a finite calculus approach to ehrhart polynomials

50
A Finite Calculus Approach to Ehrhart Polynomials Kevin Woods, Oberlin College (joint work with Steven Sam, MIT)

Upload: others

Post on 03-Feb-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Finite Calculus Approach to Ehrhart Polynomials

A Finite Calculus Approach to Ehrhart Polynomials

Kevin Woods, Oberlin College(joint work with Steven Sam, MIT)

Page 2: A Finite Calculus Approach to Ehrhart Polynomials

Ehrhart Theory

Let P ⊆ Rd be a rational polytope

LP(t) = #tP ∩ Zd

Ehrhart’s Theorem:

Lp(t) = cd(t)td + cd−1(t)td−1 + · · ·+ c0(t),

where ci (t) are periodic.

When P is integral, period = 1, so Lp(t) is a polynomial.

Page 3: A Finite Calculus Approach to Ehrhart Polynomials

An Analogy

LP(t) is the discrete analog of volume

∑a∈tP∩Zd

1 = LP(t).

∫tP

1 dx = vol(tP) = vol(P)td .

LP(t) ≈ vol(P)td

.

Page 4: A Finite Calculus Approach to Ehrhart Polynomials

Push the Analogy

Let ∆d be the convex hull of

I the origin

I the standard basis vectors ei .

Compute the volume of t∆d

vol(t∆d) =

∫ t

0vol(s∆d−1) ds

Inductively,

vol(t∆d) =td

d!.

Page 5: A Finite Calculus Approach to Ehrhart Polynomials

Push the Analogy

Let ∆d be the convex hull of

I the origin

I the standard basis vectors ei .

Compute the volume of t∆d

vol(t∆d) =

∫ t

0vol(s∆d−1) ds

Inductively,

vol(t∆d) =td

d!.

Page 6: A Finite Calculus Approach to Ehrhart Polynomials

Push the Analogy

Why it works so nice:

I∫ t

0 is a linear operator.

I∫ t

0 acts nicely on a basis of R[x ].∫ t

0sn =

1

n + 1tn+1.

Page 7: A Finite Calculus Approach to Ehrhart Polynomials

Push the Analogy

Discrete version:

L∆d(t) =

t∑s=0

L∆d−1(s).

Inductively,

L∆d(t) =

(t + 1)(t + 2) · · · (t + d)

d!.

Page 8: A Finite Calculus Approach to Ehrhart Polynomials

Push the Analogy

Why it works so nice:

I∑t

s=0 is a linear operator.

I∑t

s=0 acts nicely on a basis of R[x ].

t∑s=0

sn =1

n + 1(t + 1)n+1,

where tn = t(t − 1)(t − 2) · · · (t − d + 1).

Page 9: A Finite Calculus Approach to Ehrhart Polynomials

Is it always this easy?

No.

Page 10: A Finite Calculus Approach to Ehrhart Polynomials

Is it always this easy?

No.

Page 11: A Finite Calculus Approach to Ehrhart Polynomials

A Harder One

LP(t) =?

Page 12: A Finite Calculus Approach to Ehrhart Polynomials

A Harder One

LP(t) =?

Page 13: A Finite Calculus Approach to Ehrhart Polynomials

A Harder One

LQ(s) =⌊ s

2

⌋+⌈− s

2

⌉= 2

⌊s + 2

2

LP(t) =2t∑

s=0

LQ(s)

=2t∑

s=0

2

⌊s + 2

2

⌋= a polynomial !!??!!

Page 14: A Finite Calculus Approach to Ehrhart Polynomials

A Harder One

LQ(s) =⌊ s

2

⌋+⌈− s

2

⌉= 2

⌊s + 2

2

⌋LP(t) =

2t∑s=0

LQ(s)

=2t∑

s=0

2

⌊s + 2

2

⌋= a polynomial !!??!!

Page 15: A Finite Calculus Approach to Ehrhart Polynomials

A Harder One

LP(t) =2t∑

s=0

2

⌊s + 2

2

= 1 +t∑

r=1

(2

⌊(2r − 1) + 2

2

⌋+ 2

⌊2r + 2

2

⌋)

= 1 +t∑

r=1

4r

= 4r 2 + 4r + 1

Page 16: A Finite Calculus Approach to Ehrhart Polynomials

A Harder One

LP(t) =2t∑

s=0

2

⌊s + 2

2

= 1 +t∑

r=1

(2

⌊(2r − 1) + 2

2

⌋+ 2

⌊2r + 2

2

⌋)

= 1 +t∑

r=1

4r

= 4r 2 + 4r + 1

Page 17: A Finite Calculus Approach to Ehrhart Polynomials

A Harder One

LP(t) =2t∑

s=0

2

⌊s + 2

2

= 1 +t∑

r=1

(2

⌊(2r − 1) + 2

2

⌋+ 2

⌊2r + 2

2

⌋)

= 1 +t∑

r=1

4r

= 4r 2 + 4r + 1

Page 18: A Finite Calculus Approach to Ehrhart Polynomials

Is it always this easy?

Yes.

Page 19: A Finite Calculus Approach to Ehrhart Polynomials

Is it always this easy?

Yes.

Page 20: A Finite Calculus Approach to Ehrhart Polynomials

Tools

I Quasi-polynomial version of finite calculus:If f (s) is a quasi-polynomial with period r , then

F (t) =

b atb c∑

s=0

f (s)

is a quasi-polynomial with period

rb

gcd(a, r).

Key: It’s the smallest t such that atb is integer multiple of r .

Page 21: A Finite Calculus Approach to Ehrhart Polynomials

Tools

I Triangulation.Summation only works for pyramids.

I Induction.Need quasi-polynomial version even to get polynomial version.

Bug? Feature?

Page 22: A Finite Calculus Approach to Ehrhart Polynomials

Periodicity! For Free!

Careful triangulation/induction immediately gives us:

Theorem (McMullen)

Given Ehrhart quasi-polynomial

LP(t) = c0(t) + c1(t)t + · · ·+ cd(t)td ,

and given r and i such that the affine hull of rF contains integerpoints, for all i -dimensional faces F . Then r is a period of ci (t).

Page 23: A Finite Calculus Approach to Ehrhart Polynomials

Periodicity! For Free!

I Let D be smallest positive integer such that DP is integral.Then D is a period of each ci (t).

I If P is integral, D = 1 and LP(t) is a polynomial.

I If P is full-dimensional:Affine hull of 1 · P contains integer points.Period of cd(t) is 1.(cd(t) = vol(P))

Page 24: A Finite Calculus Approach to Ehrhart Polynomials

Reciprocity! For Free!

Theorem (Ehrhart-Macdonald Reciprocity)

If P◦ is the relative interior of P and LP◦(t) = #tP◦ ∩ Zd ,

LP◦(t) = (−1)dim(P)LP(−t).

Page 25: A Finite Calculus Approach to Ehrhart Polynomials

Reciprocity! For Free!

Reciprocity in Finite CalculusIf f (t) a (quasi-)polynomial,

n∑s=0

f (s)

is a (quasi-)polynomial, F (n).

−n∑s=0

f (s)

= −−1∑

s=−n+1

f (s)

= F (− n)

Page 26: A Finite Calculus Approach to Ehrhart Polynomials

Reciprocity! For Free!

Reciprocity in Finite CalculusIf f (t) a (quasi-)polynomial,

n∑s=0

f (s)

is a (quasi-)polynomial, F (n).

−n∑s=0

f (s) = −−1∑

s=−n+1

f (s)

= F (− n)

Page 27: A Finite Calculus Approach to Ehrhart Polynomials

Reciprocity! For Free!

Reciprocity in Finite CalculusIf f (t) a (quasi-)polynomial,

n∑s=0

f (s)

is a (quasi-)polynomial, F (n).

−n∑s=0

f (s) = −−1∑

s=−n+1

f (s)

= F (− n)

Page 28: A Finite Calculus Approach to Ehrhart Polynomials

Reciprocity! For Free!

LP◦(t) =t−1∑s=1

LQ◦(s)

=t−1∑s=1

±LQ(−s)

=−t∑s=0

±LQ(s)

= ± LP(−t)

Page 29: A Finite Calculus Approach to Ehrhart Polynomials

Reciprocity! For Free!

LP◦(t) =t−1∑s=1

LQ◦(s)

=t−1∑s=1

±LQ(−s)

=−t∑s=0

±LQ(s)

= ± LP(−t)

Page 30: A Finite Calculus Approach to Ehrhart Polynomials

Reciprocity! For Free!

LP◦(t) =t−1∑s=1

LQ◦(s)

=t−1∑s=1

±LQ(−s)

=−t∑s=0

±LQ(s)

= ± LP(−t)

Page 31: A Finite Calculus Approach to Ehrhart Polynomials

Reciprocity! For Free!

LP◦(t) =t−1∑s=1

LQ◦(s)

=t−1∑s=1

±LQ(−s)

=−t∑s=0

±LQ(s)

= ± LP(−t)

Page 32: A Finite Calculus Approach to Ehrhart Polynomials

Okay, Not Quite Free

You do have to be careful with the triangulation andInclusion-Exclusion for reciprocity.

Need Euler characteristic, topologically or combinatorially.

True of most proofs (though check out irrational version,Beck–Sottile).

Page 33: A Finite Calculus Approach to Ehrhart Polynomials

Context

Classic Proofs

I Ehrhart, Stanley (generating functions)

I McMullen (valuations)

Contemporary (simpler) Proofs

I Beck (partial fractions)

I Sam (full-dimensional Inclusion-Exclusion)

Page 34: A Finite Calculus Approach to Ehrhart Polynomials

Context

Classic Proofs

I Ehrhart, Stanley (generating functions)

I McMullen (valuations)

Contemporary (simpler) Proofs

I Beck (partial fractions)

I Sam (full-dimensional Inclusion-Exclusion)

Page 35: A Finite Calculus Approach to Ehrhart Polynomials

Context

Classic Proofs

I Ehrhart, Stanley (generating functions)

I McMullen (valuations)

Contemporary (simpler) Proofs

I Beck (partial fractions)

I Sam (full-dimensional Inclusion-Exclusion)

Page 36: A Finite Calculus Approach to Ehrhart Polynomials

Context

Classic Proofs

I Ehrhart, Stanley (generating functions)

I McMullen (valuations)

Contemporary (simpler) Proofs

I Beck (partial fractions)

I Sam (full-dimensional Inclusion-Exclusion)

Page 37: A Finite Calculus Approach to Ehrhart Polynomials

Context

Classic Proofs

I Ehrhart, Stanley (generating functions)

I McMullen (valuations)

Contemporary (simpler) Proofs

I Beck (partial fractions)

I Sam (full-dimensional Inclusion-Exclusion)

Page 38: A Finite Calculus Approach to Ehrhart Polynomials

Context

Classic Proofs

I Ehrhart, Stanley (generating functions)

I McMullen (valuations)

Contemporary (simpler) Proofs

I Beck (partial fractions)

I Sam (full-dimensional Inclusion-Exclusion)

Page 39: A Finite Calculus Approach to Ehrhart Polynomials

Context

Classic Proofs

I Ehrhart, Stanley (generating functions)

I McMullen (valuations)

Contemporary (simpler) Proofs

I Beck (partial fractions)

I Sam (full-dimensional Inclusion-Exclusion)

Page 40: A Finite Calculus Approach to Ehrhart Polynomials

Context

Classic Proofs

I Ehrhart, Stanley (generating functions)

I McMullen (valuations)

Contemporary (simpler) Proofs

I Beck (partial fractions)

I Sam (full-dimensional Inclusion-Exclusion)

Page 41: A Finite Calculus Approach to Ehrhart Polynomials

Context

Classic Proofs

I Ehrhart, Stanley (generating functions)

I McMullen (valuations)

Contemporary (simpler) Proofs

I Beck (partial fractions)

I Sam (full-dimensional Inclusion-Exclusion)

Page 42: A Finite Calculus Approach to Ehrhart Polynomials

Context

Classic Proofs

I Ehrhart, Stanley (generating functions)

I McMullen (valuations)

Contemporary (simpler) Proofs

I Beck (partial fractions)

I Sam (full-dimensional Inclusion-Exclusion)

Page 43: A Finite Calculus Approach to Ehrhart Polynomials

Context

Classic Proofs

I Ehrhart, Stanley (generating functions)

I McMullen (valuations)

Contemporary (simpler) Proofs

I Beck (partial fractions)

I Sam (full-dimensional Inclusion-Exclusion)

Page 44: A Finite Calculus Approach to Ehrhart Polynomials

Questions

Should we pick a nice basis to write (quasi-)polynomial?

I 1, t + 1, (t + 1)(t + 2)/2, . . .

I(t+d

d

),(t+d−1

d

), . . .,

(td

)(for polynomials of degree at most d)

If

LP(t) =d∑

j=0

hj

(t + d − j

d

),

then∞∑

s=0

LP(s)ts =h0 + h1t + · · ·+ hd td

(1− t)d+1.

Page 45: A Finite Calculus Approach to Ehrhart Polynomials

Questions

Should we pick a nice basis to write (quasi-)polynomial?

I 1, t + 1, (t + 1)(t + 2)/2, . . .

I(t+d

d

),(t+d−1

d

), . . .,

(td

)(for polynomials of degree at most d)

If

LP(t) =d∑

j=0

hj

(t + d − j

d

),

then∞∑

s=0

LP(s)ts =h0 + h1t + · · ·+ hd td

(1− t)d+1.

Page 46: A Finite Calculus Approach to Ehrhart Polynomials

Questions

Should we pick a nice basis to write (quasi-)polynomial?

I 1, t + 1, (t + 1)(t + 2)/2, . . .

I(t+d

d

),(t+d−1

d

), . . .,

(td

)(for polynomials of degree at most d)

If

LP(t) =d∑

j=0

hj

(t + d − j

d

),

then∞∑

s=0

LP(s)ts =h0 + h1t + · · ·+ hd td

(1− t)d+1.

Page 47: A Finite Calculus Approach to Ehrhart Polynomials

Questions

Does this translate into an algorithm?

t∑s=0

⌊2s + 3

4

⌋=?

t∑s=0

⌊2s + 3

4

⌋·⌊

3s + 2

5

⌋=?

Best I can say:

I Translate to/from generating functions (Verdoolaege–W).

I Apply Barvinok’s algorithm.

Page 48: A Finite Calculus Approach to Ehrhart Polynomials

Questions

Does this translate into an algorithm?

t∑s=0

⌊2s + 3

4

⌋=?

t∑s=0

⌊2s + 3

4

⌋·⌊

3s + 2

5

⌋=?

Best I can say:

I Translate to/from generating functions (Verdoolaege–W).

I Apply Barvinok’s algorithm.

Page 49: A Finite Calculus Approach to Ehrhart Polynomials

Questions

Does this translate into an algorithm?

t∑s=0

⌊2s + 3

4

⌋=?

t∑s=0

⌊2s + 3

4

⌋·⌊

3s + 2

5

⌋=?

Best I can say:

I Translate to/from generating functions (Verdoolaege–W).

I Apply Barvinok’s algorithm.

Page 50: A Finite Calculus Approach to Ehrhart Polynomials

Thank You!