

    6b

    showed

    almost

    similar

    peaks

    with

    same

    rate

    of

    weight

    lostalsoproveddrugstability

    inthepolymericmatrix.DTA

    thermograms

    forpure

    chitosan,

    glutamicacid,glycineand

    cross

    linked

    drug

    unloadedbeads

    (A1-A7)arepresentedinFigure7a.Thermogramsforchitosanpowdershowedoneendothermicpeakat65Cduetolossoffreewaterandoneexothermicpeakat296Cduetochemicaltransformation.Glutamicacidgivestwoandglycinegivesoneendothermicpeakintheirthermograms.While incaseof(A1-A4)beadsonlyoneexothermicpeakisobserved.Itwasconcludedthatchitosan-

    glycine-glutamicacidbeadsarethemoststableasinthermograms forA1-A4beadsexothermicpeakmoves

    towards

    higher

    temperature

    (240

    to

    274C).

    DTA

    thermograms

    for

    pure

    CPM

    drug

    and

    drug

    loaded

    beads

    A1-A7are

    represented

    in

    Figure7(b).

    Incase

    ofCPMdrug(curve

    D)one

    endothermicpeakand

    one

    exothermicpeakwereobserved.Oneat134Cwhichcorrespondstomelting

    processand

    otherat254C

    to

    chemicatransformation.Drugloadedbeads(A1-A7)showedalmostsimilar

    thermogramsinwhichnopeakswereobservedat134and254Cindicatingtheamorphousdispersionofdruginto thebeads(AgnihotriandAminabhavi,2006;Kulkarnietal.,2007).

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    15/20

    Ranietal. 049

    Figure

    7(a).DTAcurvesfor

    chitosanpowder(A),glutamicacid(B),glycine(C)anddrugunloadedcrosslinkedbeads(A1-A7).

    Drugloadingassay

    When(1g)drugloadedsamplewaskeptin100ml

    2%

    aceticacid,thetotaldrugreleasedafter48hwasfoundtobe78gand142gforthebeadsincorporatedwith

    150and200mgofCPMrespectively.

    Drugreleasestudy

    Figures8aand

    bshowsthereleaseprofileof

    CPM

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    16/20

    050Afr.J.Pharm.Pharmacol.

    Figure7b.DTAcurvesforCPMdrug(D)anddrugloadedcrosslinkedbeads(A1-A7).

    fromchitosanbeads(78gofdrugloadedbead)atvarioustime

    intervalsin

    acidic(pH2.0)and

    basic(pH7.4)

    at

    37C.

    There

    wasa

    burstrelease

    initiallyfor

    thefirsthourinbothacidicandbasicmediafollowedbyamoderatereleasefornextfourhoursandfinallyanalmost

    constant

    releaseofCPM

    fromthe

    matrixforthestudiedperiodof48h.Theamountandpercentage

    ofdrug

    releasedfollowedtheorderofswellingofbeads.Itisbecause

    the

    release

    rate

    depends

    on

    swelling

    of

    thebeads.

    It

    was

    noticed

    that

    drugrelease

    waspHdependentandfollowedthefollowingorderinacidicandbasicmedium

    AtpH2.0 A2

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    17/20

    Figure8(a).ReleaseofCPMforA1-A4beads(78gCPM

    loadedbeads)vstimeinsolutionpH2.0andpH7.4at37C

    Figure8(b).ReleaseofCPM forA4 -A7beads(78gCPM

    loadedbeads)vstimeinsolutionpH2.0andpH7.4at37C.

    AtpH7.4 A3

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    18/20

    %drugrelease

    052Afr.J.Pharm.Pharmacol.

    Figure9a.ReleaseofCPMforA1-A4beads(142gCPMloadedbead)vs.timeinsolutionpH2.0andpH7.4at37C.

    Figure9b.ReleaseofCPMforA4-A7beads(142gCPM loaded

    bead)vs.timeinsolutionpH2.0andpH7.4at37C.

    thekineticdataofdrugrelease.Linearplotsofpercent

    cumulativeamountreleaseversussquarerootoftimeisshowninFigure10demonstratingthatthereleasefromthecrosslinkedpolymericmicrospherematrixisdiffusioncontrolled

    and

    obeys

    the

    Higuchis

    model

    (Jameela

    et

    al.,

    1998).Theconstantk,presentedinTable2wascalculated

    fromtheslopeof

    the

    linear

    portion

    of

    plotof

    percentageof

    cumulative

    drug

    released

    versusthesquarerootoftime.Thevalueof

    k

    forthereleaseprocess

    has

    beenfound tobe lower insolutionofpH7.4 than insolutionofpH2.0exceptforA2beads.However,thevaluesweresmallerwhichindicatemildinteractionbetweenthedrugandpolymericmatrices(Orientietal.,1996;Ganza-Gonzalezetal.,1999).

    Figure10a.PlotsshowingdrugreleaseprofilefromA1-A4beads

    (78gCPM

    loaded)

    in

    solutionpH2.0

    andpH

    7.4

    by

    fitting

    the

    Higuchis

    equation.

    A4pH2 A5pH2 A6pH2 A7pH2

    A4pH7.4

    A5pH7.4

    A6pH7.4 A7pH7.4

    60

    50

    40

    30

    20

    10

    0

    0

    1 2

    3

    t1/2

    Figure10b.Plotsshowingdrugreleaseprofile fromA4-A7beads

    (78

    g

    CPM

    loaded)in

    solution

    pH

    2.0

    and

    pH

    7.4

    by

    fitting

    theHiguchisequation.

    Conclusion

    Theobservationsofthepresentstudyhaveshownthat

    chitosan-glycine-glutamic

    acid

    beads

    posses

    a

    pHdependentswellingbehavior. Itcanbeusedsuccessfullyfortheformulationofcontrolleddrugdeliverydevices.Theyhaveoptimumentrappingcapacityforthestudieddrugsandprovideasustainedreleaseofdrugsforextendedperiodswhichmakethemappropriatefordelivery

    of

    drug

    at

    a

    controlled

    rate.

    ACKNOWLEDGEMENT

    Authorsaregrateful

    to

    Prof.B.Gupta,

    Bioengineering

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    19/20

    Ranietal. 053

    Table2.ResultsofdrugreleasemechanismbyfittingdatainHiguchismodelforCPMloadedbeads.

    pH2.0 pH7.4

    Beads

    type

    CPMloadedbeadswith

    78g 142g 78g 142g

    K S.D. R K S.D. R K S.D. R k S.D R

    A1

    A2

    A3

    A4

    A5

    A6

    A7

    .15

    .12

    .19

    .26

    .22

    .28

    .21

    .013

    .011

    .019

    .030

    .025

    .031

    .024

    .99

    .99

    .99

    .99

    .99

    .99

    .99

    .13

    .10

    .19

    .20

    .195

    .20

    .19

    .015

    012

    .021

    015

    015

    .011

    .015

    .99

    .99

    .99

    .99

    .99

    .99

    .99

    .074

    .24

    .058

    .10

    .078

    .061

    .085

    .055

    .027

    .048

    .089

    .081

    .048

    .052

    .98

    .99

    .97

    .99

    .95

    .98

    .99

    .081

    .198

    .064

    .083

    .078

    .061

    .085

    .01

    .021

    .074

    .083

    .086

    .083

    .087

    .99

    .99

    .99

    .99

    .99

    .98

    .99

    Figure

    10c.

    Plots

    showing

    drug

    release

    profile

    from

    A1-

    A4

    beads(142

    g

    CPM

    loaded)in

    solution

    pH

    2.0

    andpH7.4byfittingtheHiguchisequation.

    Figure10d.Plotsshowingdrugreleaseprofile fromA4-A7

    beads(142gCPM loaded)insolutionpH2.0andpH7.4

    byfittingtheHiguchisequation.

    Laboratory,TextileDepartment,

    IIT,

    Delhi

    forgiftingchitosansampleandtechnicalhelp.

    REFERENCES

    AgnihotriSA,

    Aminabhavi

    TM

    (2006).

    Novel

    interpenetrating

    network

    chitosan-poly

    (ethylene

    oxide-g-acryl

    amide)

    hydrogel

    microspheresforthecontrolledreleaseof

    Capecitabine.

    Int.

    J.

    Pharm.

    324:

    103-115.

    AgnihotriSA,mallikarjuna

    NN,

    Aminabhavi

    TM(2004).

    Reviewonrecent

    Advances

    on

    chitosan

    based

    micro

    and

    nanoparticles

    in

    drugdelivery.

    J.

    Controlled

    release.

    100:

    5-28.

    BellamyLJ

    (1980).

    The

    infrared

    spectra

    of

    ComplexMoleclesChapman&Hall,London,NewYork.p.52.

    Chandy

    T,Sharma

    CP(1992).Chitosan

    beadsand

    granulesfor

    oralsustained

    delivery

    of

    nifedipine:

    in

    vitro

    studies.

    Biomaterials

    13:

    949-952.

    Chandy

    T,

    Sharma

    CP

    (1993).

    Chitosanmatrixfor

    oral

    sustained

    delivery

    of

    ampicillin.

    Biomaterials

    14:

    939-944.Chein

    YW

    (1983).

    Potential

    developments

    and

    new

    approaches

    in

    oracontrolled

    release

    drug

    delivery

    systems.

    Drug

    Dev.

    Ind.

    Pharm.

    9:1291-1330.

    Ganza-Gonzalez

    A,

    Anguiano-igea

    S,

    Otero-Espinar

    FJ,

    BlancoMendezJ

    (1999).

    Chitosan

    andChondroitin

    microspheresfororaadministration

    controlled

    release

    ofMetoclopramide.Eur.

    JPharmaceut.

    Biopharmaceut.

    48:

    149-155.

    Higuchi

    T

    (1963).

    Mechanism

    of

    sustained

    action

    medication.

    J.

    Pharm.Sci.

    52:

    145-1149.HouWM,

    Miyazaki

    S,TakadaM,Komai

    T

    (1985).Sustained releaseofindomethacin

    from

    chitosan

    granules.

    Chem.Pharm.

    Bull.

    33:

    3986.InouyeK,

    MachidaY,SannanT,Nagai

    T

    (1988).Buoyantsustainedrelease

    tablets

    based

    on

    chitosan.

    Drug

    Des.

    Del.

    2:

    165-175.Jameela

    SR,

    Kumary

    TV,

    Lal

    AV,

    Jayakrishna

    A

    (1998).

    Progesterone

    loaded

    chitosan

    microspheres:

    a

    long

    acting

    biodegradable

    controlled

    delivery

    system.

    J.

    Control

    release.

    52:

    17-24.

    Kulkarni

    VH,

    Kulkarni

    PV,

    Keshavayya

    J

    (2007).

    Glutaraldehyde

    -crosslinkedchitosanbeads

    forcontrolledreleaseof

    Diclofenacsodium.

    J.

    Appl.

    Polym.

    Sci.

    103:

    211-217.Kumari

    K,

    Kundu

    PP

    (2007).

    Semi-interpenetrating

    polymer

    networks(IPN)

    of

    chitosan

    and

    L-alanine

    for

    monitoring

    the

    release

    ochlorpheniramine

    maleate.

    J.

    Appl.

    Polym.

    Sci.

    103:

    3751-3757.

    Kumari

    K,

    Kundu

    PP

    (2008).

    Studies

    on

    in

    vitro

    release

    of

    CPM

    fromsemi-interpenetrating

    polymer

    network

    (IPN)

    composed

    ofchitosanand

    glutamic

    acid.

    Bull.

    Mater.

    Sci.

    31(2):

    159-167.Laszlo

    E,

    Vlase

    L,

    Leucuta

    SE

    (2006).

    Kinetic

    modeling

    of

    drug

    releasefrom

    experimental

    pharmaceutical

    gels

    containing

    clotrimazoleFarmacia

    54(3):

    25-32.Lee

    JW,

    Kim

    SY,

    Kim

    SG,

    Lee

    YM,

    Lee

    KH,

    Kim

    SJ

    (1999).

    Synthesisandcharacteristicsofinterpenetratingpolymernetworkhydrogel

  • 8/10/2019 A Comparative Study for Interpenetrating Polymeric

    20/20

    054Afr.J.Pharm.Pharmacol.

    composed

    of

    chitosan

    and

    poly

    acrylic

    acid.

    J.

    Appl.

    Polymer

    Sci.

    73:

    113-120.Lee

    YM,

    Kim

    SS,

    Kim

    SH

    (1997).

    Synthesis

    and

    properties

    of

    poly(ethylene

    glycol)

    macromer/

    -

    chitosan

    hydrogels.

    J.

    Mater.

    Sci.

    Mater.

    Med.

    8:

    537.

    Machida

    Y,

    Nagai

    T,

    Inouye

    K,

    Sannan

    T

    (1989).

    Preparation

    and

    evaluationofbuoyantsustainedreleasedosageformsbasedonchitosan.

    In:

    Skjak

    Brack

    G,

    Anthonson

    T,

    Sandford

    P,

    editors.

    Chitin

    and

    chitosan.

    Amsterdam:

    Elsevier

    pp.

    693-702.Miyazaki

    S,

    Ishii

    K,

    Nadai

    T

    (1981).

    The

    use

    of

    chitin

    andchitosan

    asdrug

    carriers.

    Chem.

    Pharm.

    Bull.

    29:

    3067.

    Orienti

    I,

    Aiedeh

    K,

    Gianasi

    E,

    Bertasi

    V,

    Zecchi

    V

    (1996).

    Indomethacin

    loaded

    chitosan

    microspheres.

    Correlation

    between

    the

    erosion

    processandreleasekinetics.J.Microencapsulation 13:463-472.PengT,

    YaoKD,

    Chen,

    GoosanMF(1994).

    Structuralchanges

    ofpHsensitive

    chitosan

    /

    polyether

    hydrogels

    in

    different

    pH

    solution.J.Polymer

    Sci.

    Part

    A:

    Polym.

    chem.

    32:

    591-596.

    Sannan

    T,

    Kurita

    K,

    Ogura

    K,

    Iwakura

    Y

    (1978).

    Studies

    on

    chitin:

    7

    I.R.

    spectroscopic

    determinationof

    degreeof

    deacetylation.Polym.

    19458-459.

    Sheth

    PR,

    Tossounian

    J

    (1984).

    The

    hydrodynamically

    balanceddelivery

    system

    for

    oral

    use.

    Drug

    Dev.

    Ind.

    Pharm.10:

    313-339.

    Yao

    KD,

    Peng

    T,

    Feng

    HB,

    He

    YY

    (1994).

    Swelling

    kinetics

    and

    releasecharacteristics

    ofcrosslinkedchitosan-poly-etherpolymernetwork(semi-IPN)

    hydrogels.

    J.

    Polym.

    Sci.

    Part

    A

    Polym.

    Chem.

    32:

    1213.

    Yoshioka

    T,

    Hirano

    R,

    Shioya

    T,

    Kako

    M

    (1990).

    Encapsulation

    ofmammalian

    cell

    with

    chitosan

    CMC

    capsule.

    Biotechnology

    andBioengineering

    35:

    66-72.

    YujiYJ,

    Xu

    MX,

    Chen

    X,

    Yao

    KD

    (1996).

    Drug

    release

    behavior

    ofchitosan/gelationnetworkpolymermicrospheres.Chin.

    Sci.Bull.411266.