a guide for the evaluation of thermoelectric effects in ......a guide for the evaluation of...

158
A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi SASAKI* and Kunihiko TAKAHASHI** *Electron Devices Devision, ETL **Japan Electric Meters Inspection Cooperation -4 -3 -2 -1 0 1 0.1 1 10 100 1000 FRDC-DC Difference (ppm) Frequency (Hz) TC: S10-28 2.5 mA 5 mA 10 mA (Report# TR-96-22)

Upload: others

Post on 08-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters

Using KST003 Fast-Reversed DC Source

Hitoshi SASAKI* and Kunihiko TAKAHASHI**

*Electron Devices Devision, ETL**Japan Electric Meters Inspection Cooperation

-4

-3

-2

-1

0

1

0.1 1 10 100 1000

FR

DC

-DC

Diff

eren

ce (

ppm

)

Frequency (Hz)

TC: S10-28

2.5 mA

5 mA

10 mA

(Report# TR-96-22)

Page 2: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi
Page 3: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 1 -

Table of Contents

About This Guide

<<< PART I >>>--- Description of KST003 FRDC Source ---

Section 1 Concepts of Fast-Reversed DC Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71. 1 Introduction .................................................................................. 7

1. 2 Basic Circuit Description ................................................................ 8

1. 3 Setting Waveform Parameters ......................................................... 9

Section 2 Basic Operation of the Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112. 1 Front/Rear Panels ........................................................................ 11

2. 2 Cable Connection ......................................................................... 13

2. 3 GP-IB Commands ........................................................................ 15

2.3.1 Voltage/Current Level ................................................................ 15

2.3.2 Voltage/Current Adjustment ....................................................... 16

2.3.3 Period (Switching Frequency) ..................................................... 17

2.3.4 Off-Time .................................................................................. 18

2.3.5 Dummy-Load Resistance ............................................................ 18

2.3.6 Waveform (Output Mode) ........................................................... 19

2.3.7 Enable/Disable Output ................................................................ 20

Section 3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223. 1 Introduction ................................................................................. 22

3. 2 Sequence Control Unit .................................................................. 23

3.2.1 CPU/SCC Board ........................................................................ 23

3.2.2 Sequence Control Circuit ............................................................ 23

3.2.3 GP-IB Interface ......................................................................... 27

3. 3 Waveform Output Unit ................................................................. 28

3.3.1 Analog Circuit .......................................................................... 28

3.3.2 Digital Circuit ........................................................................... 29

3. 4 Power Supply .............................................................................. 30

3. 5 EPROM Software ......................................................................... 31

3.5.1 Command Input ......................................................................... 31

3.5.2 Command Execute ..................................................................... 32

Page 4: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 2 -

Section 4 Service References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344. 1 Checking Procedures .................................................................... 34

4.1.1 Operation Check ......................................................................... 35

4.1.2 Isolation Check ........................................................................... 37

4. 2 Earth/Guard Configuration ........................................................... 39

<<< PART II >>>--- Measuring Thermoelectric Effects

using a KST003 FRDC Source ---

Section 5 Calibration of Thermal Convertor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415.1 Thermoelectric Effects of TC ....................................................... 41

5.2 Thermal AC-DC Transfer Difference ............................................ 42

5.3 Thermoelectric Time Constant ...................................................... 45

Section 6 Basic Operation of the Program .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476. 1 Installation and Set-up .................................................................. 47

6.1.1 System requirement .................................................................... 47

6.1.2 Software Installation ................................................................... 48

6.1.3 Start/Quit program .................................................................... 48

6.1.4 User Interface ............................................................................ 49

6. 2 Manual Operation ........................................................................ 51

6.2.1 Change GP-IB address ................................................................ 51

6.2.2 Voltage/Current Level ................................................................ 52

6.2.3 Period/Off-Time ........................................................................ 53

6.2.4 Adjust Sources ........................................................................... 54

6.2.5 Adjust Dummy .......................................................................... 55

6.2.6 Sequencial Output ...................................................................... 56

6.2.7 Steady-State Output .................................................................... 57

Section 7 FRDC-DC Difference measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587.1 Measurement Procedure ............................................................... 58

7.2 Start/Abort Measurement .............................................................. 60

7.3 Setting Measurement Conditions .................................................... 61

7.3.1 TC specification ......................................................................... 61

7.3.2 Measurement Parameters ............................................................ 62

7.3.3 Measurement Procedures ............................................................ 63

7.3.4 File to Save Data ........................................................................ 65

7.3.5 Measurement Options ................................................................. 65

Page 5: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 3 -

Section 8 Analyzing Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678. 1 Data Format ................................................................................ 67

8. 2 Curve Fitting ............................................................................... 70

8.2.1 Thermoelectric Effects ............................................................... 70

8.2.2 Dielectric Loss/Absorption .......................................................... 71

Section 9 Measurement Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749. 1 Type-A Uncertainties .................................................................. 74

9.1.1 Instability of Source ................................................................... 74

9.1.2 Instability of Thermal Converter ................................................. 75

9.1.3 Resolution of Detector ............................................................... 76

9. 2 Type-B Uncertainties .................................................................... 77

9.2.1 Effect of Imperfect Switching ..................................................... 77

9.2.2 Higher Frequency Components .................................................... 77

9.2.3 Memory Effect of Analog Switches ............................................. 78

9.2.4 Interference Between the Sources ................................................ 78

9.2.5 Dielectric Loss/Absorption ......................................................... 79

9.2.6 Other Sources of Uncertainty ...................................................... 80

9. 3 Measurement Criteria ................................................................... 81

<<< Appendix >>>

Appendix A Biography

Appendix B Trouble Shooting

Appendix C Circuit Diagrams

Appendix D Components Layout

Appendix E Parts List

Appendix F EPROM Program Reference

Appendix G EPROM Program List

Appendix H Measurement Program List

Page 6: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 4 -

About This Guide

Since the first development of a Fast-Reversed DC (FRDC) source at PTB in 1990,

the FRDC sources have successfully been used for the evaluation of the thermoelectric

effects in thermal converters. The KST003 FRDC source is the third version of FRDC

circuit developed at ETL during 1992 to 1994. The project was initiated by the

international cooperation between PTB (Physikalisch-Technische Bundesanstalt) and

ETL in 1992. During two month's stay of Dr. Manfred Klonz at ETL, he introduced the

idea of the FRDC-DC difference measurement for evaluating the thermoelectric effects

of the thermal converters. The FRDC sources are now adopted at PTB and CSIRO as a

basic reference in ac-dc transfer standard. The purpose of this guide is to help users of

the KST003 FRDC source perform FRDC-DC difference measurement on thermal

converters.

PART I: Description of KST003 FRDC Source. (Hardware Manual)

The part I of the guide mainly describes the construction of the KST003 FRDC

source. A brief introduction on the concepts of the FRDC source is given in section 1.

Section 2 provides the instruction on the basic operation of the source, including

description on the front and rear panels, a typical example of cable-connection, and the

explanation on the GP-IB commands.

Detailed descriptions on the KST003 FRDC source are given in section 3. The

functions of the circuits inside the two units, the Sequence Control Unit (SCU) and the

Waveform Output Unit (WOU), are described in detail. The functions of the EPROM-

program for controlling the digital part of the circuit are also described.

Important supplementary information on the source are described in section 4; a

checking procedure to confirm the proper operation of the source and the configuration

of the Earth/Guard system.

PART II: Measurement of Thermoelectric Effects using a KST003 FRDC Source.

(Software Manual)

The part II of the guide describes a software for controlling FRDC-DC

measurements using a KST003 FRDC source. The program for controlling the source

was originally developed for a system with a Macintosh as a controller. In this case, the

program was written by Future Basic. Afterward, the program was re-written by Visual

Basic for Windows 95 computers. Though this manual mainly treats the case of the

Windows 95 system, most of the functions of the program are identical for Macintosh

system.

Page 7: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 5 -

The main function of the software is for controlling the KST003 FRDC source in an

automated FRDC-DC difference measurement. A brief introduction on the concept of

the FRDC-DC difference measurement is given in section 5.

All the parameters of the KST003 FRDC source can be set manually using the

control-program. In section 6, the basic manual operations, such as Output Mode,

Output Level, Switching Frequency, Off-time, Dummy Resistance, Output Sequence,

will be described. The system requirement and the installation of the software are also

described in section 6.

The procedure of the automated measurement of FRDC-DC Difference is described

in section 7. The procedures of specifying various measurement-options and

measurement-parameters are described in detail.

The thermal transfer difference and its time constant can be determined using the

data from the FRDC-DC difference measurement. The examples of curve-fitting of the

data by a theoretical formula will be described in section 8.

The measurement uncertainties in the FRDC-DC measurement using a KST003

FRDC source are discussed in Section 9. Important criteria for confirming the proper

operation of the measurement system are also described in this section.

AcknowledgmentsThe original concept of the "Fast-Reversed DC" is due to Dr. Manfred Klonz of PTB,

Germany. The analysis on the frequency characteristic of the FRDC source was mainly

performed by Dr. Barry D. Inglis of CSIRO/NML, Australia. Detailed designing of the

KST003 FRDC source was performed by Mr. Shinzo Honda of Yatollo-Electronics Co.,

Japan.

Page 8: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 6 -

Page 9: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

Important Information

CAUTION! ---- Check correct setting for the line-voltage before applying the acpower to the FRDC source.

CAUTION! ---- When connecting the TC/TVC to the measurement circuit,Input-Lo and Output-Lo of must have the same potential inorder to avoid electrostatic break-down of the TC/TVC.

CAUTION! --- At the voltage mode, output current of more than 20 mA mayresult in the damage of analog switches and dummy resistance.Check proper setting of dummy resistance to avoid the current-overload.

CAUTION! ---- Incorrect setting of the [Nominal Input] and [Input Resistance]in [TC specification] procedure may result in the overloading ofthe TC/TVC and the dummy resistors.

NOTE ---------- In the case of a multi-command as "V1:S1:X", the V1 commandis executed after the S1 command which automatically disablesoutput.

NOTE ---------- Even if the S1 command is executed, the output will not beapplied to the TC until the "STBY/EXEC" switch on the frontpanel of the SCU is turned on.

NOTE ---------- The early version of the program (before 7.4.0) accept changesin the GP-IB address only temporarily. After re-starting theprogram, the GP-IB address will be reset to the default.

NOTE ---------- Please note that the basic frequency (first harmonic) of theFRDC waveform is one-half of the switching frequency TSW.

Page 10: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

List of parameters

δAC-DC ------ AC-DC transfer difference

δFRDC-DC --- FRDC-DC transfer difference

δTE --------- Thermoelectric transfer difference

τTE --------- Thermoelectric time constant

EAC -------- TC-output for AC input

EDC -------- TC-output for DC input

EFRDC ------ TC-output for FRDC input

EJoule ------ Joule-component of the TC-output

∆ETE ------ Contribution from thermoelectric effects

TSW ------- Switching period

Toff -------- Off-time

fSW ------- Switching frequency (1/fSW)

fb --------- Base frequency of FRDC waveform (fSW/2)

a+/a- ------- Positive/Negative Output levels of Source A

b+/b- ------- Positive/Negative Output levels of Source B

Rdummy ----- Dummy Resistance

Page 11: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

--- Description of KST003 FRDC Source --- (Hardware Manual)

§1 Concepts of Fast-Reversed DC Source§2 Basic Operation of the Source§3 System Description§4 Service References

<<< PART I >>>

Page 12: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi
Page 13: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 7 -

Section 1 - Concepts of Fast-Reversed DC

1. 1 Introduction

The fast-reversed dc source transforms a dc voltage to a rectangular-waveform ac voltage

by reversing the polarity of its output using high-speed analog switches. The original

waveform of the fast-reversed dc (FRDC) is shown in Fig. 101(a). The waveform has three

modes, namely DC+, DC− and FRDC modes. In the FRDC mode, the output is periodically

switched between "+" and "−" states. Theoretically, infinitely high-speed switching is

required at the FRDC mode in order to obtain an rms voltage exactly equal to the steady-state

dc voltage.

In the new waveform, the periodical switching is performed not only during the FRDC mode

but also during the DC+ and the DC- modes, as shown in Fig. 101(b). Instead of the steady-

state dc, switching is performed between "+" and "off" states in the DC+ mode and between

"-" and "off" states in the DC- mode. We hereafter specify this mode as "chopped" dc mode

or "CPDC" mode. In the modified fast-reversed dc mode, similar switching is performed

between "+", "-" and "off" states. Since the "off" states are equally distributed in "chopped"

DC and FRDC modes, the effect of finite switching-speed is compensated, and the equal rms-

voltage for CPDC and FRDC modes is realized with only moderate requirements for the

response-time of the circuit.

FR-DC modeDC(+) modeDC(-) mode

(a) Original Waveform

Waveform of Fast Reversed DC Source

FR-DC modeDC(+) modeDC(-) mode

(b) New Waveform

Fig. 101

Page 14: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 8 -

1. 2 Basic Circuit Description

The diagram of the new switching scheme introduced to the new FRDC source is shown in

Fig. 102. The waveform are synthesized from two period; Period A and Period B. In the

period A, the source A toggles from "zero" state to "+" or "-" state and toggles back to "zero"

again, while the source B is disconnected from thermal converter. A similar procedure is

repeated with source A and source B exchanged. By the combination of the outputs of

sources A and B, the two FRDC modes and the two "chopped" dc modes are obtained. As

shown in the figure, the rms value of the two modified FRDC modes are exactly equal to the

rms value of the "chopped" DC+ and DC- mode if there is no interference between the two

sources.

AC[1]mode

DC[+]mode

DC[− ]mode

AC[2]mode

Switching Sequence for Mode AC(1) / DC(+) / DC(-) / AC(2)

Period ASource A -- OnSource B -- Off

Period BSource A -- OffSource B -- On

Period ASource A -- OnSource B -- Off

Period BSource A -- OffSource B -- On

Fig. 102

The schematic circuit diagram is shown in Fig. 103. The significance of the new

switching scheme is that the two critical switches at the output operate only at the zero

voltage states. Consequently, the charging or "memory" effect of analog switchs are

significantly reduced. (See section 9.2.3 for explanation of the "memory" effect.)

In order to avoid interference between the two current sources, sources A and B are

electrically isolated using optical fibers. The switching elements are high-speed CMOS

analog switches (IH5143) that have typical on(off)-time of 80 (50) ns.

Page 15: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 9 -

OpticalLogic

Source A

IsolatorControl

OpticalLogicIsolator

Control

Source B

SequenceController

TC to beCalibrated

to DVM

Simplified Circuit-Diagram of the Four-Source Scheme.

Fig. 103

A separate very low current sense leads are provided in the voltage mode for feedback to

op-amps A1a and A3a (Fig. 306). This leads compensates for the "on" resistance (75Ω, typical)

of the switching elements.

(Programmers Note)

The sources A and B have programmable "dummy" resistances that impose similar loads

to the sources when they are disconnected from the thermal converter. It is necessary to set

the value of "dummy-load" resistance properly. It is recommended that the value should be

adjusted to the same value as the input resistance of the thermal converter within the

resolution of 0.1 kΩ. (See section 2.3.5)

Page 16: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 10 -

1.3 Setting Waveform Parameters

The waveform of FRDC source is specified by the six parameters (Tsw, Toff, a+, a-, b+, b-)

as shown in Fig. 104. These parameters are specified by the controller using the GPIB bus.

Waveform Parameters

Period A Period B Period A Period B

Toff

Tswa+ b+

a− b− Ton

Fig. 104

The parameters a+, a-, b+, b- are further specified by a "main value" parameter α and

"adjustment" parameters β(A+), β(A-), β(B+), β(B-) as

a± = ±α 1+ β A±( ) 100 b± =±α 1+ β B±( ) 100

. (1.1)

The parameter α should be within a range from 0.00 (V/mA) to 10.23 (V/mA) and the

parameters β should be within ±2.047 (%).

(Programmers Note)

The parameter Tsw is specified by a "base-period" parameter Tbase and "scale-factor"

parameter m as

TSW = Tbase ×10m . (1.2)

The parameter Tbase should be within a range from 0.10 (ms) to 2.55 (ms) and at least 0.02

(ms) longer than the off-time parameter Toff . The scale factor m should be an integer from

0 to 4. (Refer section 2.3.3)

Page 17: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 11-

Section 2 - Basic Operation

2. 1 Front/Rear Panels

Sequence Control Unit (SCU) - Front Panel

1. Power Switch.

2. Toggle-Switch for EXEC/STBY setting.

3. Dual LED indicator for output mode(Voltage/Current).

[Red - Voltage mode, Green - Current mode.]

4. Dual LED indicator for Source-A output status.

5. Dual LED indicator for Source-B output status.

[Red - positive output, Green - negative output.]

Sequence Control Unit (SCU) - Rear Panel

1. GPIB Address selector.

2. GPIB bus Connector.

3. Optical-Fiber connector for Source A.

4. ± 18V Power-Line connector for Source A.

5. Optical-Fiber connector for Source B.

6. ± 18V Power-Line connector or Source B.

7. AC Line selector.

8. AC Line connector with Fuse.

Waveform Output Unit (WOU) - Front Panel

1. Type-N connector for main output.

[Outer conductor -- output Lo, Inner conductor -- output Hi.]

2. Guard terminal. [Same potential as output Lo.]

3. GND terminal. [Chassis (safety) Ground. Same potential as SCU GND.]

Waveform Output Unit (WOU) - Rear Panel

1. BNC connector for monitoring of source A.

2. Optical-Fiber connector for Source A.

3. ± 18V Power-Line connector for Source A.

4. BNC connector for monitoring of source B.

5. Optical-Fiber connector for Source B.

6. ± 18V Power-Line connector for Source B.

Page 18: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 12-

Rear Panel --- Waveform Output Unit 1.BNC connector for monitoring source A. 2.Optical-Fiber connector for Source A. 3.± 18V Power-Line connector for Source A. 4.BNC connector for monitoring source B. 5.Optical-Fiber connector for Source B. 6.± 18V Power-Line connector for Source B.

Source A

Monitor

Source B

Monitor

1 4

25

3 6

Fiber

Power

Fiber

Power

KST003 Fast-Reversed DC Source

OUTPUTGUARD GND

WAVEFORM OUTPUT UNITYATOLLO

1 2 3

Front Panel --- Waveform Output Unit 1.Type-N connector for main output. 2.Guard terminal. 3.GND terminal. (Chassis GND)

Fuse

To Source A To Source B

GP-IB BusAddress1 2

4 83 5

100 V - 230 V

Fiber

Power

Fiber

Power

6 7

Rear Panel --- Sequenc Control Unit 1.GPIB Address selector. 2.GPIB bus Connector. 3.Optical-Fiber connector for Source A. 4.± 18V Power-Line connector for Source A. 5.Optical-Fiber connector for Source B. 6.± 18V Power-Line connector for Source B. 7.AC Line Voltage Selector. 8.AC Power-Line connector with Fuse.

KST003 Fast-Reversed DC Source

SEQUENCE CONTROL UNIT

LINE

ON

STBY

EXECOUTPUT

R[+] / G[-]

STATUS

A B

OFF

MODE

V/I

(R/G)

YATOLLO

1 2 3 4 5

Front Panel --- Sequence Control Unit 1.Power Switch. 2.Toggle-Switch for EXEC/STBY setting. 3.Dual LED for output mode(Voltage/Current). 4.Dual LED for Source-A output status. 5.Dual LED for Source-B output status.

Fig. 201

Page 19: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 13-

2. 2 Cable Connection

Cable-Connection between the two chassis.

[1] Optical Fiber --- Dual fiber with Connector. (Two requierd)

[2] Power Supply Cable --- JAE SRCN6A13-5P / 3 wire dual shield. (Two requierd)

GPIB Bus and AC Power Line

Where the electrical power system gives rise to problems, the following precautions for

GPIB-cable and AC power lines have been helpful.

[1] GPIB Bus --- (a) Controller / DVM

(b) Controller / KST003 FRDC Source

Use of optical-fiber isolation is recommended for desk-top

controller (Fig. 202). Lap-top computer with battery-operation

is better. Avoid use of a noisy printer.

[2] AC Power line --- Use of isolation transformer is recommended.

IMPORTANT ---- Check AC Voltage before connecting the

AC power cable.

IsolationTransformer

DesktopComputer

OpticalIsolator

GP-IB Cable

Optical Fiber

GP-IB Cable

OpticalIsolator

Nano-Voltmeter

KST001Fast-ReversedDC Source

Recommended Configuration for GP-IB and AC Power Line

Fig. 202

Page 20: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 14-

Connection to Thermal Converter

[1] FRDC output / TC input --- 3D2V, RG58A/U or equivalent (less than 1m) with N-

type plug at both end. Direct coupling is recommended.

[2] FRDC GUARD / TC output Lo --- Connection by any type of wire.

[3] TC output / DVM input --- Low noise Triax cable. The outer shield (chassis GND

of DVM) should not be connected to the TC.

Example of connection is shown in Fig. 203.

____________________________________________________

IMPORTANT ---- Connect Input Lo and Output Lo of thermal

converter to avoid electrostatic break-down.

____________________________________________________

Source A

Connection To Thermal Convertor and Nano-Voltmeter

Guard (Input Lo)

Nano-VoltmeterThermal

Converter

Fast-Reversed DC Source

Source B

GuardTriax Cable

Coaxial Cable

Guard

GND

Hi

Lo

IMPORTANT ---- Input Lo and Output Lo of TC must have the same potential in order to avoid electrostatic break-down of TC.

Fig. 203

Page 21: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 15-

2. 3 GPIB Commands

General Information on GPIB-Comands

Address: GPIB address of KST003 FRDC source is initially set to "8".

Separator: Command Separator [:] must be inserted for multiple command-input.

Execute: "X" is required for the execution of commands, e.g.,"C8.75 : A1 2.000 : X "

Space: The characters "space", "+", "/" are simply neglected(no effect).

Default: After power on, the system goes back to the default condition.

2. 3. 1 Voltage/Current Level

Description Set output amplitude.

Parameter (1) Voltage : 0.00 V - 10.23 V (0.01 V step).

(2) Current : 0.00 mA - 10.23 mA (0.01 mA step)

Display "OUTPUT" indicators (#2) shows the output mode (Voltage/ Current).

Default 0.00 (voltage mode)

GP-IB Operation

Format V nn.nn (voltage-output mode)

C nn.nn (current-output mode)

Notes Use "V" command to set the voltage value. This function

automatically sets the output to the voltage-output mode.

Use "C" command to set the current value. This function

automatically sets the output to the current-output mode.

These commands also set the output to the "Stand-By" condition.

Example OUTPUT 708; "V1.0 : X" ! 1.0 V output

OUTPUT 708; "C8.75 : X" ! 8.75 mA output

____________________________________________________

WARNING! ---- Output current of more than 20 mA in the

voltage mode may result in the damage of analog switches and

dummy resistance.

____________________________________________________

Page 22: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 16-

2. 3. 2 Voltage/Current Adjustment

Description Adjust output amplitude.

Parameter Adjustment : -2.048 % to ±2.047 % (0.001% step)

Default -2.048 % (All sources)

GP-IB OperationFormat A0 ±n.nnn (adjust source A+)

A1 ±n.nnn (adjust source A− )

A2 ±n.nnn (adjust source B+)

A3 ±n.nnn (adjust source B−)

Notes The polarity Specifier "+" is optional.

This command does not affect STBY/EXEC.

Example OUTPUT 708; "A0 1.0 : X" ! 1.0 % adjustment for source A(+)

OUTPUT 708; "A3 0.001 : X" ! 10 ppm adjustment for source B(-)

Page 23: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 17-

2. 3. 3 Period (Switching Frequency)

Description Set switching period (switching frequency).

Parameter Period (TSw) : 100 µs - 25.5 s (8-bit resolution)

Base Period (TBase) : 0.10 ms - 2.56 ms (0.01 ms step)

Scale Factor (m) : 0 - 4 (Integer)

TSW = Tbase ×10m

Default 1.00 ms

GP-IB Operation

Format Pm n.nn

P0 n.nn (period = n.nn ms)

P1 n.nn (period = nn. n ms)

P2 n.nn (period = nnn ms)

P3 n.nn (period = n.nn s)

P4 n.nn (period = nn. n s)

Notes The value "m" specifies the scale factor(0 to 4).

The values "n.nn" represents the base period (TBase) in ms, and has

the following conditions.

(1) 0.10 ≤TBase ≤ 2.55 (0.01ms resolution)

(2) TBase> Toff +20µs

("Toff" is explained in the next paragraph.)

This command is not accepted unless the above conditions are fulfilled.

Example OUTPUT 708; "P0.1E0 : X" ! 100 µs (10 kHz) operation

OUTPUT 708; "P 1.0E04 : X" ! 10 s (0.1 Hz) operation

Page 24: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 18-

2. 3. 4 Off-Time

Description Set Off-Time.

Parameter Off-Time (Toff ) : 4 µs - 255 µs (1µs step)

Default 10 µs

GP-IB Operation

Format O nnn (nnn µs)

Notes The values "nnn" represents the Off-Time (Toff ) in µs, and has the

following conditions.

(1) 4 µs ≤Toff ≤ 255 µs

(2) Toff < TBase -20 µs

(See also the previous paragraph.)

This command is not accepted unless the above conditions are fulfilled.

Example OUTPUT 708; "O 10 : X" ! 10 µs Off-Time

OUTPUT 708; "P1.0E0 : O10 : X" ! 1 kHz with 10 µs Off-time

2. 3. 5 Dummy-Load Resistance

Description Adjust dummy-load resistances.

Parameter Dummy : 0 Ω - 1.6 kΩ (100 Ω step)

Default 500 Ω

GP-IB Operation

Format D n.n (n.n kΩ)

Notes This command is not accepted if the value is out of range.

The maximum execution time is approximately 10 ms.

Example OUTPUT 708; "D 0.2 : X" ! 200 Ω Dummy Load

OUTPUT 708; "D 1.5 : X" ! 1.5 kΩ Dummy Load

____________________________________________________

WARNING! ---- Improper setting of dummy resistance in the

voltage mode causes current-overload and may result in the

damage of analog switches and dummy resistance.

____________________________________________________

Page 25: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 19-

2. 3. 6 Waveform (Output Mode)

Description Select output sequence.

Parameter None

Display "STATUS" indicators (#4) and (#5) shows the status of output-

sequence.

Default AC[1] mode.

GP-IB Operation

Format M0 ( AC[1] mode ---- Sequential output )

M1 ( DC[+] mode ---- Sequential output )

M2 ( DC[−] mode ---- Sequential output )

M3 ( AC[2] mode ---- Sequential output )

M4 ( A[+] mode ---- Steady-State output )

M5 ( A[−] mode ---- Steady-State output )

M6 ( B[+] mode ---- Steady-State output )

M7 ( B[−] mode ---- Steady-State output )

Notes None

Example OUTPUT 708; "M0 : X" ! Sequential output ---- AC(1) mode

OUTPUT 708; "M7 : X" ! Steady-State output ---- B[−] mode

Page 26: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 20-

2. 3. 7 Enable/Disable Output

Description Enable/Disable output.

Parameter None

Display "STATUS" indicators (#4) and (#5) is turned off during Stand-By

mode.

Default Stand-By mode

GP-IB Operation

Format S 0 (Disable output / STBY mode)

S 1 (Enable output / EXEC mode)

Notes None

Example OUTPUT 708; "S0 : X" ! Disable output / STBY mode

____________________________________________________

NOTE ---- In the case of a multi-command as "V1:S1:X", the S

command is executed before the V command which

automatically disables output. In order to make the S command

effective, insert an X command between the two commands as

"V1:X:S1:X".

____________________________________________________

Page 27: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 21-

Function Format Discription

Voltage Level V nn.nn

Current Level C nn. nn

Adjustment ofOutput Level

A0 ±n. nnn

A1 ±n. nnn

A2 ±n. nnn

A3 ±n. nnn

Period P0 n.nn

Off-Time

Dummy-Load

OutputSequence/Mode

Enable/DisableOutput

O nnn

M 0

M 1

M 2

M 3

M 4

M 5

M 6

M 7

S 0

S 1

D n.n

GPIB Commands Summary

Select Voltage-Mode & Set Output Level as "nn.nn V"

Select Currnt-Mode & Set Output Level as "nn.nn mA"

Adjust Output Level of Source A(+) as "±n.nnn %"

Set Switching Period as "n.nn ms"

Adjust Dummy-Load Resistance as "n.n kΩ"

Sequencial Output --- AC(1) Mode

Adjust Output Level of Source A(-) as "±n.nnn %"

Adjust Output Level of Source B(+) as "±n.nnn %"

Adjust Output Level of Source B(-) as "±n.nnn %"

Set Off-Time as "nnn µs"

Sequencial Output --- DC(+) Mode

Sequencial Output --- DC(-) Mode

Sequencial Output --- AC(2) Mode

Steady-State Output --- Source A(+)

Steady-State Output --- Source A(-)

Steady-State Output --- Source B(+)

Steady-State Output --- Source B(-)

Disable Voltage/Current Output

Enable Voltage/Current Output

P1 n.nn Set Switching Period as "nn. n ms"

P2 n.nn Set Switching Period as "nnn ms"

P3 n.nn Set Switching Period as "n.nn s"

P4 n.nn Set Switching Period as "nn. n s"

Execute X Execute Commands

Range

0 to 10.23 V

0 to 10.23 mA

0 to ±2.047 %

0.1ms to 25.5 s

4 µs to 255 µs

0 kΩ to 1.5 kΩ

Table 201

Page 28: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 22 -

Section 3 - System Description

3. 1 Introduction

The KST003 FRDC Source consists of two separate units, i.e., Sequence Control Unit

(SCU) and Waveform Output Unit (WOU).

The SCU box contains (1) a CPU/SCC board which generate a control signal and timings,

(2) a GP-IB Interface board for remote control, (3) one +5Vand two ±18V DC power

supplies. The system is controlled by micro-processor (Z84C) using a program written in a

EPROM. The control program on the EPROM is explained in section 3.5 and section 5.6

The Sequence Control Unit are described in section 3.3.1.

The WOU box contains two identical circuit, namely the source A and the source B. The

two circuits are separately guarded by thick aluminum boxes in order to avoid possible

interference between the two circuit. The setting of the sources A and B are controlled by the

SCU unit using the two pairs of optical fiber lines. The Waveform Output Unit are described

in section 3.3.2.

The power supplies are described in section 3.4. The +5V is supplied to the digital circuits

in the SCU box. The two ±18 V DC voltage are supplied to the Sources A and B in

Waveform Output Unit.

An example of measurement program for the determination of the FRDC-DC difference is

given in section 3.6.

SequenceControllCircuit

GP-IBInterface

Power Supply (+5V)

GP-IBControl

Voltage/Current Source (B)

Micro-Processer

AC PowerLine

Fast Reversed DC Source Schematic Diagram

Sequence Control Unit

Waveform Output Unit

Voltage/Current Source (A)

GP-IB I/FBoard CPU/SCC Board

Power Supply (+/- 18V)

Power Supply (+/- 18V)

Output

Fig. 301

Page 29: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 23 -

3. 2 Sequence Control Unit

3.2.1 CPU/SCC BoardThe CPU/SCC board consists of four circuit blocks, i.e., (1) Z84C CPU board, (2) GP-IB

handshake logic circuit, (3) the Sequence Control Circuit, and (4) Optical-fiber I/F circuit. A

simplified circuit diagram is shown in Fig. 302.

The Z84C CPU board is a single-board computer Model KBC-Z11 from Kyohritu Dennshi

Sangyo co., Japan. Toshiba TMPZ84C011AF micro-processor is used as a core unit of the

board. The micro-processor includes 6 MHz Z80CPU, five 8-bit programmable I/O port, and

four channel programmable timer/counter(CTC). The GP-IB handshake logic circuit and the

Sequence Control Circuit are controlled via the five I/O port of the micro-processor. The

CTC produces the basic period and timing for the Sequence Control Circuit. The setting for

the short-pin-type jumpers are; [JP1 - open, JP2 - open, JP3 - Lo.]. The setting for the SW1 is

not significant. For more detailed information on the KBC-Z11, please contact the

manufacturer [Kyohritu Dennshi Sangyo co., 4-2-15 Nihonbashi, Naniwa-ku, Osaka 556,

Japan. Tel. +81-6-644-4666, Fax. +81-6-644-0070.]

Controller: Schematic Diagram

SequenceControlCircuit

Z84C IO port(PA, PB)

Z84C CTC

GP-IBInterfaceCircuit

HandshakeLogic

Z84C CPU

Z84C IO port(PB, PC, PD, PE)

(CH0 - CH3)

OpticalFiber

Transmitter

Fig. 302

3.2.2 Sequence Control CircuitThe Sequence Control Circuit consists of four circuit blocks, i.e., (1) the Pulse Generator

circuit, (2) the Handshake Control circuit, (3) the A/B Selector circuit, and (4) the Parallel to

Serial Converter circuit. A simplified circuit diagram is shown in Fig. 303.

The Sequence Control Circuit has dual purposes, i.e., (1) produce timing signal for

switching between the sources A and B, and (2) transfer the control-data for setting DACs,

mode resistors, and relays for dummy resistance.

Page 30: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 24 -

Simplified Circuit Diagram (Sequence Control Circuit)

PIO Port C

1 MHz

SystemClock

6 MHz÷ 6

200 kHz

÷ 5

Trig A

D

Q

Q

Q

Q

DRDY

RTRVTrig B

Z80 CTCCH 0

1/1, 1/100Scaler

1/1, 1/10, 1/100Scaler

CH 2CH 1

Off-TimeCounter

Base PeriodCounter

D

Trig B

PIO Port D

DD Q

Q

Q

Q

A ON

STBY

B ON

Trig A

A/B

74HC390

÷ 2 ÷ 10

Enable

S/L

Timing

A DataD D74HC166 Q

Q

Q

Q

D D74HC166 Q

Q

Q

Q

B DataS/L

Clock

ON-BON-A

PIO Port E

Pulse Generator

Handshake Control

Parallel to Serial Convertor

A/BSelector

Fig. 303

Channel Discription

CH0

CTC Discription

8 bit counter for "Off-Time" (Toff).

Mode

Counter

1/1, 1/10, 1/100 Scalar for repetition period.

CH1 Counter

CH2 Counter

CH3

8 bit counter for "basic" repetition period (Tbase).

Not Used

Edge

Negative

Negative

Negative

Table 301

Page 31: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 25 -

Port Bit Discription

PA bit 0 - bit 7

PB

PIO Port Address

Data from GPIB Interface (UIO-488Z II)

IN/OUT

Input

bit 4 - bit 6 Output sequence control

PC

Output

bit 0 Input "Ready" from GPIB Interface (UIO-488Z II)

"OK" for GPIB Interface (UIO-488Z II) bit 1 Output

bit 0 Input

"Data Ready" for SCC circuit bit 1 Output

PD

PE

"Ready to Receive Data" from SCC circuit.

Output

Data/Address for Source A bit 0 - bit 7

Output bit 0 - bit 7

"1, 1, 1" --- Sequencial Output

"1, 0, 1" --- Steady State (A-ON, B-Off)

"0, 1, 1" --- Steady State (A-Off, B-ON)

"x, x, 0" --- Stand-By (A-Off, B-Off)

bit 0 - bit 3 --- A0 - A3bit 4 - bit 7 --- D0 - D3

Data/Address for Source B

bit 0 - bit 3 --- A0 - A3bit 4 - bit 7 --- D0 - D3

Extended Period (x100) ON/Off bit 2 Output

bit 2 Output

bit 3 Output

"A Polarity" Display Output.

bit 7 Output

"B Polarity" Display Output.

"I/V Mode" Display Output.

bit 4 - bit 6 Error Status. (Planned)Output

bit 3 Input

bit 7 Output

"STBY" switch status

Command Execution Status (Planned)

Table 302

Production of timing signal is mainly done by the Z80CTC circuit and Pulse Generator

circuit. The CTC#0 is used to set the "off-time" in one µs unit. The CTC#1 creates the "base

period" in 5 µs unit . The CTC#2 and the "1/100 Scalar" circuit determines the scale factor

"m" of the switching period. The configuration for the CTCs are summarized in Table 302.

The configuration for the five I/O port are summarized in Table 303.

Page 32: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 26 -

Data Transfer for Source A/B

TimingPulse

(1 MHz)

4 pulse forSequence ControlTiming

Trigger Pulse

Sequence Control("1" for A ON)

A Data

8 bit Data for Source A(D3 - D0, A3 - A0)

Off Time

10 pulse for Data TransferTiming

MSB(bit7)

LSB (bit0)

Always "0"

Fig. 304

A3 A2 A1D3 - D0

0 0 0

1

DAC 1(a) bit 0-3

DAC 1(a) bit 4-7

DAC 1(a) bit 8-11

1

0

0

1

DAC 1(b) bit 0-3

DAC 1(b) bit 4-7

DAC 1(b) bit 8-11

1 0

0

1

DAC 2(a) bit 0-3

DAC 2(a) bit 4-7

DAC 2(a) bit 8-11

1

0

1

DAC 2(b) bit 0-3

DAC 2(b) bit 4-7

DAC 2(b) bit 8-11

D3 --- I/V Mode

Relays RL3 - RL0

Data Transfer Format (Port PD/PE)

D2 --- "UPD"

1

0

10

1

Description

DAC forMAIN(+)

DAC forAdjust(+)

DAC forMAIN(-)

DAC forAdjust(-)

Dummy Load

OutputControl

A0

00

1

1

1

1

0

0

0

1 1

1 1

0

0

0

0

0

0

1

D0 --- Polarity

Data for idling state --- "1111 1111"

Table 303

Page 33: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 27 -

The Pulse Generator circuit combines the "off-time" and "base period", and makes the

"timing-pulse train" for transmission through the optical fiber, as shown in Fig. 304. The first

four pulses of the timing pulses are used to control the switching timing of the analog

switches in the source A/B circuit. The timing pulses, excluding the first two pulses, are also

used to synchronize "data-pulse train" which is used for the transmission of control-data for

the sources A and B.

The control-data for setting DACs, mode resistors, and relays on the sources A and B are

send from the CPU via the port PD and PE. The control-data consists of 4 bit address and 4

bit control data as summarized in table 303. The control-data is converted to serial data by

the Parallel to Serial Converter circuit, and transmitted as the "data-pulse train" through the

optical fiber lines.

The Handshake Control circuit controls the transmission of data through the optical fiber

lines. The data-transfer timing is controlled by bit 0 and bit 1 of the port PC.

The A/B Selector circuit control the switching of the output between the sources A and

B. The control data are transmitted to the sources A and B as the second bit of the "data-pulse

train".

3.2.3 GP-IB Interface The KST003 FRDC uses all-in one type commercial GP-IB interface unit Model UIO-

488Z from MCI engineering co. Japan. The UIO-488Z receives the GP-IB commands by

ASCII format and outputs the ASCII characters to the 8-bit parallel output buffer. The

"Handshake Logic" circuit interfaces the UIO-488Z to the Z84C CPU board. An detailed

circuit diagram of the handshake logic is shown in Fig. 305.

The DIP switches are initially preset as "LSB-00010100-MSB" (Address=8, addressable

mode). For more detailed information on the UIO-488Z, please contact the manufacturer

[MCI engineering co., Takahashi Bldg. 6F, 1-44-3 futa, chofu-shi, Tokyo 182, Japan. Tel.

+81-424-87-9564, Fax. +81-424-82-9138.]

GP-IB Handshake Logic

CK

QD

QLD CLK

OK

READY

READY

READYfor GP-IB Board

READYfor CPU PIO Port

OKfrom CPU PIO Port

LO CLKfrom GP-IB Board

Fig. 305

Page 34: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 28 -

3. 3 Waveform Output Unit

The WOU consists of two identical circuits, sources A and B. The two circuits are

separately guarded by thick aluminum boxes. The sources A and B each consist of three PC

boards, i.e., (1) Output I board, (2) Output I-sub board, and (3) Output II board.

Output I board is a four layer PC board mainly for digital control circuit and analog

switches. Output I-sub board include all the analog circuit excluding the analog switches.

Output II board includes ±18 V to ±15 V and ±18 V to +5 V regulator circuit and "dummy"

resistors and latching relays. Detailed descriptions on the analog and digital parts of the

sources A and B are given in Sec 3.3.1 and 3.3.2.

3.3.1 Analog CircuitThe Analog circuit generate the FRDC waveform at switching frequency from 0.04 Hz to

10 kHz, with programmable voltage/current level between 0 V/mA to 10 V/mA. The

schematic diagram of the analog circuit is given in Fig. 306. The detailed circuit diagram is

given in the appendix A. Since the two sources A and B are identical, only one of the two

sources is explicitly shown in the figure.

Waveform Output Unit (1 --- Analog Circut)

+−

+−

+−

+−

+−

+−

+−

+−

+−

+−

+−

+−

+−

Monitor

Output

+−

DAC1a

Dummy

DAC1b

DAC2aDAC2b

VZ1

A2a

A4a

A2b

A2c

A2d

A4b

A4c

A4d

A3a

A3c

A3b

A1a

A1cA1b

Q1

Q2

Q3

Q4

SW7a,b

SW8a,b

SW2

SW1

SW4

SW5

SW10 SW6

SW9 SW3

Fig. 306

The zener voltage reference VZ1, combined with the OP amps A2a and A4a produces

stable reference voltage of ±10.00V. The rest of the analog circuit consists of two

symmetrical circuits. The upper part of the circuit is for the positive output, and the lower

circuit is for the negative output. DAC1a and DAC2a adjust the output level up to ±2 % with

10 ppm resolution. DAC1b and DAC2b set the output level within a range from 0 V to 10.23

V or from 0 mA to 10.23 mA with 0.01 V/mA resolution. The OP amp - FET combinations

Page 35: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 29 -

A1a-Q1 and A3a-Q3 are voltage buffers for constant voltage output. Switches SW1/SW4 and

SW2/SW5 generate the FRDC waveform at voltage-output mode. The timing signal for SW4

and SW5 are 0.1 µs delayed from SW1 and SW2 so that they perform "make-before-break"

operation. The OP amp - FET combinations A1b/c-Q2 and A3b/c-Q4 are V-I converters for

constant current output. Switches SW7 and SW8 generate the FRDC waveform at current-

output mode. The timing signal for SW7b/SW8b is also 0.1 µs delayed from SW7a/SW8a for

"make-before-break" operation. Switches SW9 and SW10 exchange the output and the

"dummy", and SW3 connect the output to GND in order to avoid floating of the output. The

switch SW6 connects and disconnects the source from the TC. Since the output leads from

SW6 are regarded as part of the TC-input circuit, a small-size high-isolation Teflon PC board

is used in order to avoid the effect from the dielectric loss. (See Sec.9.2.6)

3.3.2 Digital CircuitThe Digital Control Circuit of the Waveform Output Unit has dual purposes, i.e., (1)

receive timing signal from SCU as the "timing-pulse train", and create the switching sequence

for the analog switches, and (2) receive control-data from SCU as the "data-pulse train", and

set DACs, mode resistors, and relays for dummy resistance.

DATA

Clock

Q2

On/Off

Exec

bit 4-7

TRIG

Q4

Q1

Q3

bit 0-3

QQ

CK

CK

CK

CK

CK

QDIN

QDQD

D

ON/Off

D0 - D3

A0 - A2

A3

A3

D

CK

4 bit DATA

Address

DAC1 Select

DACs control

Control Select

Relay Select

DAC2 Select

Control data

Relay Data

DAC's

Control Resistor

Relays

Waveform Output Unit (2--- Simplified Digital Circut)

U1 U12

U10(4/6)U13

(1/6)U13(1/6)U4

(4/6)U4

U2

U11

U9

U3

U2

U9

U9

Fig. 307

Page 36: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 30 -

The 8 bit control-data, received from the SCU via the optical-fiber transmission line, are

then converted from serial data to parallel data by U10 and (1/6)U4. The 4-bit data are stored

at the buffers (4/6)U13, and the 4 bit address are buffered at U11, and are decomposed by the

ICs U11, U9, U3 and U2 to select DACs, mode control resistors, and relays for dummy

resistance.

The control data for connection or disconnection of the sources A and B are send by the

second bit of the "data-pulse train", and are stored in (1/6) U13. The switching sequence for

the analog switches are generated by (4/6)U4 and two NAND gate of U2 using the "timing-

pulse train".

3. 4 Power SupplyThe Power Supply circuit consist of two ±18 V, 200 mA power supplies for Sources A/B

and a +5 V, 1A power supply for all the circuit in the Sequence Control Unit. The schematic

diagram of the analog circuit is given in Fig. 307.

The power supplies use "R-core" transformer in order to reduce coupling of the power

supplies by leakage flux. The electrostatic shielding is inserted between the primary and the

secondary winding. The two ±18 V power supplies are enclosed in magnetic-shield boxes

separately.

±18VReguratedPower Source

Power Supply for Source AAC Line(100V / 200 V)

(5 V, 1A)

±18VReguratedPower Source

Power Supply for Source B

5VReguratedPower Source

Power Supply for SCU

To Source A (±18V, 0.2 A)

To Source B (±18V, 0.2 A)

To CPU/SCC,GP-IB, Display/KB board

Fig. 307

Page 37: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 31 -

3. 5 EPROM SoftwareThe control program has two modes of operation, namely the command-input mode and

the command-execute mode. The simplified flow-chart is shown in Fig. 309. In the

command-input mode, the program receives the commands from the system-controller

through the GP-IB interface. The command are stored in a command-input buffer in the

ASCII format. Upon receiving the X-command, the program goes to the command-execution

mode.

EPROM Software Flow Chart

START

Initialize CTC, PIO, & Memory

"A" ?yes

Input Datafor "A0"- "A3"

Input Commands asAn, C, D, M, O, P, S, V

Read GPIB

yes"C" ?

Input Datafor "C"

"X" ?yes

Flag Setfor "S"?

yes

Execute"S" command

Execute Commands asS, M, V, C, An, D, P, O

Flag Setfor "M"?

yes

Execute"M" command

Flag Setfor "O"?

yes

Execute"O" commandNo

yes"V" ?

Input Datafor "V"

Fig. 309

3. 5. 1 Command Input

Explanation In the command-input mode, the program continuously watches the

"READY" flag from the GP-IB interface circuit. When the flag is

set, one character (8 bit) is received via PIO A using a handshake-

Page 38: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 32 -

procedure. Upon receiving the X-command, the program goes to the

command-execution mode.

3. 5. 2 Command Execute

Explanation In the command-execute mode, the commands stored in the

command-buffer is executed one by one. The commands stored in the

ASCII formats are converted to four-digits BCD and then to 16-bit

binary numbers. Then the data are transferred through the optical

fiber lines using a handshake control from PIO port C. After

execution is completed, the program returns to the command-input

mode.

"V/C" command The numerical parameter (0.00 to 10.23) is converted to 10-bit binary

data (0 to 1023). The data are then multiplied by four to make use of

the 12-bit precision of the DACs. The 12-bit data (0 to 4092) are then

sent to DACs (CH1A and CH2A) through the optical fiber using the

PIO port D and port E. After sending all the data to the DACs, the

control bit "V/C" is sent to the "V mode / I mode" control-resistors of

the sources A and B, which automatically generate the update pulse to

the DACs.

"An" command The numerical parameter (0.000% to ±2.048%) is converted to 12-bit

binary data (0 to 2047 with sign). Then the offset of 2048 is added to

the data (0% adjustment is converted to 2048). The 12-bit data (0 to

4095) are then sent to DACs (CH1B and CH2B) through the optical

fiber using the PIO port D and port E. After sending all the data to the

DACs, "UPD" command is sent to the DACs to update the output of

the DACs.

"Pn" command The index (0 to 4) is stored in the command-P buffer in ASCII format.

The base period (0.10 ms to 2.55 ms) is converted to 8-bit binary data

(10 to 255) and is stored in the control resistor of the CTC#1. The

range-multiplying by the index are performed by the CTC#2 and by

the "÷ 100" circuit controlled by bit-2 of the PIO port B.

"O" command The numerical parameter (4 µs to 255 µs) is converted to 8-bit binary

data (4 to 255) and is stored in the control resistor of the CTC#0.

Page 39: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 33 -

"D" command The numerical parameter (0.0 kΩ to 1.5 kΩ) is converted to 4-bit

binary data (0 to 15). The data are then sent to the relay-control

resistor of the sources A and B via the PIO port D and port E. After

updating the relay-control resistor on/off pulse are applied to the

latching relays (RL0 to RL3).

"M" command According to the numerical parameter (0 to 7), the control bits

"Polarity" and "Sequential / Steady-state" are sent to the control-

resistors of the sources A and B via the PIO port D and the PIO port

E.

"S" command Control line "STBY" (PIO port C) is enabled or disabled according to

the numerical parameter (0 or 1).

Page 40: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 34 -

Section 4 - Service References

4. 1 Checking Procedures

The KST003 FRDC source does not require any periodical maintenance. The

following two checking procedure should be performed only when some defect in the circuit

is suspected. The construction of the SCU unit and WOU unit are shown in Fig. 401. To

remove the top cover of the units, take off the plastic flame and remove the self-tapping

screws.

GPIB I/FBoard

+5V Regulator Board

Isolated Power Supply for +/- 18V x 2

CPU/SCC Board

Sequence Cotrol Unit

Fig. 401(a)

Thick Al Box x 2(Shield for Analog Circuit)

Waveform Output Unit

Output Board I-sub

Output Board I

Output Board II

Fig. 401(b)

Page 41: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 35 -

4. 1. 1 Operation Check

Tools (1) Seven-digit DMM.

(2) Dual-trace Oscilloscope. (>10 MHz BW)

(3) GP-IB controller.

(4) Metal-foil resistor. ( >1/8 W, <0.1% precision)

Checking procedure

[1] Disconnect all the cables.

(1) Check line-voltage setting. (Do not apply power until procedure [4]).

(2) Check GP-IB address. (Initially set to "8/addressable")

(3) Check leakage resistance between the shields of the ±18V power supplies

(pin#4) and chassis (pin#5) at the "Power" connector on the rear panel.

(4) Check connection between chassis (pin#5) at the "Power" connector on the

rear panel and the actual frame (chassis) of the SCU unit.

(5) Check connection between chassis (pin#5) at the "Power" connector on the

rear panel and the actual frame (chassis) of the WOU unit.

[2] Connect ±18V power lines between the rear-panels. Disconnect "Output Lo". and

"Guard" at the "GND" terminal on the two "Output Board I" PC board for the

sources A and B. ("GND" terminal on the board should be read as "Output Lo. :

refer circuit diagram in the appendix A.").

(1) Check leakage resistance between "Output Lo." and "Guard" for the sources A

and B. (>1MΩ)

[3] Resume connection between "Output Lo". and "Guard"

(1) Check connection between "Output Lo." and "Guard" for the sources A and B.

[4] Disconnect ±18V power lines again. Set "OPERATE/STBY" switch at "STBY"

position. Apply ac power.

(1) Check the LED display. (The "MODE" LED should change the color from

orange to red within a few second. The two "STATUS" LED should be off-

state. )

(2) Check output voltage of ±18V power sources at the "Power" connectors on the

rear panel of SCU. (pin#1/+18V : pin#2/CMN : pin#3/-18V)

[5] Turn-off power and resume(connect) ±18V power lines. Connect optical fibers

between the rear-panels. Apply ac power again.

(1) Measure the voltage of TP4's on the "Output I-sub" boards of the sources

A/B. Adjust the voltage as 10.00V by the trimmers. (T1)

(2) Measure the voltage of TP2's and TP3's of the "Output I-sub" boards of the

sources A/B. (TP2's should be +5V, TP3's should be -5V.) If not, check proper

Page 42: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 36 -

connection of the optical-fiber lines. ( U26 - U6/A, U25 - U8/A, U24 - U6/B,

U23 - U8/B)

[6] Send GP-IB command "C0:M5:P0 0.1: O10:X:S1:X".

(1) Measure the "clock-A" pulses from the optical-fiber receiver U8/A (pin#3 of

U3/A) on the "Output Board I" while taking the trigger signal from the TP3 on

the "CPU/SCC" board. Check the "margin" of the power-level of the optical-

fiber lines by temporally changing the resistance(220Ω) of the SCU board R3 -

R6 to 150Ω and 330Ω.

(2) Repeat the same procedure for "data-A" pulses. (U6/A : pin#1 of U3/A)

(3) Repeat the same procedure for "clock-B" pulses. (U8/B : pin#3 of U3/B)

(4) Repeat the same procedure for "data-B" pulses. (U6/B : pin#1 of U3/B)

[7] Reset the source by power on-off cycle. Connect the 1kΩ resistance at the output.

(1) Check the voltage of TP2's and TP3's on the "Output I-sub" boards of the

sources A/B once more. (TP2's should be +5V, TP3's should be -5V.)

(2) Send GP-IB command "C1:M1:X:S1:X" . --- The output voltage should be

within the range from 0.99 to 1.01 V.

[8] Connect the DVM to the "Monitor" terminal of the source A. Send GP-IB

command "M5:X".

(1) Send GP-IB command "D0.0:X". --- Check the voltage. (≈ 0.05V)

(2) Send GP-IB command "D0.1:X". --- Check the voltage. (≈ 0.15V)

(3) Send GP-IB command "D0.2:X". --- Check the voltage. (≈ 0.25V)

(4) Send GP-IB command "D0.4:X". --- Check the voltage. (≈ 0.45V)

(5) Send GP-IB command "D0.8:X". --- Check the voltage. (≈ 0.85V)

[9] Connect the DVM to the "Monitor" terminal of the source B. Send GP-IB

command "M7:X". Repeat the procedure (1) to (5).

[10] Connect the leads of the DVM across the 1kΩ resistor. Send GP-IB command

"D1:X:V10:X:S1:X".

(1) Send GP-IB command "M4:X". --- Adjust the voltage as 10.00V by the

trimmer(T1/A) of the source A. Check the short-term stability of the output

voltage. (< a few ppm)

(2) Send GP-IB command "M5:X". --- Check the voltage. (10.00 ± 0.01V)

Check the short-term stability of the output voltage.

(3) Send GP-IB command "M6:X". --- Adjust the voltage as 10.00V by the

trimmer(T1/B) of the source B. Check the short-term stability of the output

voltage.

(4) Send GP-IB command "M7:X". --- Check the voltage. (10.00 ± 0.01V)

Check the short-term stability of the output voltage.

[11] Disconnect the DVM. Connect the leads of the oscilloscope across the 1kΩresistor. Send GP-IB command "P0 1:O10:X".

Page 43: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 37 -

(1) Send GP-IB command "M0:X". --- Check the output-waveform of the

FRDC(*) mode.

(2) Send GP-IB command "M1:X". --- Check for the CPDC(+) mode.

(3) Send GP-IB command "M2:X". --- Check for the CPDC(-) mode.

(4) Send GP-IB command "M3:X". --- Check for the FRDC(/) mode.

[12] Send GP-IB command "C10:X:S1:X". (Current-mode) Repeat the procedure (1)

to (4).

4. 1. 2 Isolation Check

Purpose

To got the equal RMS power for DC and FRDC modes, it is essential that there is no

interference between the sources A and B. (Refer to Section 1.2 and 9.2.5 for detailed

information.) In this section, a method to evaluate the isolation between the sources is

described.

Measurement System

The measurement system consists from a high-resolution DVM, a GP-IB controller with

a GPIB interface, a FRDC source to be checked, and a "Source A/B Selector" as shown in

Fig. 402. The "Source A/B Selector" de-compose the combined waveform from the

FRDC source and distribute only the output from source A or source B to the TC. In

order to avoid the effect from the on-resistance of the analog switch, the measurement

should be done at current mode.

Checking procedure

[1] Replace U4 and U10 (HC74's) with the add-on type "A/B drive circuit" which

produce timing signal for A/B switching .

[2] Check battery inside the "Source A/B Selector".

(1) Connect FRDC output to the input-terminal of the "Source A/B Selector".

(2) Connect an SJTC to the output-terminal "A".

(3) Connect a dummy-resistor to the output-terminal "B".

[3] Measure the RMS of waveform A+ or A- at current mode. The EMF from the

SJTC should not change when the polarity from the source B is changed from B+

to B-.

[4] Set "Normal/Reverse" switch to "Reverse" position. This will effectively

exchange the sources A and B. Then measure the RMS of waveform B+ or B-.

The EMF from the SJTC should not change when the polarity from the source A

is changed from A+ to A-.

Selection of Modes

Page 44: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 38 -

[1] For measuring the output of A+ while changing the output B+/B-, compare the

output of the modes between "DC+" and "FRDC(1)".

[2] For measuring the output of A- while changing the output B+/B-, compare the

output of the modes between "DC-" and "FRDC(2)".

[3] For measuring the output of B+ while changing the output A+/A-, compare the

output of the modes between "DC+" and "FRDC(2)".

[4] For measuring the output of B- while changing the output A+/A-, compare the

output of the modes between "DC-" and "FRDC(1)".

Source A

TC Source B

A+

B-

A+

CPU/SCC

Add-onCircuit

A/B control signal

Source A/B Selector

Circuit diagram for "de-composing" the waveform.

12

AD7510DI

16

1415

A/B Selector Circuit

13

FRDC IN

A out

B out

3µs delay

HP2231

From"Add-on" circuit

A/B control signal

QD

Q

2

3

5

9

QD

Q

QD

Q

5

QD

Q

QD

Q

2

3

5

9

QD

Q

5 V

14

To A/B Selector

12

11

Replace withU4

Replace withU10

"Add-on" circuit to CPU/SCC board

HC74

HC74/HC74(piggyback)

A/B control signal

Fig. 402

Page 45: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 39 -

An example of the result for isolation-check measurement is shown in Table 401. In this

case, the uncirtainty due to the possible interfarence between the sources A/B are evaluated as

less than 0.3 ppm.

Date : 95/JUN/14ID : JEMIC-1Current : 9.5 mATC : ETL T08

0.10 ±0.230.02 ±0.20

-0.05 ±0.19

0.08 ±0.26

-0.11 ±0.23

* The uncertainty represents one standard deviation for ten measurements.

0.02 ±0.18

Check Interference Between the Sources A & B

0.13 ±0.20

0.00 ±0.24Source A+

Source A-

1 kHz100 Hz

Source B+

Source B-

DC(+) / FRDC(1)

FRDC(2) / DC(-)

DC(+) / FRDC(2)

FRDC(1) / DC(-)

Compare

in ppm

Table 401

4. 2 Earth/Guard Configuration

KST003 FRDC source uses dual guard/shield system as shown in Fig. 403.

Chassis Ground [GND].

Potential of the two chassis, i.e., SCU and WOU unit. The two chassis are connected by

the outer shield of the ±18 V power cable. The Chassis ground is internally connected to

the safety ground of the ac-power line.

Output Lo / Guard [GUARD].

Potential of the inner shield which surround the circuits inside the SCU and WOU unit.

The guard inside the two chassis are connected by the inner shield of the ±18 V power

cable. The Source-A circuits and the Source-B circuits are independently guarded in order

to obtain sufficient isolation between the two circuits, and are only connected at the output

connector. The "Output Lo" (earth-potential of the Source A/B circuits) is internally

connected to the GUARD potential.

Page 46: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 40 -

Signal Lo, Guard, Ground Configuration

OUTPUT(Coax. Hi/Lo)

Output Lo/GUARD

Chassis GND

I/V Source(A)

I/V Source(B)

Sequence Control Unit Waveform Output Unit

Fig. 403

Page 47: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

--- Measuring Thermoelectric Effects using KST003 FRDC Source --- (Software Manual)

§5 - Calibration of Thermal Convertor§6 - Basic Operation of the Program§7 - FRDC-DC Difference measurement§8 - Analyzing Measurement Results§9 - Measurement Uncertainty

<<< PART II >>>

Page 48: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi
Page 49: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 41 -

Section 5 - Calibration of Thermal Converter

5. 1 Thermoelectric Effects of TC

The ac-dc transfer difference of a Single-junction TC(SJTC) is caused by threeindependent effects, i.e., (1) low-frequency effect δLF due to thermal ripple at the heater, (2)

high-frequency effect δHF due to stray capacitance and series inductance, and the

thermoelectric effect δTE due to Thomson and Peltier effects.

In the audio frequency range between 100 Hz and 10 kHz, the effect of δLF and δHF is less

than 1 ppm for most SJTCs. While the thermoelectric effect δTE gives a contribution of the

order of a few ppm to the ac-dc transfer difference of a SJTC in this frequency range.The thermoelectric effect δTE can be determined experimentally with the FRDC source.

When a TC is connected to the output of a FRDC source and the source is set to the DC

mode, dc current is passed through the heater of TC. Then, in addition to the joule heating

components, non-negligible amount of energy is created due to Thomson and Peltier effects.

The energy generated by the Thomson and Peltier effects changes their polarity when the

current is reversed, and modifies the temperature distribution, as illustrated in Fig. 501.

While in the case of Fast-switching mode, the reversal of the current is fast enough so that

thermoelectric effects do not have enough time to develop during the half cycle of the

waveform. Therefore the contribution from the thermoelectric effects becomes negligible.

The thermoelectric effects can be determined experimentally by comparing the output EMF

of a TC for dc and FRDC modes.

Thermal Response of TC for square wave input.

Joulecomponent

Peltiercomponent

Temp Temp Temp Temp

DC[+] DC[−]Slow

SwitchingFast

Switching

Fig. 501

Page 50: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 42 -

5. 2 Thermal AC-DC Transfer Difference

The FRDC-DC difference of a thermal converter is calculated from the output EMF of the

TC by use of a measuring sequence [FRDC(1), DC+, DC-, FRDC(2)] as

δFRDC− DC

≅ −E

FRDC− E

DC

nEDC

(5. 1)

where,

EFRDC

≡E

FRDC(1) + E

FRDC(2)

2, E

DC≡

EDC + + E

DC−

2(5. 2)

The FRDC-DC difference δFRDC-DC can be recognized as the ac-dc transfer difference of

TC's in the case of square-wave input. While in most of the cases, the ac-dc difference is

defined using sinusoidal waveform as,

δAC −DC

≅ −E

AC− E

DC

nEDC

(5. 3)

where, EDC is defined in the same way as (5.2), and EACis defined as the EMF output for

sinusoidal input having same r.m.s. as dc.

When sinusoidal input is applied to a SJTC, the EMF output of the TC (EAC) is described

as,

EAC

≡ EJoule + ∆ELF ( f ) +∆EHF( f ) (5. 4)

where, EJoule is the ideal EMF output of the TC due to Joule heating. ∆ELF represents for the

low-frequency effect due to thermal ripple at the heater, and ∆EHF represents the high-

frequency effect due to stray capacitance and series inductance.In the dc mode, the EMF output (EDC) depends on the direction of the current due to

Thomson and Peltier effects.

EDC+ = EJoule +∆ ETE (1st ) +∆ETE(2 nd )

EDC− = EJoule − ∆ETE(1st ) + ∆ETE (2 nd )

(5. 5)

Where, ETE(1st) and ETE(2nd) are the first term and second term of combined Thomson and

Peltier effects. Higher order terms have been neglected. Combining eqs. (5.3) and (5.5), the

ac-dc difference for sinusoidal input is given by,

Page 51: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 43 -

δAC −DC

≅ −1

nEDC

∆ELF( f ) −∆ ETE(2 nd) + ∆EHF ( f)( ) = δ

LF( f ) +δ

TE+ δ

HF( f )

(5. 6)

This formula explains the frequency dependence of the ac-dc transfer difference of TC's as

described in the previous section. This result is illustrated in Fig. 502.

0

δTE

f

δLFδHF(f) (f)

δ AC

-DC

Typical dependence of AC-DC differenceδAC-DC on test frequency f.

Fig. 502

Since the quantity δTE results from the dc mode, it has nothing to do with the input ac

waveform. In the case of square-wave input (FRDC mode), the EMF output of the TC(EFRDC) is described as,

EFRDC ≡ E Joule + ∆EHFFRDC( fSW ) (5. 7)

Since the FRDC mode produces a constant power at the heater of TC, there is no effect

from the thermal ripple at lower frequency. Also, the contribution from the Thomson and

Peltier effects becomes negligible if the switching period is short compared to the

thermoelectric time constant of the TC.

Combining eqs. (5.1), (5.5) and (5.7), the transfer difference for FRDC waveform is

given by,

δFRDC− DC ≅ − 1nEDC

−∆ETE (2 nd ) +∆EHFFRDC( f )

=δTE + δHF' ( f)

(5. 8)

Page 52: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 44 -

This formula explains the dependence of the FRDC-DC difference of TC's on theswitching frequency as illustrated in Fig. 503. The high-frequency effect δHF due to stray

capacitance and series inductance will be discussed in more detail in section 9.2.2.

0

f

δTE

Typical dependence of FRDC-DC differenceδFRDC-DC on switcing frequency fSW.

SW

δHF

(f)'

δ FRD

C-D

C

Fig. 503

From the eq.(5.6) and (5.8), following important conclusions are deduced.

_________________________________________________________________

[1] The "thermoelectric transfer difference" of a TC can be evaluated by the

FRDC method if the effect of higher-harmonics is negligible or calculable at

some switching frequency.

[2] The "thermoelectric transfer difference" of a TC evaluated by the FRDC method is

equivalent to the frequency-independent or "intrinsic" ac-dc transfer difference

defined by sinusoidal waveform.

_________________________________________________________________

Page 53: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 45 -

5. 3 Thermoelectric Time Constant

The thermoelectric effects are also present in the case of sinusoidal waveform. However,

double-frequency thermal ripple is produced at lower frequency as the heater temperature

bigins to follow the instantaneous current instead of the rms value, and the effect of the

thermal ripple smears out the relatively small thermoelectric effects. By the use of fast-

reversed dc waveform which produces constant joule heating, it is possible to detect the time

constant of the thermoelectric effect.

We assume that the thermoelectric effect build up exponentially with a characteristic time

constant τSW for a step change of the input current i0(t), as shown in Fig. 504(b). An

equivalent circuit for the thermoelectric effect is shown in Fig. 504(a). The thermoelectric

effect is represented by an additional current source which produces an excess current iTE(t).

The response function for iTE(t) is described by,

iTE( t) = I0δTE 1− e−( t −t0 ) τ SW( ) (for 0 ≤ t < TSW ) . (5.10)

R

E(t)

iTE

0t

+δTE

− TSW + TSW-δTE

i TE t( ) I0

i o iTC

(a)

(b)

Fig. 504

Page 54: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 46 -

From the boundary condition that iTE(T) = - iTE(0), where TSW is the period of switching,

we obtain

t0 = τTE log2

1 +e− TSW τTE

. (5.11)

Then, the "effective" power P which is dissipated at the heater of the TC is

P ≡1

2R iTC (t)

rms

2=

1

2R

1

TSW

iTC(t) 2

0

TSW

∫ dt

=1

2RI0

2 1

TSW

1+δTE 1− e− (t− t 0 ) τ SW( ) 2

0

TSW

∫ dt

(5.12)

Since δΤΕ<<1, we can expand eq.(5.12) to the first order of δΤΕ, and obtain

P ≅1

2RI0

2 1

TSW

1 +2δTE 1− e− (t −t 0) τ SW( ) 0

TSW

∫ dt

=1

2RI0

2 1 +2δTE 1− (2τ SW

TSW

)tanhTSW

2τ SW

. (5.13)

The FRDC-DC difference is calculated using eq.(5.1) as

δFRDC− DC = δTE (2τSW

TSW

)tanhTSW

2τ SW

= δTE(4τSW fb )tanh 1 4τ SW fb( )[ ] . (5.14)

The period TSW is the inverse of the reversing frequency and one-half of the inverse of basic

frequency fb of the FRDC waveform. This formula explains the dependence of the FRDC-DC

difference of TC's on the switching frequency as illustrated in Fig. 504. Two parameters δΤΕ

and τSW can be calculated by the least-square curve-fitting of the data to the formula (5.14).

Dependence of δFRDC-DC on TSW.

-0.5

0

0.5

1

1.5

0.001 0.01 0.1 1 10 100 1000

δFR

DC

-DC

× 1τ TE

1TSW

×δTE( )

Fig. 505

Page 55: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 47 -

Section 6 - Basic Operation of the Program

6. 1 Installation and Setup

6. 1. 1 System Requirements

In the case of a Windows system, the measurement system consists of an IBM-PC

compatible, a GPIB interface card (HP82335B or NI488), a nano-voltmeter (Keithley 182 or

HP34420A), and a thermal converter to be evaluated. The schematic diagram of the system

is shown in Fig. 601. Optical isolation of the GP-IB bus is recommended for measurement in

electrically noisy environments.

Since thermal converters can easily be damaged by overloading, it is recommended to use

a dummy resistance instead of the thermal converter for the initial checking of the system.

In the case of a Macintosh system, the measurement system consists of a Macintosh, an

RS232C/GPIB interface (Keithley 500S), a nano-voltmeter (Keithley 182 or HP34420A), and

a thermal converter to be evaluated. A modem cable should be used between the serial port

of Macintosh and the Keithley 500S. A Power-Book is recommended as the controller, since

the LCD display produces less noise than the CRTs, and it can be temporarily disconnected

from the ac-power line to check the noise through the ac-power line.

Source A

Guard (Input Lo)

DVM/nV Meter

Thermal Converter

Fast-Reversed DC Source

Source B

Guard

Triax Cableor

Twisted Pair w/t Shield

Coaxial Cable

Guard

GND

Hi

Lo

IMPORTANT ---- Input Lo and Output Lo of TC must have the same potential in order to avoid electrostatic break-down of TC.

IBM-PC/MacintoshwithGP-IB I/F

GP-IB Cable

Fig. 601

Page 56: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 48 -

6. 1. 2 Software Installation

The control-software is supplied as a stand-alone application using a 3.5 inch floppy

disk. Make a new folder in the hard disk and copy all the contents in the floppy disk. In the

case of PowerBook or Laptop, energy-saving function such as CPU-cycling or auto-sleep

must be disabled.

6. 1. 3 Start/Quit Program

The main program for Windows-95 system is in the file "FRDC/VB 7.x.x". As soon as the

control program starts, the message window (Fig. 602) appears in the middle of the screen.

initialization

Keep Voltage/Current

Cancel OK

Fig. 602

Select [Cancel] button if power to the DVM and the FRDC source is not ON. In this case,

the system must be initialized later using the [Initialization] command from the [Direct

Operation] menu.

Select [OK] to initialize the system. To maintain the output of the FRDC source, leave the

check-mark in the [Keep Voltage/Current] option button. If the check is removed, the

output of the source will be reset to zero.

Watch the display of the DVM during the initialization. The message "KST003 FRDC"

will be displayed. If the message does not appear on the display, there is a problem in the

GP-IB interface.

If the [Keep Voltage/Current] option is selected, the caution alert (Fig. 603) will be

displayed.

KST003 FRDC Source

CAUTION!Voltage/current applied at the output. --- continue?

OK

!

Cancel

Fig. 603

Select [OK] button to apply the output to the load. Please note that even if the [OK] button

is selected, the output will not be applied to the TC until the "STBY/EXEC" switch on

the front panel of the FRDC source is turned on.

Page 57: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 49 -

To exit from the program, choose [Quit] command from the [File] menu-bar (Fig. 604).

The status of the DVM and the FRDC source are left unchanged.

KST003 FRDC SOURCE / Control Software

Edit Direct Operation MeasurementFile

Save Data to... Ctrl+SPrint Data to...

Delete File... Ctrl+K

Quit Ctrl+Q

Fig. 604

6. 1. 4 User Interface

The operator can access any commands of the control-program from the main window

titled "KST003 FRDC SOURCE / Control Software" as shown in Fig. 605.

Operation/Status Report

KST003 FRDC SOURCE / Control Software

File Edit Direct Operation Measurement

Data Recorded to File

Summary of Measurement

I/O Monitor

Output to KST003 FRDC

Output to K182 DVM

Input from K182 DVM

*MENU*

Status report from the control program for checking the progress of the measurement.

Results from the FRDC-DC difference measurement in the same format as the data recorded to disk.

Summary of the results for each measurement procedures.

Fig. 605

Page 58: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 50 -

Commands can be selected from the menu bars in this window. The menu bars have four

categories, i.e., [File], [Edit], [Direct Operation] and [Measurement]. The [Direct

Operation] menu gives the functions to set all the parameters of the FRDC source manually.

The [Measurement] menu enables the operator to set all the parameters in the FRDC-DC

difference measurement. See sections 3.3 and 3.4 for more details. The [Edit] commands are

not supported in the present version (v7.2.2).

There are four sub-windows in the main window, i.e., [Operation/Status Report], [Data

Recorded to File], [Summary of Measurement] and [I/O Monitor].

The [Operation/Status Report] window displays the status report of the control program.

In manual operation, the commands given to the source will be reported in this window so

that operator can follow the consequence of his commands. During the automated

measurement, the operator can check the progress of the measurement sequence.

The [Data Recorded to File] window displays the results from the FRDC-DC difference

measurement. The data are displayed using exactly the same format as the data recorded to a

file.

The [Summary of Measurement] window displays the summary of the results for each

measurement point (procedure). This window is also useful to monitor the over-all progress

of the measurement.

The [I/O Monitor] window displays all the commands and data transmitted through the

GP-IB interface. When the program is waiting for the next operation, a timer will be

displayed in this window.

Page 59: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 51 -

6. 2 Manual Operation

6. 2. 1 Changing GP-IB address

Choose [GPIB address...] command from the [Direct Operation] menu as shown in

Fig. 606.

KST003 FRDC SOURCE / Control Software

Edit MeasurementFile

Initialize...

GPIB address...

Steady-State OutputSequencial Output

Adjust Dummy...Adjust Sources...

Output WaveformOutput Mode/Level

Direct Operation

Fig. 606

The GP-IB address of the DVM and the FRDC source can be changed using a

window shown in Fig. 607. NOTE: The program does not resistor the changed GP-

IB address in the present version (7.2.2).

It is recommended that the GPIB address of the instruments are always set to;

"3" for FRDC

"7" for DVM.

Set GPIB Address

KST003 FRDC Source

Cancel OK

Keithley K182 DVM

703

707

Fig. 607

Page 60: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 52 -

6. 2. 2 Voltage/Current Level

Choose [Output Mode/Level] command from the [Direct Operation] menu (Fig.

608). Then select either [Voltage Mode...] or [Current Mode...] command from the

sub-menu.

KST003 FRDC SOURCE / Control Software

Edit MeasurementFile

Initialize...

GPIB address...

Steady-State OutputSequencial Output

Adjust Dummy...Adjust Sources...

Output Waveform

Direct Operation

Current Mode...

Voltage Mode...Output Mode/Level

Fig. 608

The output level of the source can be set manually using the window shown in Fig.

609. In the voltage mode, you can set the output voltage from 0.00 V to 10.23 V with

0.01 V resolution. In the current mode, you can set the output current from 0.00 mA to

10.23 mA with 0.01 mA resolution. WARNING! ---- Output current of more than

12 mA in the voltage mode may result in the damage of analog switches and

dummy resistance.

After selecting [OK] button, the caution alert will be displayed in order to confirm

that the output does not overload the thermal converter. Select [OK] button to apply

the output to the load. The color of the "OUTPUT" LED indicator on the front panel of

the SCU unit should change to;

Red : Voltage mode,

Green : Current mode.

Set Output Mode/Level

Voltage Output

Cancel OK

Current Output

Volt0.00

Fig. 609

Page 61: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 53 -

6. 2. 3 Period / Off-Time

Choose [Output Waveform] command from the [Direct Operation] menu (Fig.

610). Then select either [Switching Period...] or [Off Time...] command from the

sub-menu.

KST003 FRDC SOURCE / Control Software

Edit MeasurementFile

Initialize...

GPIB address...

Steady-State OutputSequencial Output

Adjust Dummy...Adjust Sources...

Direct Operation

Off-Time...

SW Period...

Output Mode/Level

Output Waveform

Fig. 610

The two parameter of the FRDC waveform Tsw, Toff can be set manually using the

window shown in Fig. 611. Please note that the switching frequency is the inverse of

the period, while the basic frequency (first harmonic) of the FRDC waveform is

one-half of the switching frequency.

The switching period (TSW) can be set between 100 µs and 25.5 s with 8-bit

resolution. The off-time (Toff ) can be set between 4 µs and 255 µs with 1 µs

resolution.

Set Period/Off-Time

Period

Cancel OK

Off-Time

ms1.00E+0

µs10

Fig. 611

Page 62: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 54 -

6. 2. 4 Adjust Sources

Choose [Adjust Sources...] command from the [Direct Operation] menu as shown in

Fig. 612.

KST003 FRDC SOURCE / Control Software

Edit MeasurementFile

Initialize...

GPIB address...

Steady-State OutputSequencial Output

Adjust Dummy...

Direct Operation

Output Mode/Level

Output Waveform

Adjust Sources...

Fig. 612

The output level of the four sources, i.e., A[+], A[-], B[+], B[-], can be adjusted manually

using the window shown in Fig. 613. The adjustment level are specified by the four

parameters β(A+), β(A-), β(B+), β(B-) as described in section 1.2. The four parameters can

be set within a range between -2.047 (%) to +2.047 (%) with 0.001 (%) resolution.

Adjust Output Level

Source A[+]

Cancel OK

%0.000

Source A[-] %0.000

Source B[+] %0.000

Source B[-] %0.000

Fig. 613

Page 63: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 55 -

6. 2. 5 Adjust Dummy

Choose [Adjust Dummy...] command from the [Direct Operation] menu as shown

in Fig. 614.

KST003 FRDC SOURCE / Control Software

Edit MeasurementFile

Initialize...

GPIB address...

Steady-State OutputSequencial Output

Direct Operation

Output Mode/Level

Output Waveform

Adjust Sources...

Adjust Dummy...

Fig. 614

The dummy resistance can be set manually within a range between 0.0 kΩ ohm and 1.5

kΩ with 0.1 kΩ resolution using a window shown in Fig. 615. The actual dummy resistance

will be adjusted 50 Ω larger than the specified value due to "on" resistance of the switching

elements.

The setting of the dummy resistance must meet the voltage and current compliance. The

voltage compliance is 12V for constant current output, hence dummy resistance should not

exceed 1.2 kΩ for 10 mA measurement. In voltage-mode measurement, the current

compliance is 12 mA. For example, measurement of a TVC with 10 V must have a dummy

resistance no less than 0.9 kΩ. It is safe to set the value to the default (1 kΩ).

Set Dummy Resistance

Cancel OK

kΩ1.0

Fig. 615

WARNING! ---- Too small setting of dummy resistance in the voltage mode causes

current-overload and may result in the damage of analog switches and dummy

resistance.

Page 64: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 56 -

6. 2. 6 Sequential Output

Choose [Sequential Output] command from the [Direct Operation] menu (Fig.

616). Then select either [Modified FRDC[1] ], [Chopped DC[+] ], [Chopped DC[-]

] or [Modified FRDC[2] ] from the sub-menu.

KST003 FRDC SOURCE / Control Software

Edit MeasurementFile

Initialize...

GPIB address...

Steady-State Output

Adjust Dummy...Adjust Sources...

Direct Operation

Output Mode/Level

Output Waveform

Sequencial Output

Chopped DC[+]

Chopped DC[-]

Modefied FRDC[2]

Modefied FRDC[1]

Fig. 616

The color of the "STATUS" LED indicators [A/B] on the front panel are;

Red/Green : A[+]/B[-] : Modified FRDC[1],

Red/Red : A[+]/B[+] : Chopped DC[+],

Green/Green : A[-]/B[-] : Chopped DC[-],

Green/Red : A[-]/B[+] : Modified FRDC[2].

Page 65: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 57 -

6. 2. 7 Steady-State Output

Choose [Steady-State Output] command from the [Direct Operation] menu (Fig.

617). Then select either [Source A[+] ], [Source A[-] ], [Source B[+] ] or [Source B[-

] ] from the sub-menu.

KST003 FRDC SOURCE / Control Software

Edit MeasurementFile

Initialize...

GPIB address...

Steady-State Output

Adjust Dummy...Adjust Sources...

Direct Operation

Output Mode/Level

Output Waveform

Sequencial Output

Chopped DC[+]

Chopped DC[-]

Modefied FRDC[2]

Modefied FRDC[1]

Fig. 617

The color of the "STATUS" LED indicators [A/B] on the front panel are;

Red/Off : A[+] continuous,

Green/Off : A[-] continuous,

Off/Red : B[+] continuous,

Off/Green : B[-] continuous.

Page 66: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 58 -

Section 7 - FRDC-DC Difference Measurement

7. 1 Measurement Procedure

The measurement procedure of a FRDC-DC difference measurement is basically the same

as that for standard AC-DC difference measurements. The program uses the measurementsequence [ ∗ + − / / − + ∗ ], where the symbols represent;

[ ∗ ] : Modified FRDC(1) mode

[ + ] : Chopped DC(+) mode

[ − ] : Chopped DC(-) mode

[ / ] : Modified FRDC(2) mode

In each mode, the output EMF of the TC are measured by the DVM, and the data are

averaged for the specified number of readings. The FRDC-DC differences are calculated

using the formula (5.1) given in section 5.2.

The following two additional functions are also provided by the control program.

(1) Automatic adjustment of the "Dummy" resistor. This function is necessary in order

to avoid overloading the source or dummy resistor. The program sets the value of the

dummy resistance to the same value as the input resistance of the TC/TVC to be

measured with 100 Ω resolution. (See section 9.2.4)

(2) Automatic adjustment of the output level of the four sources [A±/B±]. The program

adjusts the relative output level with 10 ppm resolution. (See section 4.2.7 of the

Hardware Manual.)

A flow-chart of the main automated measurement routine is shown in Fig 701. After the

initialization, the program measures the normalized index "n" of the TC. The program also

monitors the drift of the output EMF, and the index-measurements are repeated until the drift

is stabilized within a specified value.

NOTE ----- After repeating the index-measurement 10 times, the program proceeds to

the next stage even if the drift is still too large.

In the next stage, the program tries to adjust the four sources so that output EMF from the

TC becomes equal for all the steady-state output modes. These adjustments are repeated until

the output EMFs are within 20 ppm. After completing the adjustment, the program goes to

the main measurement sequence.

Page 67: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 59 -

NOTE ---- After repeating the adjustment five times, the program proceeds to the next

stage even if the adjustment is still not sufficient.

MeasurementBlock #1

MeasurementBlock #n

MeasurementBlock #N

Adjust DummyResistance

Start

END

MeasurementSequence #1

MeasurementSequence #m

FRDC [1] Mode

MeasurementSequence #M

Store Datato DISK

DC [+] Mode

DC [-] Mode

FRDC [2] Mode

FRDC [2] Mode

DC [+] Mode

DC [-] Mode

FRDC [1] Mode

Change Mode

Wait forStabilization

DVMReading

EndingProcedure

Initialize

Set Meas.Parameters

MeasureIndex "n"

Adjust FourSources (A±/B±)

Calc. δFRDC-DC

Re-adjustSources

Fig. 701

Page 68: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 60 -

7. 2 Start/Abort Measurement

To initiate a FRDC-DC difference measurement, choose [Execute...] command from the

[Measurement] menu (Fig. 702). The program prompts various measurement conditions

using the following five user-interface windows

.

(1) TC specification

(2) Measurement Parameters

(3) Measurement Procedures

(4) File to Save Data

(5) Measurement Options

Detailed description of these stages will be given in sub-sections 7.3.1 to 7.3.5. After

completing these stages, the program starts the main automated measurement routine.

KST003 FRDC SOURCE / Control Software

EditFile

TC Specification...

Execute... Ctrl+G

Break Ctrl+B

Measurement Parameters...Measurement Procedures...

Direct Operation Measurement

Fig. 702

To abort the measurement, choose [Break] command from the same [Measurement]

menu-bar. This interruption is possible only during the measurement sequence. The program

will be terminated after completing one set of measurement sequence. Quit commands from

the system ([CTRL+Q]win or [CNTL+CMD+ESC]Mac) will terminate the program

immediately.

Page 69: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 61 -

7. 3 Setting Measurement Conditions

7. 3. 1 TC Specification

As the first stage of setting measurement conditions, the [TC/TVC Specification]

window (Fig. 703) will be displayed on top of the main window .

TC/TVC Specification

TCname

Nominal Input mA10

TCC TVC

OKOpen CancelStore

Name

Specification

Description

Nominal Output mV7.7

Input Resistance Ω25

Fig. 703

Proceed the inputs as follows;

(1) Enter the name of the TC/TVC in the [Name] text box.

(2) Select the type of TC from the two option buttons: TCC (Thermal Current Converter)

or TVC (Thermal Voltage Converter).

(3) Specify the nominal input voltage/current in the [Nominal Input] box..

(4) Specify the nominal output EMF in the [Nominal Output] box..

(5) Specify the total input-resistance of the TC/TVC (heater resistance + range

resistance) in the [Input Resistance] text box..

(6) Supplementary description of the TC/TVC can be given by the [Description] text

box..

Page 70: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 62 -

It is very important to use the correct value for [Nominal Input] and [Input

Resistance], while the values of [Nominal Output] can be left blank.

There is no problem measuring a TCC in Voltage mode or to measure a TVC in current

mode. Just neglect a caution-alert which informs the mismatching of the specified type of

TC/TVC and the measurement mode.

Warning ----- Incorrect setting of the [Nominal Input] and [Input Resistance] may

result in the overloading of the TC/TVC and the dummy resistors.

Select [Store] button to save the specification of the TC into a file. To load the

previously registered specification-data to the program, select the [Open] button and select

a correct file. Select [OK] button to proceed to the next stage.

It is also possible to pre-input the TC specification. Choose [TC Specification...]

command from the [Measurement] menu, proceed as before in [TC/TVC Specification]

dialog box.

7. 3. 2 Measurement Procedures

The [Measurement Procedures] window (Fig. 704) appears after completing the

[Measurement Parameters] stage. It is possible to program output-mode/level and switching

frequency for each measurement-block.

Measurement Procedure

Output Level V10.00

SW Priod ms1.00E+00

Voltage Output

Current Output

OKOpen CancelStore

Mes# 1/15

List > >><< <

Fig. 704

Use the controls to register the parameters up to 100 measurement-blocks.

(1) Select the output mode of each measurement blocks: [Voltage Output] or

[Current Output].

Page 71: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 63 -

(2) Specify the output level of each measurement block. In the voltage mode, the output

can be set between 0.00 V and 10.23 V with 0.01 V resolution. In the current mode,

the output can be set between 0.00 mA and 10.23 mA with 0.01 mA resolution.

(3) Specify the switching period (TSW) of each measurement block.

(4) Use the [<<], [<], [>] and [>>] buttons to scroll the window.

(5) It is possible to overview all measurement procedures. Select [List] button for

[Measurement Procedure List] window, as shown in Fig. 705. Select [Redo]

button for further modification of the measurement procedures.

Select the [Store] to save the measurement procedures in a file. To load previously

registered measurement procedures, select [Open] and then select a file. Select [OK]

button to proceed.

It is possible to pre-input the measurement procedures. Choose [Measurement

procedures...] command from the [Measurement] menu.

Measurement Procedure List

Store Redo

MES# Level Period Frequency

001 10.00(V) 1.00E+00(ms) 1.00E+03(Hz)

OK

002 10.00(V) 1.00E+04(ms) 1.00E-01(Hz)

003 10.00(V) 1.00E+03(ms) 1.00E+00(Hz)

004 10.00(V) 1.00E+02(ms) 1.00E+01(Hz)005 10.00(V) 1.00E+01(ms) 1.00E+02(Hz)

006 10.00(V) 1.00E+00(ms) 1.00E+03(Hz)

007 10.00(V) 0.10E+00(ms) 1.00E+04(Hz)

008 10.00(mA) 1.00E+00(ms) 1.00E+03(Hz)009 10.00(mA) 1.00E+02(ms) 1.00E+01(Hz)

010 10.00(mA) 5.00E+01(ms) 2.00E+01(Hz)

011 10.00(mA) 2.00E+01(ms) 5.00E+01(Hz)

012 10.00(mA) 1.00E+01(ms) 1.00E+02(Hz)

013 10.00(mA) 5.00E+00(ms) 2.00E+02(Hz)014 10.00(mA) 2.00E+00(ms) 5.00E+02(Hz)

015 10.00(mA) 1.00E+00(ms) 1.00E+03(Hz)

016 4.00(V) 1.00E+00(ms) 1.00E+03(Hz)

017 6.00(V) 1.00E+00(ms) 1.00E+03(Hz)018 8.00(V) 1.00E+00(ms) 1.00E+03(Hz)

014 10.00(V) 1.00E+00(ms) 1.00E+03(Hz)

Fig. 705

Page 72: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 64 -

7. 3. 3 Measurement Parameters

After selecting [OK] in [TC/TVC Specification] dialog box, the [Measurement

Parameters] dialog box(Fig. 706) will be displayed .

Measurement Parameters

Wait for Trigger s10

Wait for Stabilize s60

OKCancelRevert

Output Level readings83

Measurement/block meas.10

Fig. 706

Specify the measurement parameters as follows;

(1) Enter the [Wait for Trigger] period; the waiting time before the DVM starts

reading. The [Wait for Trigger] period should be at least five times the Joule time

constant of the TC. (Default is 10 seconds)

(2) Enter the [Wait for Stabilize] period; the idling time between the sets of

measurement. After a large change of the input level, a large drift in the output EMF

can occur. It may take minutes before the drift reduces to an allowable level.

(Default is 60 seconds)

(3) Enter the number of [DVM Integration]; the number of reading the DVM takes for

one set of input. The DVM performs about 2 readings per second. (Default: 83

reading / 40 s for Keithley 182)

(4) Enter the number of [Measurement/block]; the number of measurement (sequence)

per each measurement block. (Default is 10 sets of measurements)

Use [Revert] button to re-load the default values. Select [OK] to proceed. If the default

parameters are used, one set of measurements will take about 45 minutes.

It is also possible to pre-input the measurement parameters. Choose [Measurement

Parameters...] command from the [Measurement] menu.

Page 73: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 65 -

7. 3. 4 File to Save Data

After selecting [OK] in [Measurement Parameters] dialog box, [File to save

Measurement Data] window will be displayed. This is a standard user-interface window

with which the filename and its directory are specified.

It is possible to preset the measurement parameters before selecting the [Execute]

command. Choose [Save Data to...] command from the [File] menu. (Fig. 604)

7. 3. 5 Measurement Options

The [Measurement Option] window (Fig. 707) will be displayed as the final input-

window before initiating the automated measurement sequence.

Measurement Option

OKCancel

Comment(s)

Drift Allowance

1 ppm/min (standard)

10 ppm/min (for test)

Sequence Option

Normal [*+-//-+*]

Special [*+-/*-+/]

Ending Option

Goto stand-by mode

Keep output level

Fig. 707

Proceed to register the measurement options and append comments to the data.

(1) Select [Sequence Option]: [Normal] or [Special]. Default measurement is

[Normal]. [Special] is for evaluation purposes only.

(2) Select [Drift Allowance] option: [1 ppm/min] or [10 ppm/min]. Default is [1

ppm/min]. [10 ppm/min] is for a quick and less precise measurement.

Page 74: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 66 -

(3) Select [Ending Option]: [Goto stand-by mode] or [Keep output level]. Default is

[Goto stand-by mode]. [Keep output level] maintains the same voltage or current

until the next measurement.

(4) Input any measurement conditions or comments in the [Comment(s)] text-box.

Selecting the [OK] button initiates the automated measurement procedure, i.e.,

index measurement, adjustment of the sources, and repetition of the measurementsequence [ ∗ + − / / − + ∗ ].

Page 75: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 67 -

Section 8 - Analyzing Measurement Results

8. 1 Data Format

The results from the FRDC-DC difference measurement are stored into the specified data-

file using the same format as displayed in the [Data Recorded to File] window.

The data-file consists of the following records.

(1) Title "Data from the KST003 FRDC source."

(2) Main header common to all measurement-blocks, including;

(2-1) Comment of the measurement,.

(2-2) Name and type of TC to be measured,

(2-3) Input resistance of TC and selected Dummy-resistance,

(2-4) Off-time,

(2-5) Number of repetition of Measurement blocks,

(2-6) Waiting time before the DVM integration,

(2-7) DVM Sampling number.

(3) Data for one set of measurements, consisting of;

(3-1) Measurement number,

(3-2) Date and Time of each measurement block,

(3-3) Measurement parameters for each block, i.e., Output Level/Mode,

Switching Period/Frequency,

(3-4) Result of TC Index measurement,

(3-5) Result of Source adjustment,

(3-6) Results of one measurement-sequence "∗+−//−+∗", consisting of;

(3-6-1) Mesurement block number,

(3-6-2) Time of each measurement-sequence,

(3-6-3) EMF outputs for each mode ("∗+−/"),

(3-6-4) Average standard deviation of EMF outputs in ppm,

(3-6-5) FRDC-DC difference for each sequence in ppm,

(3-6) Average FRDC-DC difference for each measurement-block and its type-A

uncertainty in ppm. The result of measurement #0 is not included in the

average.

(4) Summary of the measurement.

All the data are recorded in simple ASCII text formats using semicolons as data-

separators. An example of a data-file is listed below.

Page 76: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 68 -

Data from the KST003 FRDC source

Comment; Calibrate 3V traveling TVC with 20 sec waiting time

TC name/type; 3V-TVC; TVC

TC description; Traveling TVC-STD of 3V

TC/Dummy Res.; 500; 500; ohm

Off-Time; 10;micro sec

Repeat No.; 10;times

Waiting Time; 20;s

Reading Number; 83;reading

Mes. No.= 1

Date/Time; 09/01/95; 12:37:24

Output Level; 10; mA

SW Period; 1; ms ; (1.000E+03Hz)

TC Index; 1.78

Adjust A+/-; 0; -.012

Adjust B+/-; .014; 4E-03

Rep#; Time; Vac*(mV); Vdc+(mV); Vdc-(mV); Vac/(mV); Vsd(ppm); FRDC-DC(ppm)

0; 12:47:36; 7.3786805E+06; 7.3776618E+06; 7.3796692E+06; 7.3786537E+06; 3.05; -0.12

1; 12:56:49; 7.3769022E+06; 7.3768869E+06; 7.3768917E+06; 7.3768780E+06; 2.81; -0.06

2; 13:06:02; 7.3761990E+06; 7.3761880E+06; 7.3761824E+06; 7.3761756E+06; 2.77; -0.16

3; 13:15:15; 7.3755612E+06; 7.3755557E+06; 7.3755388E+06; 7.3755377E+06; 2.76; -0.17

4; 13:24:28; 7.3749769E+06; 7.3749757E+06; 7.3749446E+06; 7.3749487E+06; 2.53; -0.20

5; 13:33:40; 7.3744500E+06; 7.3744573E+06; 7.3744100E+06; 7.3744222E+06; 2.87; -0.19

6; 13:42:54; 7.3739522E+06; 7.3739666E+06; 7.3739095E+06; 7.3739317E+06; 3.36; -0.30

7; 13:52:07; 7.3734842E+06; 7.3735029E+06; 7.3734372E+06; 7.3734630E+06; 2.83; -0.27

8; 14:01:20; 7.3730522E+06; 7.3730863E+06; 7.3730051E+06; 7.3730383E+06; 3.09; 0.03

9; 14:10:33; 7.3726652E+06; 7.3726998E+06; 7.3726169E+06; 7.3726554E+06; 3.36; -0.15

10; 14:19:47; 7.3722816E+06; 7.3723205E+06; 7.3722263E+06; 7.3722671E+06; 3.22; -0.07

FRDC-DC diff;(in ppm); -0.15; ±; 0.09;(sd) ;(ex. #0)

------- SKIPPED ------

Mes. No.= 17

Date/Time; 09/02/95; 21:04:02

Output Level; 10; mA

SW Period; .1; ms ; (1.000E+04Hz)

TC Index; 1.80

Adjust A+/-; 0; -.011

Adjust B+/-; .014; 7E-03

Page 77: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 69 -

Rep#; Time; Vac*(mV); Vdc+(mV); Vdc-(mV); Vac/(mV); Vsd(ppm); FRDC-DC(ppm)

0; 21:14:14; 6.7428340E+06; 6.7324727E+06; 6.7531374E+06; 6.7427796E+06; 3.20; -0.14

1; 21:23:27; 6.7325774E+06; 6.7325503E+06; 6.7325436E+06; 6.7325142E+06; 3.82; 0.09

2; 21:32:40; 6.7326116E+06; 6.7325790E+06; 6.7325727E+06; 6.7325472E+06; 3.51; -0.30

3; 21:41:53; 6.7326208E+06; 6.7325936E+06; 6.7325825E+06; 6.7325520E+06; 2.94; 0.13

4; 21:51:06; 6.7326156E+06; 6.7325907E+06; 6.7325766E+06; 6.7325533E+06; 3.52; -0.06

5; 22:00:19; 6.7326180E+06; 6.7325867E+06; 6.7325724E+06; 6.7325414E+06; 3.34; -0.01

6; 22:09:32; 6.7326192E+06; 6.7325872E+06; 6.7325790E+06; 6.7325466E+06; 3.30; 0.02

7; 22:18:45; 6.7326258E+06; 6.7325958E+06; 6.7325792E+06; 6.7325567E+06; 3.11; -0.31

8; 22:27:58; 6.7326354E+06; 6.7326090E+06; 6.7325968E+06; 6.7325688E+06; 3.08; 0.06

9; 22:37:12; 6.7326399E+06; 6.7326120E+06; 6.7325992E+06; 6.7325718E+06; 1.92; -0.02

10; 22:46:25; 6.7326428E+06; 6.7326157E+06; 6.7325979E+06; 6.7325728E+06; 3.09; -0.08

FRDC-DC diff;(in ppm); -0.05; ±; 0.14;(sd) ;(ex. #0)

Mes#; Time; Level;; Frequency;; ACDC(ppm);; (sd)

1;14:19:54; 10.00;(mA ); 1.000E+03;(Hz); -0.15; ±; 0.09

2;17:00:01; 10.00;(mA ); 1.000E-01;(Hz); -0.00; ±; 0.14

3;18:58:26; 10.00;(mA ); 2.000E-01;(Hz); 0.19; ±; 0.14

4;20:56:49; 10.00;(mA ); 5.000E-01;(Hz); 0.16; ±; 0.17

5;22:55:12; 10.00;(mA ); 1.000E+00;(Hz); -0.00; ±; 0.15

6;00:53:36; 10.00;(mA ); 2.000E+00;(Hz); -0.07; ±; 0.14

7;02:51:58; 10.00;(mA ); 5.000E+00;(Hz); -0.19; ±; 0.13

8;04:50:21; 10.00;(mA ); 1.000E+01;(Hz); -0.27; ±; 0.13

9;06:48:43; 10.00;(mA ); 2.000E+01;(Hz); -0.23; ±; 0.14

10;08:47:05; 10.00;(mA ); 5.000E+01;(Hz); -0.31; ±; 0.08

11;10:45:27; 10.00;(mA ); 1.000E+02;(Hz); -0.26; ±; 0.17

12;12:43:49; 10.00;(mA ); 2.000E+02;(Hz); -0.27; ±; 0.11

13;14:42:13; 10.00;(mA ); 5.000E+02;(Hz); -0.18; ±; 0.06

14;16:40:35; 10.00;(mA ); 1.000E+03;(Hz); -0.15; ±; 0.09

15;18:38:58; 10.00;(mA ); 2.000E+03;(Hz); -0.13; ±; 0.14

16;20:42:44; 10.00;(mA ); 5.000E+03;(Hz); -0.11; ±; 0.07

17;22:46:33; 10.00;(mA ); 1.000E+04;(Hz); -0.05; ±; 0.14

Page 78: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 70 -

8. 2 Curve Fitting

Thermoelectric transfer difference δΤΕ and the time constants τΤΕ are the most important

quantities to be evaluated by the FRDC-DC difference measurement of a TC. The parameterscan be evaluated by curve-fitting the data of δ FRDC− DC to a formula which determines the

frequency-dependence of δ FRDC− DC .

8. 2. 1 Thermoelectric Effects

A simple mathematical model of the thermoelectric effect in a thermal converter has been

introduced in section 5.3. In this model, the thermoelectric effect was represented by anexcess current iTE=δTEi0 which responds exponentially with a time-constant τΤΕ.. Using the

model, the frequency dependence of the FRDC-DC difference δ FRDC− DC at lower frequencies

were calculated as,

δFRDC − DC = δTE (2τ

TE

TSW

)tanhTSW

2τTE

. (5.14)

An example of curve fitting of the data to the formula (5.14) is shown in the Fig. 801.

-1

0

1

2

3

4

5

0.1 1 10 100 1000 104

SJTC S10-32

5 mA

10 mA

δ FR

DC

-DC

ppm

fSW (fb )Hz

(0.05) (0.5) (5) (50) (500) (5000)

Fig. 801

Page 79: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 71 -

The SJTC "S10-32" is manufactured by Best Products, and has a 30 ohm evanohm heater

with normal 'flux' bead. It shows a simple frequency dependence which can be fitted to a

single time-constant of 0.023 s. Thermal ac-dc difference were measured to be +3.8 ppm at 5

mA and +4.6 at 10 mA.

Another example of curve fitting is shown in the Fig. 802. The SJTC "S12-57" is from

Vacuum Products. It has two time-constants of 0.05 s and 0.9 s with oppsite polarity in

FRDC-DC difference. Thermoelectric transfer difference were measured to be -2.7 ppm at 5

mA and -3.0 ppm at 10 mA.

-4

-3

-2

-1

0

1

2

0.1 1 10 100 1000 104

SJTC S12-57

5 mA

10 mA

δ FR

DC

-DC

ppm

fSW (fb )Hz

(0.05) (0.5) (5) (50) (500) (5000)

Fig. 802

8. 2. 2 Dielectric Loss/Absorption

When TCs are connected in series with range resistors and measured in current mode, the

effect of dielectric loss/absorption in the input circuit becomes significant. The equivalentcircuit diagram which describes this effect is given in Fig. 803. The input capacitance (Cd)

and the effective leakage resistance (Rd) are of the order of 0.1 pF and 1 GΩ respectively.

In this case, a proportional increase of the FRDC-DC difference vs the switchingfrequency is observed. The effect is also proportional to the input (load) resistance (Rr+Rtc).

δFRDC −DC

≅2Cd Rr + RTC( )

TSW

. (8.1)

Page 80: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 72 -

The linear dependence of FRDC-DC difference to switching frequency is observed in the

case of multijunction thermal converters, probably due to the dielectric loss of the insulating

material of the heater.

R

R

r

Cd

TC

iiIN

Rd

TC

Fig. 803

Examples of curve fitting of the formula (8.1) are shown in Fig. 804. The MJTC

"PTB#73" shows a linear frequency dependence of -0.1 ppm/kHz at voltage mode (3 V). The

frequency dependence is much smaller in the current mode (10 mA). Thermal transfer

differences are evaluated to be less than 0.1 ppm at both current and voltage modes.

δ FR

DC

-DC

ppm

-2

-1.5

-1

-0.5

0

0.5

1

0.1 1 10 100 1000 104

MJTC PTB73

10 mA

3 V

fSW (fb )Hz

(0.05) (0.5) (5) (50) (500) (5000)

Fig. 804

Page 81: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 73 -

The MJTC "GL32472" is from Guildline. It shows a linear frequency dependence of the

order of +0.1 ppm/kHz at both voltage mode (5 V) and current mode (10 mA). Thermal

transfer differences are evaluated to be less than 0.1 ppm at current mode and -2.0 ppm at

voltage mode.

δ FR

DC

-DC

ppm

-2.5

-2

-1.5

-1

-0.5

0

0.5

0.1 1 10 100 1000 104

MJTC GL3247210 mA

5 V

fSW (fb )Hz

(0.05) (0.5) (5) (50) (500) (5000)

Fig. 805

Page 82: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 74 -

Section 9 - Measurement Uncertainty

9. 1 Type-A Uncertainties

The sources of uncertainty for category-A evaluation consists of three parts, i.e., (a)

instability of the output of the fast-reversed dc source, (b) instability of the output EMF of

the thermal converter to be measured, and (c) the resolution of the detector. All the sources

of Type-A uncertainty are to be evaluated at the time of measurement. Typical example of

reproducibility for the measured FRDC-DC difference is shown by fig. 901.

-1

-0.5

0

0.5

1

1.5

0 50 100 150 200 250 300

Var

iatio

n of

Out

put (

ppm

)

Time (s)

M4 mode(Steady-state DC)

[Voltage Mode] M1 mode("Chopped" DC [5µs/1ms])

Fig. 901

9.1.1 Instability of Source

There are two kinds of stability in the output, i.e., the short-term stability (noise) and the

long-term stability (drift). For example, jitters of the timing pulse due to transmission

through the optical fibers gives rise to random noise in the output. The change of temperature

causes a drift in the measurement system.

A result for an experimental evaluation for the output-stability is given in Fig. 902. In

this measurement, the output voltage was directly monitored by a high-precision DVM

(HP3458A). In the case of the chopped DC which has periodic glitches, a low-pass filter was

inserted at the output in order get average value.

In the measurement of the FRDC-DC difference, the output is integrated by the DVM

for about 10 seconds, and the short-term fluctuation within this period do not become the

Page 83: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 75 -

source of uncertainty. On the other hand, the long-term drifts due to the change of

temperature are also largely compensated by the standard measurement sequence

[ ∗ + − / / − + ∗ ].

-1.0

-0.8

-0.6

-0.4

-0.2

0

0 10 20 30 40 50 60 70

FRD

C-D

C D

iffe

renc

e (p

pm)

Time (hour)

TVC(10V03) measured at 10V, 1 kHz

'94/SEP./03-05

average=-0.521±0.004 ppm

Fig. 902

9.1.2 Instability of Thermal Converter

In the case of a SJTC, the temperature coefficients of the output EMF are much larger

than that of the FRDC-source output . As a result, the drift in the output of the source is

mostly determined by change of temperature of the TC. Though this long-term drift is largely

compensated by the standard sequence, it can still cause an error of the order of a few ppm.

Hence thermal guarding is critically important for a precise measurement.

In addition to the drift due to temperature change, there is also Johnson noise of the

thermocouple of TC. In a standard-type SJTC with 10 Ω EMF output impedance, the

Johnson noise en is estimated as,

en(rms) ≅ 4 ×1.38 ×10− 23(J/ K) × 400(K) × 10(Ω)

≅ 0.5 nV / Hz. (9.1)

In this case, the thermal noise from the TC is as small as 0.04 ppm/√Hz with respect to

the total output EMF of 7 mV assuming a square-law response.

Page 84: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 76 -

9.1.3 Noise of Detector

The noise of the detector often dominates the over-all resolution of the measurement

system. For example, if we use a Keithley K182 nano-voltmeter as a detector, it has typical

input-equivalent noise of around 14 nV/√Hz. This noise amounts to 1 ppm/Hz with respect to

the total output EMF of 7 mV, more than ten times larger than the Johnson noise of the

thermocouple.

Page 85: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 77 -

9. 2 Type-B Uncertainties

9.2.1 Effect of Imperfect Switching

(a) Slew rate

In the case of original FRDC waveform, the slew rate had a large effect. For example, at a

switching frequency of 100 Hz, assuming that the leading edge rises or falls linearly with

time during 10 ns, the loss of power is,

∆P ≅ 2 3( ) × 10 ns 10 ms( ) ≅ 0.7 ppm .

This effect increases linearly as the SW frequency is increased.

With the modified waveform, the slew rate does not affect the measurement, because the

same slope is reproduced in both the FRDC and the "chopped" DC mode.

(b) Switching-transients

Switching transients were also a big problem in the case of original waveform. Actually, the

effect of transients were much larger than the effect from the slew rate, and sometimes it was

possible to adjust the transients to compensate for the effect from the slew rate.

With the modified waveform, the transients do not have any effect, as long as the same

transients are reproduced for the FRDC mode and the "chopped" DC mode.

9.2.2 Higher Frequency Components

The rectangular waveform of the FRDC mode contains a large number of higher-

frequency harmonics. The power of the higher-frequency components can be by-passed

through a shunt capacitance. The power-loss due to the by-passing becomes significant even

at switching frequencies as low as 100 Hz [7].

The calculated spectrum distribution of FRDC, CPDC and CPFR modes are shown in Fig.

903. The power spectrum of the original FRDC waveform is characterized by an envelope

(2/nπ). Since steady-state dc has no Fourier components, the difference between (2/nπ) and 0

give a measure of the harmonics in the FRDC waveform.

In the modified waveform, the harmonics of CPDC are represented by a periodic envelopewhich oscillates between (2/np) and 0 with a period ∆f=1/toff. The harmonics of the modified

FRDC has a similar periodic envelope, phase-shifted 180 degree (∆f/2) relative to that of

CPDC. When the off-time toff.is sufficiently larger than the characteristic time-constant of

the circuit, then the relative difference of total power for the "chopped" DC and the modified

FRDC is very close to zero. Thereby a large reduction of harmonics-effect takes place.

Page 86: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 78 -

0

αn

f

2

Steady-State DC

FRDC Modified FRDC

Chopped DC

∆f = 1/toff

Fig. 903

9.2.3 Memory Effect of Analog Switches

At the early stage of development of the fast-reversed dc source, a linear dependence of

FRDC-DC difference with switching frequency was observed, even using the modified

waveform. This was traced to a "memory" effect of the analog switches.

When an analog switch changes from ON state to OFF state, some charge is trapped in the

conduction channel of FET switching device. The polarity of the trapped charge depends on

the polarity of the voltage across the analog switch. This charge is released and injected as

output current when the switch turns ON again. The amount of the stored charge was

estimated to be a few pC, in agreement with the specification-data of the analog switch.

The KST003 fast-reversed dc source uses two independent sources as described in Sec. 1.2

in order to cancel this effect. The analog switches, which connect the sources A/B to a TC,

change their state (ON/OFF) during a period when no voltage is applied. As a result, the

"memory" effect has been reduced within the resolution of the system.

9.2.4 Interference Between the Sources

To get equal RMS power for DC and FRDC modes, it is essential that there is no

interference between the sources A and B, as described in Sec. 1.2. In order to avoid the

possible interference between the two current sources, the sources A and B are electrically

isolated using optical fibers. The sources A and B are separately shielded by 6 mm-thick

aluminum boxes which reduces both thermal and electromagnetic coupling. The power

Page 87: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 79 -

supply's for those sources use independent transformers isolated by magnetic shields. This

precaution eliminates for the possible interference of the two sources through the ac power

line.

It is possible to check the interference between the sources A and B experimentally. The

measurement scheme is described in Fig. 904. The "Source A/B Selector" de-composes the

combined waveform from the FRDC source and distributes only one of the output to the TC.

If there is no interference between the sources A and B, the EMF output of the TC should

stay unchanged when the polarity of the source B is changed from plus to minus.

Source A

TC Source B

Circuit diagram for "de-composing" the waveform.

A+ A+B- B-A+

B-

A+

CPU/SCC

A/B control signal

Source A/B Selector

Fig. 904

In order to avoid the effect from the on-resistance of the analog switch, the measurement

should be done at current mode. The actual checking procedure and detailed description of

the measurement system is given in Section 4.1.2.

9.2.5 Dielectric loss/absorption in the TC-input circuit.

When there is a dielectric loss or dielectric absorption in the TC-input circuit as discussed

in section 8.2.2, it can cause frequency-dependent errors in the FRDC-DC difference

measurement which is proportional to the input-resistance of TC. This effect may be

significant when the ambient humidity is more than 80% or the TC-input circuit is

contaminated by finger-prints or flux.

The precautions to avoid an error due to this effect are,

(1) Clean all the parts of connectors in the output (TC-input) circuit by an organic solvent

before the assembly.

(2) Cover the possible leakage path (surface connecting output Hi. and Lo. conductors) by

water-resistant adhesive.

(3) Keep the ambient humidity below 80%.

Page 88: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 80 -

(4) Check this effect by measuring a TC in series with 1 kΩ range resistor. In the normal

condition, the change of FRDC-DC difference due to the additional 1 kΩ resistance

should be within 0.5 ppm at 10 kHz.

9.2.6 Other Source of Uncertainty

Other sources of uncertainty are,

(1) Too short "off-time"The period toff must be long enough for the switching transient to die out. Usually,

off-time of 10 µs is sufficient compared with 50 ns of the switching time. This effect

may be checked experimentally by changing the off-time.

(2) Too long "off-time"The period toff must be short enough compared with the switching period TSW. The

off time reduces effective power as (1-toff/TSW). If we choose an off-time of 10 µs, the

loss of power is 1% at 1 kHz and 10% at 10 kHz. The off-time must also be short

enough compared with the time constant of joule heating τjoule. Otherwise, thermal

ripple will be produced and may cause an error due to non-linearity of the system.

These effects may be checked experimentally by changing the off-time.

(3) Mismatching of rms power

As in the case of an ac-dc difference comparator, mismatching of rms power

between the FRDC mode and the DC mode can cause an error due to the nonlinear

output characteristic of the TC to be measured. It is recommended that all the four

sources (A±, B±) should be adjusted to better than 100 ppm before each measurement.

(4) Mismatching of load resistance

At the early stage of development of the source, we have observed an effect of

mismatching in the resistance's between the dummy and the TC. This error was traced

to an improper circuit design of the transconducting amplifier at the output circuit.

After improvement of the circuit, the effect was reduced within the resolution of the

system.

(5) Output impedance of the source

The output impedance of the current source is > 1MΩ, while that of the voltage

source is < 0.1 Ω. The effect from the finite output impedance may be neglected so

long as (1) input resistance of TC is from 10 Ω to 1 kΩ, and (2) the absolute value of

FRDC-DC difference is of the order of several ppm at most.

Page 89: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 81 -

9. 3 Criteria for Proper Operation

The following items are guidelines for the reliable measurements.

(1) No correlation between source A and source B is observed (Section 9.2.4).

(2) Changing Toff does not affect the FRDC-DC difference.

(3) Mismatch in the load resistance does not affect the measurement value.

(4) The drift in the output EMF of TC stays smaller than 1 ppm/min. during the

measurement.

(5) The FRDC-DC difference approaches zero when switching frequency is reduced

below the characteristic frequency (1/τTE).

(6) The FRDC-DC difference stays at a constant value when the switching frequency

(1/τTE) is increased above the characteristic frequency.

(7) No long-term drift in the measured FRDC-DC difference is observed.

(8) Measured themoelectric transfer difference agrees with the theoretical evaluation.

Items (1) to (3) should be examined whenever the source is modified or repaired. The

criteria (4) to (6) should be examined at each measurement. The criterion (5) is useful to

check the equality of RMS for FRDC modes and DC modes, since there is no difference in

the response of TCs at switching frequency f<fTE. The criterion (6) is necessary because the

FRDC source cannot determine δΤE of a TC which has very small thermoelectric time

constant. The criteria (7) to (8) is useful to ensure the proper operation of the over-all

measurement system.

Page 90: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- 82 -

Page 91: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

Appendix ABiographyAppendix BTrouble ShootingAppendix CCircuit DiagramsAppendix DComponents Layout Appendix EParts ListAppendix FEPROM Program ReferenceAppendix GEPROM Program List Appendix H Measurement Program List

<<< APPENDIX >>>

Page 92: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi
Page 93: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- A1 -

Appendix

Appendix (A) Biography

[1] M. Klonz, R. Zirpel and B. Stojanovic, "Improving speed and accuracy of ac-dc transfer

using a fast reversed dc," CPEM'90 Conference digest, pp. 68-69, 1990.

[2] M. Klonz, R. Zirpel and B. D. Inglis, "Chasing the ac-dc transfer difference between

single-junction and multijunction thermal converters," CPEM'92 Conference digest, pp.

54-55, 1992.

[3] H. Sasaki, K. Takahashi, M. Klonz and T. Endo, "High-Precision AC-DC Transfer

Standards at ETL", IEEE Trans. Instrum. & Meas., Vol. 42, No. 2, pp. 603-606, 1993.

[4] H. Sasaki, K. Takahashi, M. Klonz, "Development of a Fast-Reversed DC current

source", CPEM'94 Conference digest, pp. 386-387, 1994.

[5] M. Klonz, G. Hammond, B. D. Inglis, H. Sasaki, T. Spiegel, B. Stojanovic, K. Takahashi

and R. Zirpel , "Measuring thermoelectric effects in thermal converters with a fast

reversed dc," IEEE Trans. Instrum. & Meas., Vol. 44, 1995.

[6] M. Klonz, T. Spiegel, H. Sasaki, K. Takahashi and B. D. Inglis, "Fast Reversed DC:

Basic Reference for AC-DC transfer.", CPEM'96 Conference digest, pp. 501-502, 1996.

[7] H. Sasaki, B. D. Inglis, K. Takahashi and M. Klonz, "Determination of The Time

Constants of Thermoelectric Effects in Thermal Converters Using a Fast-Reversed DC",

CPEM'96 Conference digest, pp. 588-589, 1996.

Page 94: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- B1 -

Appendix (B) Trouble Shooting

Hang-up of GP-IB interface

In the case of Macintosh system, initialization of the GPIB interface sometime causes a

hang-up of the interface. In this case, power-on-reset of the Macintosh is required.

Instruments does not respond

The program does not register the change of the GP-IB address. After re-starting the

program, the GP-IB address of the FRDC source and theDVM will be reset to the defaults,

i.e., "3" and "7", respectively.

Measurement does not proceed

In the case of a lap-top controller, CPU cycling or CPU-sleeping may occur. It is

recommended to disselect the energy-saving function.

Timer does not count down

See "Measurement does not proceed".

No output from the FRDC source

Check the STBY/EXEC switch.

Page 95: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- C1 -

Appendix (C) Circuit Diagrams

Fig. C01: Circuit Diagram of Sequence Control Circuit.

Fig. C02: Timing Chart of Sequence Control Circuit(1).

Fig. C03: Circuit Diagram of WOU (Analog Circuit).

Fig. C04: Circuit Diagram of WOU (Control Logic).

Fig. C05: Timing Chart of Analog-SW Control Logic.

Fig. C06: Circuit Diagram of Power Supply.

Page 96: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

CL

K(C

N1)

6 MHz

1 MHz

200 kHz

S/L

Tim

ing

DD

74H

C16

6

D

Q Q

Q Q

Q Q

RTRV

Tri

g A

&B

DD

74H

C16

6Q Q

Q Q

Tri

g B

A ON

STBY

B ON

A/B

74H

C39

0

Ena

ble

S/L

Clo

ck

74H

C19

3

A POL

B POL

V / I

I

ON

- S

TB

Y

V A+

A-

B+ B-

÷ 100

CTC2Trig

Tri

g B

DQ Q

A D

ata

B D

ata

Trig B

Trig A

PC (b0)

Reset(CN1)

PE (b0 - b7)PD (b0 - b7)

CTC2 Out

PC (b1)

41

DRDY

42

3

40(J1)

17 to 24

9 to 16

8

PB (b2)27

PC (b4)

DD

Q Q

Q Q

Q Q

D

7

PC (b5)

45

46

7CTC1 Out

CTC1Trig

4

6CTC0 Out

CTC0Trig

5

PC (b6)47

PC (b3)44

PC (b2)43

PC (b7)48

R G R G R G

4 6 8 10 12 14 2ST

BY

/ E

XE

C

PA (b0 - b7)33 to 40

12 to

5L

D1

- L

D8

1314

PB (b0)

PB (b1)

25

26

Vcc

LD

CL

K

RE

AD

Y

OK

Vcc

(C

N1)

GN

D

GN

D(C

N1)

1 2 3 4 1(J1

)

U26

21 21 21 21

U24 U25

U23

U22

413

215

314

116

12(J

1)

U15

13

8

13

11

1012

12

1312

U6

U10

151

109

7

1113

14

5 4

74H

C19

3

151

109

6

1113

14

5 4U

1

U14

U13

12

U15

34

9

13

11

10

12

U5

5

1

3

4

2

U5

5

1

3

4

2

U10

9

13

11

1012

U21

9

13

11

1012

U20

5

1

3

4

2

U21

5

1

3

42

U20

15

34

213

U8

U8

U19

89

10

U3

U2

17, 9 11,

133, 5U

133

U13

109

8

13 11

12

U15

U15

9

8

5

6

2

31

4

6

5

46

5

U13

U15

U11

U11

21

14

11

13122

34

715

513

U12

1

74H

C39

0

142

34

715

13 U7

1

12

U17

U17

U17

U17

1110

98

34

56

215

314

413

512

611

116

7

10

321

64 5

U6

U6

32 1

U9

6

45

1098

13

1112

U9

U9

U9

3

2 1

645

54

6

108

9

U19

U16

U16

U16

2

1

U17

U17

13

12

U19

126

9

13

11

10

12

1098

U11

U15

1110

13137 15 7 15

6 61

9

19

2,3,

4,5

10,1

1,12

,14

2,3,

4,5

10,1

1,12

,14

U11

9

810

U4

U18

220

Ω x

6R

P1

10 k

Ω

2

.7 k

Ω

U16

9

8

U6

321

11

12 13

11

PB (b3 - b7)28 to 32

21 to

17

TD

4 -

TD

8

28 STBY / EXEC

24 to

22

TD

1 -

TD

3

KST

003

Fas

t-R

ever

sed

DC

Sou

rce

Seq

uenc

e C

ontr

ol U

nit :

CP

U/S

CC

Boa

rd

Ver

.4.7

94

Dec

. 16

H. S

asak

i/ K

. Tak

ahas

hi/ S

. Hon

da

KB

C -

Z11

CPU

Boa

rd

UIO

-488

Z

Fron

t Pan

el

b0 b1 b2 b3 b4 b5 b6 b7

J2 33 34 35 36 37 38 39 40

12 11 10 9 8 7 6 5488Z

Z11

Por

t A

b0 b1 b2 b3 b4 b5 b6 b7

J2 9 10 11 12 13 14 15 16

2 3 4 5 10 11 12 14U5

Z11

Por

t D

b0 b1 b2 b3 b4 b5 b6 b7

J2 17 18 19 20 21 22 23 24

2 3 4 5 10 11 12 14U7

Z11

Por

t E

b3 b4 b5 b6 b7

J2 28 29 30 31 32

21

20

19

18 17

488Z

Z11

Por

t B

J3

J3

R2

R1

9

9

J4J4

1 3J5+

5V

2(J1

)

3(J1

)

4(J1

)

R6

R4

R5 R3

TP2

TP1

TP3

T4

T2 T3 T1

TP7

TP5

TP6

TP4

(One

-poi

nt e

arth

)

C22

Fig. C01

- C2 -

Page 97: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

Tri

g A

/ (R

eset

)

Tri

g B

/ (S

et)

Clo

ck G

ate

(Loa

d / S

hift

)O

N/O

ff

Syst

em (

6 M

Hz)

CT

C 0

IN

PUT

1MH

z C

lock

CT

C 1

IN

PUT

Tim

ing

Clo

ck (

2 &

10

Puls

e)

Tim

ing

Cha

rt (

Sequ

ence

Con

trol

Cir

cuit

) #1

Tim

ing

Clo

ck1

21

23

45

67

89

10

Fig. C02(a)

- C3 -

Page 98: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

Han

dsha

ke C

ontr

ol

Tri

g A

Ena

ble

Dat

a R

eady

Rea

dy to

Rec

eive

Tim

ing

Cha

rt (

Sequ

ence

Con

trol

Cir

cuit

) #2

Dat

a (P

D, P

E)

Loa

d D

ata

Dat

a-H

old

time

(3

µs m

in.)

Fig. C02(b)

- C4 -

Page 99: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

KST

003

Fas

t Rev

erse

d D

C S

ourc

e --

- W

avef

orm

Out

put U

nit (

1 --

- A

nalo

g C

ircu

t)

(AD

581)

+−

+−

+−

+−10

k

10 k

Ver

.4.8

94

June

03

H. S

asak

i/ S

. Hon

da

50 Ω

200

Ω40

0 Ω

800

Ω

RL

0R

L1

RL

2R

L3

(Dum

my

Loa

d)

100

Ω

+−

10 k

+−

+−

+15

V

+15

V

All

OP

amp'

s ar

e L

T10

14

+18

V-1

5 V

+15

V

5 V

78L

05

79L

15

78L

15

- 18

V

10 k

10 k

10 k

9 k1

k

100

Ω

Boa

rd [

I ]

+−

10 k

10 k

10 k

+ −

+−

-15

V

-15

V

+− 10 k

10 k

10 k

9 k 1

k

100

Ω2SK

1061

2SJ1

67

SW7(

a)

SW4

SW5

SW8(

b)

SW1

SW2

SW7(

b)

SW8(

a)1

k

1 k

500

Ω

500

Ω

SW6

Mon

itor

Out

put

SW10

SW9

SW3

All

Ana

log

SW's

are

IH51

43(A

D75

49-b

)

Cha

nnel

1

Cha

nnel

2

12 3

89

10

12

13

14

15

16

17

18

76 5

7

12

312

1314

56

1098

10 k

200

19

20

DG

DG12

13

14

15

16

17

18

19

20

121314

12 3

7

56

47

33 p

47

33 p

47

33 p

47

33 p

89 10

7

4,16

523

1

A1

A2

A2

A2

A2

A4

A4

A4

1098

10 k

10 k

A4

A1

A1

A3

A3

3 2 1 6 5 7

A3

5,9

1

63 8 6

4,16 5,9

13 8 6

4,16 5,9

1

3 8 6

4,16 5,9

13 8 6

4,16 5,9

13 8 6

4,16 5,9

13 8 6

4,16 5,

9

13 8 6

4,16 5,9

13 8 6

4,16 5,9

13 8 6

D S

DS

109

48

67

51,

2

1117

1319

594161,

3

6,8

+15

V

Boa

rd [

II

]

Boa

rd [

I-S

UB

]

Boa

rd [

I ]

Boa

rd [

II

]

2SJ1

67

2SK

1061

DS

D

S

100

Ω

100

p

100

p

20 k

20 k

100

p

100

p

100

p

100

p

100

p

100

p

47

10 k

-10.

03 V

+10

.03

V

DG

*

*Dig

ital G

roun

d ar

e fo

r L

ogic

Cir

cuit,

DA

Cs

and

Ana

log

SWs.

**A

nalo

g G

roun

d sh

ould

onl

ybe

use

d fo

r V

olta

ge a

nd C

urre

ntSo

urce

cir

cuit.

AG

**

+15

V+

5 V

-15

VD

G*

AG

**

DG

*

27,2

94,

8,23

,25

-15

V+

15 V

12 1314

11

D3

D1

GN

D

GN

D

VZ

1

R4RP4

T1

0.1

µ

0.1

µ0.

1 µ

***±

18V

are

for

OP-

amps

A1,

A2,

A3

and

A4

only

.

TP5

TP4D

AC

1

(AD

7549

-a)

DA

C1

(AD

7549

-a)

DA

C2

(AD

7549

-b)

DA

C2

RP9

+−

+−

+−

200

k 39 k

200

k 39 k

R3

C10

R10

C21

TP3

TP2

RP5

RP2

RP3

RP1

RP1

0

RP7

RP8

RP6

R6

R7

R12

R13

R5

C11

R11

C22

TP6

TP1

R2

C5

R1

C6

R8

C17

R9

C16

Q2

Q1

Q3

Q4

R5

R6

C42

C41C40

C39

R4 R5

R3

J4

J5

J3

109

J3

+18

V

CO

M

-18V

48

67

51,

2

J3 J3

R7

R4

R3

R2

R1

2

1,3 4

C2

VR

2

VR

3

VR

1J2

C12

C1

C13

C45

C59

C60

C1

C2

C7

C3

C5

C6

C4

D2

D1

J1J2

J1 J2

J1

J2

6

4

6

4

6

4

6

4

Fig. C03

- C5 -

Page 100: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

DA

TA

Clo

ck

Q2

SW7/

8

bit 4-7

D0

- D

3

Q4

Q1

Q3

A0

- A

2

bit 0-3

Q

QD

A

QD

QD

D1

ON

/Off

4/6

HC

174

1/6

HC

174

1/6

HC

174

4/6

HC

174

HC

175

HC

164

(20

µs)

(1 µ

s)

D0-

D3

A0-

A2

UPD

CS

D0-

D3

A0-

A2

Lat

chin

gR

elay

s

D0

- D

3

HC

175

Q(1

0 m

s)

A3

A3

D CK

(Selected for "0111")

QD1/

2 H

C74

V

QD

1/6

HC

174

QD1/2

HC

74

CK

1QD

1

D3

1Q

D0

SW

9/10

Q

Polarity

SW1/

2

SW7/

8

SW4/

5

I Mode Con

nect

Exe

c

Del

ay 5

0 ns

TR

IGQ

(1 µ

s)

Q

30,28,26

SW3

SW6

Del

ay 5

0 ns

D2

D3

D4

Cle

arCle

arD

2

WR

UPD

CS

WR

D0

- D

3

CS(

1)

CS(

2)

WR

UPD

DG

ND27

,29

CL

CL

DG

ND

6 8

DG

ND

2

51,2,3,4

U6

U8

CL

U4

U4

U13

CL

CL

CL

U1

U12

CLU

12B

BB

B

CL

CL

CL

U14

U14

4 3 2 1 4 3 2 1

U3

U1

U4

U7

U7

U7

1245

36

131211

U9

121

U5

2

4

1213

12

U3

U2

8

109

U5

U2

1356

U9

4 536

U3

U9

10 9

811

2 3

512 11

89

113

410

U13

U10

BAA

A

A

U11

U2

U2

U3

U3

U15

U15

U15

U15

U16

U16 U16

U16

1 23

12 1311

9108

546

12

131

2

4

11

103

1213

11

21 3

1011

9

8

U15

U15

56

89

15 10

10,1

5

10,1

5

10,1

5

10,1

5

10,1

5

15 13 12 11 10 6 7

14 (9)

Vou

t +/-

Exe

c

Pola

rity

Vou

t +/-

Exe

c-D

L

Out

put

Shor

t

Iout

+/-

Exe

c

Iout

+/-

Exe

c-D

L

Con

nect

4

3

2115

14

12

11

10

97

6

13

3

2115

14

5

11

10

97

6

U3

21

34

32

9

65

45

(9)

11

45

(9)

U5

CL

1

CL

1 2 8

U10

/10

,11,

12,1

3

U10

/ 3,4

,5,6

U11

/ 4,5

,12,

13

U13

/15,

12,1

0,2

U13

/14

,13,

11,3

(U7/

2,7

,10)

7 102

13C

L

9

9

9

14 15

9

1

ON

Off

HC

08 x

2

2Q 2Q 3Q 3Q 4Q 4Q

7

1

3 7 6 10 11 15 14

23

1

4 56

2

12 1311

3 4 5 6 7 8

2

1 23

9 108

4 56

12 1311

910

8

RL

0

RL

1

RL

2

RL

3

Ana

log

Switc

his

Boa

rd [

II]

Ver

. 4.2

'94

Jun

e 03

H. S

asak

i / S

. Hon

da

To

all H

C's

DA

C1

DA

C2

KST

003

Fas

t Rev

erse

d D

C S

ourc

e --

- W

avef

orm

Out

put U

nit (

2 --

- C

ontr

ol L

ogic

)

Boa

rd [

I-S

UB

]

A0

A1

A2

A3

D0

D1

D2

D3

U10 3 4 5 6 10 11 12 13

4/2

5/7

12/1

013

/15

14/

1513

/12

11/

103/

2

U11

Add

ress

Lin

e

Dat

a L

ine

U10

U13

J2[I

]30 28 26 24 22 20 18J2[I

]1 2 3 4

J1[I

]

C17

C28

C2

R1

C3

R2

C47

R8

34

R12

C56

D2

C8

18 17 16 15 14 13 12 11

9

U4

ZD

7

ZD

8

ZD

5

ZD

6

ZD

3

ZD

4

ZD

1

ZD

2

R9

C48

5V5V

5VU

1J1

J1

R10

C54 R

11

C55

24,22,20,18 16 14 12

10

Boa

rd [

I]

J2

Boa

rd [

I]

9J1

DG

ND

6 851,2,3,4 7

AD

7549

AD

7549

8,7,

6

4,3,

2,1 9 5 10

11

8,7,

6

4,3,

2,1 9 5 10

11

DA

C8 7 6

4 3 2 1

DA

C

U2

U2

U2

U2

U3

U3

U3

U3

J1 J2

4 5 12 13

D2

D3

D4

16 15

1 2

ON

Off

ON

Off

ON

Off

16 15

1 2

16 15

1 2

16 15

1 2

5 6

- C6 -Fig. C04

Page 101: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

Tim

ing

Puls

e(1

MH

z)

A D

ata

A C

onne

ct

A E

xec

B D

ata

B C

onne

ct

B E

xec

4 pu

lse

for

Sequ

ence

Con

trol

8 pu

lse

for

Dat

a T

rans

fer

Star

t Bit

(Alw

ays

"1")

Sequ

ence

Con

trol

("1"

for

A O

N)

8 bi

t Dat

a fo

r So

urce

A

Tim

ing

Con

trol

Cha

rt fo

r F

RD

C S

ourc

e

100

µs -

1 m

s R

epet

ition

Per

iod

Off

Tim

e(4

µs

- 25

5 µs

)O

N T

ime

for

A(

100

µs -

100

00 m

s)

8 bi

t Dat

a fo

r So

urce

B

Sequ

ence

Con

trol

("0"

for

A O

ff)

Sequ

ence

Con

trol

("1"

for

B O

N)

Sequ

ence

Con

trol

("0"

for

B O

ff)

Star

t Bit

(Alw

ays

"1")

ON O

N

OFF

OFF

Fig. C05

- C7 -

Page 102: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

AC

Lin

e

Fas

t R

ever

sed

DC

Sour

ce C

ontr

olle

r

(Pow

er S

our

ce)

Ver

.3.2

93

/07

/23

H. S

asa

ki

Pow

er S

uppl

y (+

/- 1

8V)

+18

V

CO

M

-18V

7918

7818

200

100 0

Pow

er S

uppl

y f

or S

ourc

e A

Pow

er S

uppl

y (+

/- 1

8V)

+18

V

CO

M

-18V

7918

7818

200

100 0

Pow

er S

uppl

y f

or S

ourc

e B

Filte

rU

nit

Pow

er S

uppl

yU

nit

(100

V /

200

V)

5 V

, 1A

Fig. C06

- C8 -

Page 103: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- D1 -

Appendix (D) Components Layout

Fig. D01: Internal Cable Connection (SCU).

Fig. D02: Internal Cable Connection (WOU).

Fig. D03: Optical Fiber Cable Connection.

Fig. D04: PC Board Layout (CPU/SCC Board)

Fig. D05: PC Board Layout (Output Board [I-main])

Fig. D06: PC Board Layout (Output Board [I-sub])

Fig. D07: PC Board Layout (Output Board [II])

Page 104: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

Pow

er S

uppl

y f

or S

ourc

e A

Pow

er S

uppl

y f

or C

ontr

olle

r

AC

Lin

e(1

00V

/ 20

0 V

)

±18

VR

egur

ator

Pow

er S

uppl

y f

or S

ourc

e B

±18

VR

egur

ator

CPU

/ SC

C B

oard

Inte

rnal

Cab

le C

onne

ctio

n (

Con

trol

ler)

Ver

.3.2

94/

08/1

1H

. Sas

aki

5V Reg

urat

or

GP-

IB I

nter

face

Uni

t

5-pi

nC

onne

ctor

s

AC

Inle

t(F

ilter

) Vol

tage

Sele

ctor

(100

V/2

00 V

)

Pow

erSW

J3J5

J4

LE

D D

ispl

ay x

3T

oggl

e SW

x 1

Tra

nsm

itter

Fibe

rC

onne

ctor

sG

PIB

Con

nect

or

AB

AB

Fig. D01

- D2 -

Page 105: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

Inte

rnal

Cab

le C

onne

ctio

n (

Wav

efor

m O

utpu

t Uni

t)

Ver

.3.2

94/

08/1

1H

. Sas

aki

3-Pi

nC

onne

ctor

Out

put B

oard

( I

)

Out

put B

oard

( I

I )

BN

CC

onne

ctor

3-Pi

nC

onne

ctor

Mon

itor

(A)

Mon

itor

(B)

Opt

ical

Fibe

r C

able

Pow

er S

uppl

y

Sour

ce (

B)

Sour

ce (

A)

Opt

ical

Fibe

r C

able

Pow

er S

uppl

y

Out

put

Hi/L

o

Out

put L

o/G

uard

GN

D

N-C

onne

ctor

J1

J1

J2

J3

J3

J2

Out

put B

oard

( I

)

J1

J2

J3

J3

J2

Out

put B

oard

( I

I )

BN

CC

onne

ctor

Fibe

rC

onne

ctor

Fibe

rC

onne

ctor

Fig. D02

- D3 -

Page 106: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

Opt

ical

Fib

er C

onfi

gura

tion

Ver

.1.0

95/

10/1

6H

. Sas

aki

CPU

/ SC

C B

oard

Tra

nsm

itter

Fibe

rC

onne

ctor

sU23

U24

U25

U26

AB

Fibe

rC

onne

ctor

s

OU

TPU

T1

Boa

rd

[A]

A

U6

U8

OU

TPU

T1

Boa

rd

[B]

B

U6

U8

Sequ

ence

Con

trol

Uni

tW

avef

orm

Out

put U

nit

Rec

eive

rR

ecei

ver

Fig. D03

- D4 -

Page 107: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

PC

Boa

rd L

ayou

t:

C

PU

/SC

C B

oard

Ver

.4.3

95/

11/0

6

CPU/SCC BOARD

J2

4950

12

HC1

66

U2

HC1

93

U1 H

C7

4

U5 H

C3

90

U7 H

C0

0

U9 H

C0

8

U1

1 HC0

0

U1

3 HC0

4

U1

5 HC0

4

U1

7 HC0

8

U1

9

HC7

4

U4 H

C0

0

U6 H

C1

0

U8 H

C7

4

U1

0 HC3

90

U1

2 HC1

93

U1

4 HC0

0

U1

6 20

03

U1

8

HC1

66

U3

HC7

4

U2

0

HC7

4

U2

1

20

03

U2

2

J1

21

5049

C5 C7 C9 C11 C13 C15 C17

C2 C6 C8 C10 C12 C14 C16 C18

C3

C4

C20

C21

C19

C1R1

R2

RP1

R3

R4

R5

R6

TP2

U2

3U

24

U2

5U

26

TP1

41

14

9

2J3

50

1

2

15

16

J4

1

J5

3

Fig. D04

- D5 -

Page 108: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

PC

Boa

rd L

ayou

t: O

utpu

t Boa

rd (

1-m

ain)

Ver

.4.2

95/

11/0

6

C59C45

HC0

8

U1

6

C57

D1

D2

J31

2

9

10

J1

1

2

7

8

OU

TPU

T B

OA

RD I

R3

C2

R1

J2

2930

12

IH5

14

3

C3

1C3

2

C30

IH5

14

3

C2

0C2

1

C19

IH5

14

3

C9

C1

0

C8

IH5

14

3

C3

4C3

5

C33

IH5

14

3

C2

3C2

4

C22

IH5

14

3

C1

2C1

3

C11

IH5

14

3

C3

7C3

8

C36

(IH

51

43

)

C2

6C2

7

C25

IH5

14

3

C1

5C1

6

C14

IH5

14

3

C4

3C4

4

C58

HC1

4

U1

5

C53

SW1

SW2

SW3

SW4

SW5

SW6

SW7

SW8

SW9

SW1

0

HC0

0

U7

C18

HC0

4

U5

C7

HC0

4

U3

C6

HC1

0

U9

C29H

C1

75

U1

1

C51

HC7

4

U1

4

C52

HC1

74

U4

C5

HC0

0

U2

C4

HC1

64

U1

0

C49

HC1

74

U1

3

C50

HC1

23

U1

C1

HC1

23

C46

C60

C5

6

U6

U8

C3

R2

C17 C28

C4

7R8

U1

2C4

8

R9

C5

4

R10

C5

5

R11

R12

R7R6

D3

C4

1C4

0C3

9C4

2

R4R5

J5 GND

Tef

lon

PC

Fig. D05

- D6 -

Page 109: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

PC

Boa

rd L

ayou

t: O

utpu

t Boa

rd I

-sub

Ver

.4.1

94/

08/2

9

AD

75

49

OUTPUT BOARD ISUB

J1

Q1

Q2

C5C4C3

C2C1

C6

R1

G

C7

G

R1

RP1

RP2

RP3

TP1

R5

R6R7

C8 C9

R4

C1

0

VZ1

RP4

RP5

T1

C1

1

LT1

01

4CN

A2

DA

C1

R3

A1

AD

75

49

Q3

Q4

C16C15C14

C17

R8

G

C1

8

G

R9

RP6

RP7

RP8TP6

R11

R12

R13

C19 C20

C2

1

RP9

RP1

0C2

2

LT1

01

4CN

A4

DA

C2

R10

A3

2930

12

C1

2

C13

LT1

01

4CN

LT1

01

4CN

GN

D

TP2

TP3

TP4

TP5

Fig. D06

- D7 -

Page 110: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

PC

Boa

rd L

ayou

t: O

utpu

t Boa

rd (

2)

Ver

.4.1

94/

08/2

9

ZD1

HC0

8H

C0

8H

C1

75

ULN

-28

03

A

C2C1 C7

C8

J3 J2 J1

RL3

RL2

RL1

RL0

ZD2

ZD3ZD4

ZD5ZD6

ZD7ZD8

R1R2

R3R4

R5

U4

U3

U2

U1

C9

C10

C11

C4 C6

C3 C5V

R1

VR2

VR3

131

3

D1

D2

1

2

9

10

1

2

7

8

1

2

3

4

OU

TPU

T B

OA

RD II

Fig. D07

- D8 -

Page 111: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- E1 -

Appendix (E) Parts List

Sequence Control Unit Parts List

Main Parts ListID No. parts Description Qut./UnitChassis-1 Main Shassis ELMA Type33 1Chassis-2 Shield Box for Power Source YATOLLO-original 2Board-1 CPU/SCC Board ETL/YATOLLO-design 1Board-2 Z84 CPU Board KBC Z11 1Board-3 GP-IB Universal IF Board UIO 488 Z 1Board-4 Power Regurator Circuit (±18V) YATOLLO-design 2Board-5 Power Regurator Circuit (5V) YATOLLO-design 1ROM-1 EPROM(27256) Sup. by JEMIC 1Trans-1 100-230V Power Transformer "AC 18 V, 0.1A with Shield" 2Trans-2 100-230V Power Transformer "AC 5V, 1A with Shield" 1Panel-1 Power SW "250V, 1A" 2Panel-2 LED Dual (Red/Green) 3Panel-3 AC Inlet w/t Fuse & Noise-Filter 1Panel-4 100-230V Selector SW 1Panel-5 Output Connector for ±18V 5 pin (JAE-SRCN2A13-5P) 2Panel-6 Dual Optical-Fiber Connector 1Misc.-1 Wiring Terminal wiring for AC power line 1Misc.-2 Terminal Shield Box Input terminal 1Misc.-3 Feed-through Capacitor Shield Box Output (1000 PF) 6Cable-1 Optical Fiber between Chassis 2Cable-2 Optical Fiber cable (Internal) Transmitter - Rear panel 2Cable-3 Output cable for ±18V between Chassis 5-wire (double shielding) 2Cable-4 AC Inlet Cable 1Cable-5 "50wire, parallel cable" GP-IB IF to J3[CPU/SCC] 1Cable-6 Internal cable assembly Front Panel to J4[CPU/SCC] 1Cable-7 Internal cable assembly 5V circuit to J5[CPU/SCC] 1Cable-8 Internal cable assembly Power Trans. to ±18V circuit 2Cable-9 Internal cable assembly Power Trans. to 5V circuit 1Cable-10 3 wire --- Feed- C --- 4 wire --- ±18V circuit to Rear Panel 2Cable-11 Power-line cable assembly wiring for AC power line 1

CPU/SCC Circuit Board Parts List

ID No. parts Description Qut./BoardPC Board YATOLLO-design

"J1,J2" 50 pin Board Connector JAE PS-50SD-D4TS1-1 2J3 50Pin Strait-Head Connector MIL 1J4 16Pin Strait-Head Connector MIL 1J5 3Pin Strait-Head Connector "3 pin, B3P-SHF-1AA" 1R1 Resistor 1/4W 2.7kΩ 1R2 Resistor 1/4W 10kΩ 1R3 - R6 Resistor 1/4W 220 Ω 4RP1 8 Element Resistor "220Ω x 8, 9 pin, 2.54 pitch" 1T1 - T4 Trimmer Pot. 500 Ω 4C1 Capacitor "47 µF, 25V" 1C2 - C21 Bypass Capacitor 0.1 µF (5 mm pitch) 1C1 Capacitor "10 µF, 16V" 1"U6,U9,U13,U16" HC-MOS Logic IC 74HC00 4"U15,U17" HC-MOS Logic IC 74HC04 2"U11,U19" HC-MOS Logic IC 74HC08 2U8 HC-MOS Logic IC 74HC10 1

Page 112: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- E2 -

"U4,U5,U10,U20,U21" HC-MOS Logic IC 74HC74 5"U2,U3" HC-MOS Logic IC 74HC166 2"U1,U14" HC-MOS Logic IC 74HC193 2"U7,U12" HC-MOS Logic IC 74HC390 2"U18,U22" Transistor Array ULN-2003A 2"U23,U24,U25,U26" Fiber Transmitter YHP HFBR 1521 4

±18V Regurator Board Parts List

ID No. parts Description Qut./BoardPC Board YATOLLO-design

J1 Input Connector for Input "3 pin, B3P-SHF-1AA" 1"J2,J3" Connector for 7818/7918 "3 pin, B3B-EH-A" 2J4 Output Connector for ±18V "3 pin, B3P-SHF-1AA" 1BR1 Diode Bridge Toshiba 1B4B41 1"C1,C2" Capacitor "3300 µF, 25WV" 2"C3,C5" Capacitor 0.1 µF 1"C4, C6" Capacitor "1 µF, 50 WV" 1VR1 Voltage Regulator 7818 (Separated from PCB) 1VR2 Voltage Regulator 7918 (Separated from PCB) 1

5V Regurator Board Parts List

ID No. parts Description Qut./BoardPC Board YATOLLO-design

J1 Input Connector for Input "3 pin, B3P-SHF-1AA" 1J2 Connector for 7805 "3 pin, B3B-EH-A" 1J3 Output Connector for 5V "2 pin, B2P-SHF-1AA" 1BR1 Diode Bridge Toshiba 1B4B41 1"C1,C2" Capacitor "3300 µF, 25WV" 2C3 Capacitor 0.1 µF 1C4 Capacitor "1 µF, 50 WV" 1VR1 Voltage Regulator 7805 (Separated from PCB) 1

Waveform Output Unit Parts List

Main Parts List

ID No. parts Description Qut./UnitChassis-1 Main Chassis ELMA Type33 1Chassis-2 Shield Case for Source A/B YATOLLO-original 2Board-1 Output Board (I-main) ETL/YATOLLO-design 2Board-2 Output Board (II) ETL/YATOLLO-design 2Board-3 Output Board (I-sub) ETL/YATOLLO-design 2Board-4 Teflon Output Board ETL/YATOLLO-design 2Panel-1 Type-N Connector N-R 1Panel-2 GND/GRD Terminal Standard type 2Panel-3 Input Connector for ±18V 5 pin (JAE-SRCN2A13-5P) 2Panel-4 Dual Optical-Fiber Connector 2Panel-5 BNC Connector A/B Monitor 2Misc.-1 Feed-through Capacitor Shield Case Input(1000 PF) 6Cable-1 Optical Fiber cable (Internal) Receiver - Rear panel 2Cable-2 open--RG58A/U--open with GND Teflon PC to Front Panel 2Cable-4 SMA--RG174--open Output-I[J5] to BNC (rear panel) 2Cable-5 3 wire --- Feed- C --- 3 wire --- Output-II[J2] to rear panel 2

Page 113: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- E3 -

Cable-6 8P cn --- 8 wire --- 8P cn Output-I[J1] to Output-II[J1] 2Cable-7 10P cn --- 8 wire --- 10P cn Output-I[J3] to Output-II[J3] 2

Output Board (I-main) Parts List

ID No. parts Description Qut./BoardPC Board YATOLLO-design 1

J1 8 pin Connector JAE PS-8PLB-D4T1-FL1 1J2 30 pin Board Connector 416-93-264-41-008 1J3 10 Pin Connector JAE PS-10PLB-D4T1-FL1 1"J4,J5" SMA Connector for monitor 1J6 Screw-post Connector Ground Connection 1R1 Resistor 1/4W 22 kΩ 1"R2,R8" Resistor 1/4W 5kΩ 2"R9,R12" Resistor 1/4W 100 kΩ 2"R10,R11" Resistor 1/4W 330 Ω 2"R6,R7" Resistor 1/4W 500 Ω 2"R4,R5" Resistor 1/4W 1 kΩ 2R3 Resistor 1/4W 100 Ω 1C2 Capacitor 510 pF 1C3,C39-42,C47,C54-55 Capacitor 100 pF 8C48 Capacitor 0.22 µF 1C56 Capacitor 2.2 µF 1"C45,C59,C60" Capacitor "4.7 µF, 25V" 3C1 --- C58 Bypass Capacitor 0.1 µF (5 mm pitch) 46"D1,D2,D3" Diode 1S1588 3"U2,U7" HC-MOS Logic IC 74HC00 2U5 HC-MOS Logic IC 74HC04 1

U16 HC-MOS Logic IC 74HC08 1U9 HC-MOS Logic IC 74HC10 1"U3,U15" HC-MOS Logic IC 74HC14 2U14 HC-MOS Logic IC 74HC74 1"U1,U12" HC-MOS Logic IC 74HC123 2U10 HC-MOS Logic IC 74HC164 1"U4,U13" HC-MOS Logic IC 74HC174 2U11 HC-MOS Logic IC 74HC175 1"U6,U8" Fiber Receiver YHP HFBR 2521 2SW1 - SW10 Analog Switch IH5143CPE 10

Output Board (I-sub) Parts List

ID No. parts Description Qut./BoardPC Board YATOLLO-design 1

J1 30 pin Board Connector 451-10-264-00-005 1"R3-5,R10-11" Resistor 1/4W 47 Ω 5"R6,R12" Resistor 1/4W 200 kΩ 2"R7,R13" Resistor 1/4W 39 kΩ 2"R1,R8" Resistor 1/4W 20 kΩ 2"R2,R9" Precision Resistor MBZ100R00Q 2"RP2-5,RP7-10" SLD1Y10K00AQ Precision matched pair 8"RP1,RP6" SLD2Y1K000/9K000AQ Precision matched pair 2T1 Trimmer Pot. 200 Ω 1"C10-11,C21-22" Capacitor 33 pF 4"C1-2,C12-13" Capacitor "10 µF, 25V" 4"C3-9,C14-20" Bypass Capacitor 0.1 µF (5 mm pitch) 14"DAC1,DAC2" 12 bit D/A converter AD7549 2A1 - A4 Quad. OP Amplifier LT1014CN 4

Page 114: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- E4 -

VZ1 10V Voltage Reference AD581 1"Q1,Q4" FET 2SK1061 2"Q2,Q3" FET 2SJ167 2

Output Board (II) Parts List

ID No. parts Description Qut./BoardPC Board YATOLLO-design 1

J1 8 pin Connector JAE PS-8PLB-D4T1-FL1 1J2 4 pin Connector JAE PS-4PLB-D4T1-FL1 1J3 10 Pin Connector JAE PS-10PLB-D4T1-FL1 1R1 Precision Resistor FLBX050R00D 1R2 Precision Resistor FLBX100R00D 2R3 Precision Resistor FLBX200R00D 2R4 Precision Resistor FLBX400R00D 2R5 Precision Resistor FLBX800R00D 2C8 Capacitor "100 µF, 16V" 1"C4,C6" Capacitor "4700 µF, 25V" 2"C1,C2,C7" Capacitor "1 µF, 50V" 3"C3,C5,C9-11" Bypass Capacitor 0.1 µF 2"D1,D2" Diode 10D1 2"ZD1,ZD2" Zener Diode RD6.8E 8"U2,U3" HC-MOS Logic IC 74HC08 2U1 HC-MOS Logic IC 74HC175 1U4 Transistor Array ULN-2803A 1VR1 Voltage Regulator 7805 (+ 5 V) 1VR2 Voltage Regulator 78L15 (15 V) 1VR3 Voltage Regulator 79L15 (- 15 V) 1

RL0-RL3 Latching Relay OMLON G6AK-234P 4

Page 115: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- F1 -

Appendix (F) EPROM Software Reference

Fig. F01 Flow Charts (main)

Fig. F02 Input Data Format

Fig. F03 Data Buffer Mapping

Fig. F04 Flow Charts(Input Commands)

Fig. F05 Control Resistors

Fig. F06 Command-M&S Reference

Fig. F07 Flow Charts(Execute Commands)

Page 116: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

ST

AR

T

Get

Dat

a fr

omG

PIB

" "(

spac

e)?

yes

Rea

d G

PIB

Sub

rout

ine

"."(

perio

d)?

": "

(col

on)

?

Ret

urn

"0"

- "9

" ?

no

no

no

yes

yes

Set

Car

ry F

lag

Res

et C

arry

Fla

g

"/"(

slas

h) ?

yes

no no

MA

IN R

outin

e

ST

AR

T

Initi

aliz

e C

TC

,P

IO, &

Mem

ory

"A"

?ye

s

Inpu

t Dat

afo

r "A

0"-

"A3"

yes

yes

Inpu

t Com

man

ds a

sA

n, C

, D, M

, O, P

, S, V

, X

Rea

d G

PIB

"0 -

3"?

Rea

d G

PIB

"C"

?

Inpu

t Dat

afo

r "C

"

"X"

?

Exe

cute

Com

man

ds

ST

AR

T

Fla

g S

etfo

r "S

"?ye

s

Exe

cute

"S"

com

man

d

Com

man

d E

xecu

te S

ubro

utin

e

Ret

urnE

xecu

te C

omm

ands

as

S, M

, V, C

, An,

D, P

, O

Fla

g S

etfo

r "M

"?ye

s

Exe

cute

"M"

com

man

d

Fla

g S

etfo

r "O

"?ye

s

Exe

cute

"O"

com

man

d

"+"(

plus

) ?

yes

no

Fig. F01

- F2 -

Page 117: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

O c

om

mand Input F

orm

at

∗1

Err

or

(Thr

ee D

igits

Inte

ger

---

Err

or o

n re

ceiv

ing

the

float

ing

poin

t)

∗1 ∗1 ∗1

∗10

∗10

∗10

Err

or

OK

(Ret

urn)

∗100

∗100

OK

(Ret

urn)

OK

(Ret

urn)

∗1

Err

or

(Abo

ve th

e flo

atin

g po

int)

V o

r C

com

man

d In

put F

orm

at

OK

(Pro

ceed

)

∗1 ∗1 ∗1 ∗1

∗10

∗10

∗10

Err

or

OK

(Ret

urn)

OK

(Pro

ceed

)

OK

(Pro

ceed

)

OK

(Ret

urn)

Err

or

OK

(Ret

urn)

OK

(Ret

urn)

OK

(Ret

urn)

∗.1

∗.1

∗.1

∗.01

∗.01

(Bel

ow th

e flo

atin

g po

int)

D c

om

mand I

nput

Form

at

Err

or

OK

(Ret

urn)

OK

(Ret

urn)

∗.1

∗.1

(Bel

ow th

e flo

atin

g po

int)

∗1

Err

or

(Abo

ve th

e flo

atin

g po

int) O

K(P

roce

ed)

∗1 ∗1E

rror

OK

(Ret

urn)

OK

(Pro

ceed

)

Pn c

om

mand I

nput

Form

at

Err

or

OK

(Ret

urn)

OK

(Ret

urn)

OK

(Ret

urn)

∗.1

∗.1

∗.1

∗.01

∗.01

(Bel

ow th

e flo

atin

g po

int)

∗1

Err

or

(Abo

ve th

e flo

atin

g po

int) O

K(P

roce

ed)

∗1 ∗1E

rror

OK

(Ret

urn)

OK

(Pro

ceed

)

An

co

mm

an

d I

np

ut

Fo

rma

t

Err

or

OK

(Ret

urn)

OK

(Ret

urn)

OK

(Ret

urn)

∗.1

∗.1

∗.01

OK

(Ret

urn)

∗.1

∗.01

∗.00

1

∗.1

∗.01

∗.00

1

(Bel

ow th

e flo

atin

g po

int)

∗1

Err

or

(Abo

ve th

e flo

atin

g po

int) O

K(P

roce

ed)

∗1 ∗1E

rro

r

OK

(Ret

urn)

OK

(Pro

ceed

)

M o

r S

co

mm

an

d I

np

ut

Fo

rma

t

(One

Dig

its In

tege

r --

- E

rror

on

rece

ivin

g th

e flo

atin

g po

int)

∗1

Err

or

∗1E

rro

r

OK

(Ret

urn)

No

t,

No

r

No

t

Fig. F02

- F3 -

Page 118: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

A0

A1

A2

A3

C D M O P S V

Inde

x

0 -

± 2

.047

0 -

10.2

3

0 -

15

0 -

7

4 -

255

0.10

E0

-

2.5

5E4

0 -

1

0 -

10.2

3

Dat

a In

put B

uffe

r M

appi

ng

HL

HL

HL

HL

HL

HL

Fla

g

Fla

g

Fla

g

Fla

g

Fla

g

Fla

g

Fla

g

Fla

g

Fla

g

Fla

g

Fla

g

"A"

"A"

"A"

"A"

"C"

"D"

"M"

"O"

"P"

"S"

"V"

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(Sig

n)

(Sig

n)

(Sig

n)

(Sig

n)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

(00)

MMMMMM∗1

000

∗100

∗10

∗1

∗100

0∗1

00∗1

0∗1

∗100

0∗1

00∗1

0∗1

∗100

0∗1

00∗1

0∗1

∗100

0∗1

00∗1

0∗1

∗10

∗1 ∗1

∗100

∗10

∗1

∗100

∗10

∗1 ∗1

∗100

0∗1

00∗1

0∗1

AS

CII

Inpu

t Dat

a B

uffe

r

Top

Adr

ess

BC

D In

put B

uffe

rB

inar

y D

ata

Fla

g(S

ign)

(Ind

ex)

8010

H

8020

H

8030

H

8040

H

8050

H

8060

H

8070

H

8080

H

8090

H

80A

0H

80B

0H

Par

amet

er0

12

34

56

78

9A

BC

DE

F

HL

HLD D D

ID

Com

man

dsID

∗100

∗10

∗1

∗1

∗1

∗1∗1

0∗0

.1∗0

.01

∗1∗1

0∗0

.1∗0

.01

∗0.1

∗0.0

1

∗1∗0

.1 ∗1

0 -

± 2

.047

0 -

± 2

.047

0 -

± 2

.047

∗1∗0

.1∗0

.01

∗0.0

01

∗1∗0

.1∗0

.01

∗0.0

01

∗1∗0

.1∗0

.01

∗0.0

01

∗1∗0

.1∗0

.01

∗0.0

01

Fig. F03

- F4 -

Page 119: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

yes

Ret

urn

ST

AR

T

V &

C C

omm

and

Inpu

t Sub

rout

ine

yes

Buf

fer

Cle

ar

Rea

d &

Con

vert

" . "

? noye

s

yes

" : "

?

"Err

or"

Set

Ret

urn

no

Sto

re to

Buf

fer

#1

Rea

d &

Con

vert

yes" . "

? noye

s

yes

" : "

?

Ret

urn

no

Mov

eB

uffe

r #1

to #

0

Rea

d &

Con

vert

Sto

re to

Buf

fer

#1

yes" . "

? noye

s

yes

" : "

?

Ret

urn

no

"Err

or"

Set

Ret

urn

"Err

or"

Set

Ret

urn

yes

Rea

d &

Con

vert

" . "

? no

yes

" : "

? no

Sto

re to

Buf

fer

#2

Rea

d &

Con

vert

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes" . "

? no

yes

" : "

? no

Sto

re to

Buf

fer

#3

Rea

d &

Con

vert

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes" . "

? no

yes

" : "

? no

Ret

urn

"Err

or"

Set

yes

Ret

urn

ST

AR

T

An

Com

man

d In

put S

ubro

utin

e

yes

Buf

fer

Cle

ar

Rea

d &

Con

vert

" . "

? noye

s

yes

" : "

?

"Err

or"

Set

Ret

urn

no

Sto

re to

Buf

fer

#0

Rea

d &

Con

vert

yes" . "

? noye

s

yes

" : "

?

Ret

urn

no

"Err

or"

Set

Ret

urn

"Err

or"

Set

Ret

urn

yes

Rea

d &

Con

vert

" . "

? no

yes

" : "

? noS

tore

toB

uffe

r #2

Rea

d &

Con

vert

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes" . "

? no

yes

" : "

? noS

tore

toB

uffe

r #3

Rea

d &

Con

vert

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes" . "

? no

yes

" : "

? no

Ret

urn

"Err

or"

Set

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes

Rea

d &

Con

vert

" . "

? no

yes

" : "

? no

Sto

re to

Buf

fer

#1

M &

S C

omm

and

Inpu

t Sub

rout

ine

Rea

d &

Con

vert

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes" . "

? no

yes

" : "

? no

Ret

urn

"Err

or"

Set

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes

Rea

d &

Con

vert

" . "

? no

yes

" : "

? no

Sto

re to

Buf

fer

#0

ST

AR

T

"Err

or"

Set

Fig. F04(a)

- F5 -

Page 120: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

ST

AR

T

D C

omm

and

Inpu

t Sub

rout

ine

yes

Buf

fer

Cle

ar

Rea

d &

Con

vert

" . "

? noye

s

yes

" : "

?

"Err

or"

Set

Ret

urn

no

Sto

re to

Buf

fer

#0

Rea

d &

Con

vert

yes" . "

? noye

s

yes

" : "

?

Ret

urn

no

"Err

or"

Set

Ret

urn

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes

Rea

d &

Con

vert

" . "

? no

yes

" : "

? no

Sto

re to

Buf

fer

#1

Rea

d &

Con

vert

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes" . "

? no

yes

" : "

? no

Ret

urn

"Err

or"

Set

O C

omm

and

Inpu

t Sub

rout

ine

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes

Rea

d &

Con

vert

" . "

? no

yes

" : "

? noS

tore

toB

uffe

r #1

Rea

d &

Con

vert

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes" . "

? no

yes

" : "

? noS

tore

toB

uffe

r #2

Rea

d &

Con

vert

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes" . "

? no

yes

" : "

? no

Ret

urn

"Err

or"

Set

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes

Rea

d &

Con

vert

" . "

? no

yes

" : "

? no

Sto

re to

Buf

fer

#0

ST

AR

T

"Err

or"

Set

ST

AR

T

Pn

Com

man

d In

put S

ubro

utin

e(W

ith In

dex-

Inpu

t)

yes

Buf

fer

Cle

ar

Rea

d &

Con

vert

" . "

? noye

s

yes

" : "

?

"Err

or"

Set

Ret

urn

no

Sto

re to

Buf

fer

#0

Rea

d &

Con

vert

yes" . "

? noye

s

yes

" : "

?

Ret

urn

no

"Err

or"

Set

Ret

urn

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes

Rea

d &

Con

vert

" . "

? no

yes

" : "

? no

Sto

re to

Buf

fer

#1

Rea

d &

Con

vert

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes" . "

? no

yes

" : "

? no

Sto

re to

Buf

fer

#2

Rea

d &

Con

vert

yes

Ret

urn

"Err

or"

Set

Ret

urn

yes" . "

? no

yes

" : "

? no

Ret

urn

"Err

or"

Set

Rea

d &

Con

vert

Sto

re to

Inde

x B

uffe

r

yes

"Err

or"

Set

yes" . "

? no

yes

" : "

? no

Ret

urn

Fig. F04(b)

- F6 -

Page 121: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

System Control/Status Resistors

RAM_PB

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Flag: OPE

Flag: ERR2

Flag: ERR1

Flag: ERR0

Flag: STBY

CNTL:÷100

GPIB:OK

GPIB:RDY

Flag:OPE --- Status flug for system operation0 : Commands executed.1 : Commands in the buffer to be executed.

Flag:ERR0 - ERR2 --- Error report for GP-IB0 : Normal operation.1 - 6 : Error was detected.

Flag:STBY --- Status flug for STBY/EXEC switch.0 : Switch at STBY position.1 : Switch at EXEC position.

CNTL:÷100 --- Control data for expanding period.0 : ÷100 disabled.1 : ÷100 enabled.

GPIB:OK/RDY --- Handshake-control line for data-input.

RAM_PC

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

LED: V/I

CNTL: STBY

HSK:RTRV

HSK:DRDY

LED:V/I --- LED display-control for "Voltage/Current" mode.

CNTL:STBY --- Control resistor for STBY/EXEC.0 : STBY mode.1 : EXEC mode.

CNTL:SQU1,SQU0 --- Status flug for STBY/EXEC switch.0, 1 : Steady-State output (A-on).

HSK:RTRV/DRDY --- Handshake-control line for sending data through optical fiber.

RAM_PE

CNTL:V/I --- Control resistor for output mode.0 : Current-output mode.1 : Voltage-output mode.

CNTL:UPD --- Control resistor for generating "UPD" pulse (always set to "0").0 : Enable UPD pulse.1 : Disable UPD pulse.

CNTL:POL --- Control resistor for output polarity.0 : Negative output.1 : Positive output.

A3 - A0 --- Address for the "V/I", "UPD" and "POL" resistor (always set to "1111").

LED: Bpol

LED: Apol

CNTL:SQU1

CNTL: SQU0

LED:Apol,Bpol --- LED display-control for the output-polarity of sources A and B.

1 : Red (Positive-output).0 : Green (Negative-output).

1 : Red (Voltage mode).0 : Green (Current mode).

1, 0 : Steady-State output (B-on).1, 1 : Sequential output.

RAM_PD

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

(For Source A)

(For Source B)

CNTL: V/I

CNTL: UPD

CNTL: POL

A3("1")

CNTL: V/I

CNTL: UPD

notused

CNTL: POL

A2("1")

A1("1")

A0("1")

A3("1")

A2("1")

A1("1")

A0("1")

notused

(Port B)

(Port C)

(Port D)

(Port E)

- F7 -

Fig. F05

Page 122: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

M0

M1

M2

M3Com

man

d M

&S

Ref

eren

ce

Pol

arity

Seq

uenc

e C

ontr

olM

ode

AB

bit 6

ID

Com

man

ds

M4

M5

M6

M7

S0

S1

Seq

uenc

ial

FR

DC

[1]

Seq

uenc

ial

DC

+

Seq

uenc

ial

DC

-

Seq

uenc

ial

FR

DC

[1]

Ste

ady-

Sta

teA

+

Out

put

A -

B +

B -

ST

BY

EX

EC

Ste

ady-

Sta

te

Ste

ady-

Sta

te

Ste

ady-

Sta

te

Off

On

+−

++

−−

−+

+ −+ −

XX

XX

XX

XX

Por

t C (

RA

M_C

)

bit 4

Pol

arity

(LE

D)

bit 3

bit 2

Dat

aA

ddre

ss

bit 7

- 4

bit 3

- 0

Dat

aA

ddre

ss

bit 7

- 4

bit 3

- 0

bit 5

X X X X X X X X

X X

X X

0 1

X 0

0 1

X 0

0 1

X 0

0 0

X 0

0 0

X 0

0 1

X 0

0 0

X 0

0 0

X 0

0 0

X 0

0 0

X 0

0 1

X 0

0 0

X 0

0 1

X 0

0 0

X 0

0 0

X 0

0 1

X 0

0 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

X X

X X

11

01

11

11

11

00

11

10

10

(0)

1

10

0

01

1

01

0(0)

(0)

(0)

Por

t D (

RA

M_D

)P

ort E

(R

AM

_E)

- F8 -

Fig. F06

Page 123: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

ST

AR

T

Com

man

d V

&C

Exe

cute

Sub

rout

ine

Ret

urn

BC

D to

Bin

ary

AS

CII

to B

CD

Mul

tiply

by

4

Che

ck p

aram

eter

0-10

23

Set

Fla

g to

"2"

Set

ST

BY

mod

e

Sen

d D

AC

Dat

avi

a P

ort P

D/P

E

Set

LE

D (

V o

r I)

Dat

a on

Por

t PD

/PE

(C

omm

on)

Dat

a on

Por

t PC

0X

XX

XX

X

ST

BY

01

01

Dat

a H

#1

00

01

#2

01

10

#3

00

10

#4

01

00

#5

00

00

#6

Dat

a H

Dat

a M

Dat

a M

Dat

a L

Dat

a L

To

DA

C 1

a-H

To

DA

C 2

a-H

To

DA

C 1

a-M

To

DA

C 2

a-M

To

DA

C 1

a-L

To

DA

C 2

a-L

11

1

Dat

a on

Por

t PD

/PE

0

01 V o

r I

01

V o

r I

0X

1

UP

D

Sen

d C

ontr

ol D

ata

via

Por

t PD

/PE

ST

AR

T

Com

man

d A

n E

xecu

te S

ubro

utin

e

Ret

urn

BC

D to

Bin

ary

AS

CII

to B

CD

Add

204

8

Che

ck p

aram

eter

0 to

204

7(+

/-)

Set

Fla

g to

"2"

Sen

d D

AC

Dat

avi

a P

ort P

D o

r P

E

Cas

e A

0, A

1 --

> v

ia P

ort P

D (

Sou

rce

A)

10

1D

ata

H#1 #2

11

0

#31

00

Dat

a M

Dat

a L

To

DA

C 1

b/2b

-H

To

DA

C 1

b/2b

-M

To

DA

C 1

b/2b

-L

11

1

Dat

a on

Por

t PD

/PE

00

X1

UP

D

Sen

d C

ontr

ol D

ata

via

Por

t PD

/PE

X

01

01

01

Cas

e A

2, A

3 --

> v

ia P

ort P

E (

Sou

rce

B)

"0"

for

A0,

A2

"1"

for

A1,

A3

Fig. F07(a)

- F9 -

Page 124: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

ST

AR

T

Com

man

d D

n E

xecu

te S

ubro

utin

e

Ret

urn

BC

D to

Bin

ary

AS

CII

to B

CD

Che

ck p

aram

eter

0 to

16

Set

Fla

g to

"2"

Sen

d R

elay

Dat

avi

a P

ort P

D/P

E1

11

Dat

a on

Por

t PD

/PE

0D

ata(

4bit)

ST

AR

T

Com

man

d M

Exe

cute

Sub

rout

ine

Ret

urn

BC

D to

Bin

ary

AS

CII

to B

CD

Set

Fla

g to

"2"

11

1

Dat

a on

Por

t PD

/PE

00

1S

end

Con

trol

Dat

avi

a P

ort P

C/P

D/P

EX

01

Dat

a on

Por

t PC

XX

XX

Ref

er to

Tab

le

01

01

01

01

Ref

er to

Tab

le

Fig. F07(b)

- F10 -

Page 125: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

ST

AR

T

Com

man

d P

Exe

cute

Sub

rout

ine

Ret

urn

BC

D to

Bin

ary

AS

CII

to B

CD

Che

ck p

aram

eter

0.1E

0 to

2.5

5E4

Set

Fla

g to

"2"

Sto

re P

erio

d D

ata

to C

TC

#1

Set

CT

C#2

by In

dex-

data

Set

bit-

2 of

Por

t Bby

Inde

x-da

ta

0 1 2 3 4

CT

C#2

Inde

xP

Bbi

t-2

÷10

0

÷1

÷10

0

÷1

÷1

÷1

÷10

÷10

10÷

100

ST

AR

T

Com

man

d O

Exe

cute

Sub

rout

ine

Ret

urn

BC

D to

Bin

ary

AS

CII

to B

CD

Che

ck p

aram

eter

4 to

255

Set

Fla

g to

"2"

ST

AR

T

Com

man

d S

Exe

cute

Sub

rout

ine

Ret

urn

BC

D to

Bin

ary

AS

CII

to B

CD

Che

ck p

aram

eter

0 to

1

Set

Fla

g to

"2"

Sto

re T

off D

ata

to C

TC

#0S

et b

it-6

of P

ort C

by S

TB

Y/E

XE

CS

TB

Y -

-- 0

EX

EC

---

1

Fig. F07(c)

- F11 -

Page 126: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G1 -

Appendix (G) EPROM Program List

_MAIN

_INITIAL

_Adjust

_Voltage

_Current

_Dummy

_Period

_Off_T

_Mode

_Execute

_LA0

_LA1

_LA2

_LA3

__GET_GPIB

_READ_CHK

_EXE_S

_EXE_M

_EXE_V

_EXE_C

_EXE_A0

_EXE_A1

_EXE_A2

_EXE_A3

_EXE_D

_EXE_P

_EXE_O

_ASC_BCD

_BCD_BIN

_HS_F

_HS_R

_Standby

EPROM Subroutines

Fig. G01

Page 127: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G2 -

;**************************************************

; FRDC SOURCE Control Program.; version 5 (FRDC_ET7); November 21, 1994

;**************************************************

;----------- Port Decision -------------------------

STACK EQU 0FFFFH

;------------ CTC decision --------------------------

CTC_0 EQU 10H ;Off Time CounterCTC_1 EQU 11H ;Base Period CounterCTC_2 EQU 12H ;Base Period scalar

;------------ PIO decision ---------------------------

PA_CTL EQU 54H ; A-Port Control ResistorPA_CTLD EQU 00H ; 0-7 : INPA_DAT EQU 50H ; GP-IB Data Port Address

PB_CTL EQU 55H ; B-Port Control ResistorPB_CTLD EQU 06H ; 0:IN / 1,2:OUTPB_DAT EQU 51H ; GP-IB Hand Shake / bit 0,1

; Freq. extend / bit 2PB_INI EQU 00000110B

PC_CTL EQU 56H ; C-Port Control ResistorPC_CTLD EQU 0FEH ; 0:IN / 1-7:OUTPC_DAT EQU 52H ; bit 0-1 :Synchronized Gate forPulse Train

; bit 2-3-7:LED Disp Data; 2 : A POL; 3 : B POL; 7 : V/I; bit 4-5 :1/1 Sequential Output; :1/0 A-on; :0/1 B-on; bit 6 :0 -> A-off,B-off; :1 -> Operate

PC_INI EQU 10110000B

PD_CTL EQU 34H ; D-Port Control ResistorPD_CTLD EQU 0FFH ; 0-7:OUTPD_DAT EQU 30H ; Source "A" Control Data

; bit 0-3:Address / bit 4-7:DataPD_INI EQU 0FH

; '1111' as an Address of V/I control resistor.

PE_CTL EQU 44H ; E-Port Control ResistorPE_CTLD EQU 0FFH ; 0-7:OUTPE_DAT EQU 40H ; Source "B" Control Data

; bit 0-3:Address / bit 4-7:DataPE_INI EQU 0FH

; '1111' as an Address of V/I control resistor.

;----------- Character Decision --------------

_A EQU 41H ;Adjust Level_C EQU 43H ;Current Mode_D EQU 44H ;Dummy Resistance_M EQU 4DH ;Mode of FR-DC_O EQU 4FH ;Off time_P EQU 50H ;Period_S EQU 53H ;Stand-by_V EQU 56H ;Voltage Mode_X EQU 58H ;Execute

E EQU 45H ;Index for numerical numberSpace EQU 20H ;Space always neglect.Slash EQU 2FH ;Slash always neglect.Colon EQU 3AH ;Separator ":"Ten EQU 2EH ;Period for numerical number "."Plus EQU 2BH ;Numerical sign "+"Minus EQU 2DH ;Numerical sign "-"

;---------- flag decision ----------------------

_Error EQU 0H ;Error in RAM ( +0FH) ---> '0'_Valid EQU 1H ;Valid in RAM ( +0FH) ---> '1'_Ready EQU 2H ;Ready in RAM ( +0FH) ---> '2'

;----------- Ram Working Area --------------

RAM_TMP EQU 8000H ;Temporary ResistorRAM_A0 EQU 8010H ;Adjust LevelRAM_A1 EQU 8020H ;Adjust LevelRAM_A2 EQU 8030H ;Adjust LevelRAM_A3 EQU 8040H ;Adjust LevelRAM_C EQU 8050H ;Current ModeRAM_D EQU 8060H ;Dummy ResistanceRAM_M EQU 8070H ;Mode of FR-DCRAM_O EQU 8080H ;Off timeRAM_P EQU 8090H ;PeriodRAM_S EQU 80A0H ;Stand-byRAM_V EQU 80B0H ;Voltage ModeRAM_X EQU 80C0H ;Execute

RAM_PA EQU 8100H ;RAM address for Port A dataRAM_PB EQU 8101H ;RAM address for Port B dataRAM_PC EQU 8102H ;RAM address for Port C dataRAM_PD EQU 8103H ;RAM address for Port D data

; Data in (RAM_PD) can be renewed; in subroutine "M" or "C/V"

RAM_PE EQU 8104H ;RAM address for Port E dataRAM_GP EQU 8105H ;Buffer for new data for GP-IB.

;****************************************************

ORG 0JP START

ORG 100HSTART: LD SP,STACK

CALL INITIALJP _MAIN

;****************** INITIAL **************************

INITIAL:NOP

LD A,0 ;Clear RAM(8000-8FFF)LD IX,8000HLD B,0FFH

_L_INIL: LD (IX),AINC IXDEC BJP NZ,_L_INIL

LD IX,8100HLD B,0FFH

_L_INIH: LD (IX),AINC IXDEC BJP NZ,_L_INIH

;CTC set as counterLD A,01000111B ;CTC -0-OUT (CTC_0),ALD A,01000111B ;CTC -1-OUT (CTC_1),ALD A,01000111B ;CTC -2-OUT (CTC_2),A

LD A,10 ;default: 10 µs OFF time.OUT (CTC_0),ALD A,100 ;default: 10*100 µs Base Period.OUT (CTC_1),ALD A,10 ;default: 10 times Scale.OUT (CTC_2),A

;Set Default Data in PIOLD A,PB_INIOUT (PB_DAT),ALD (RAM_PB),A

LD A,PC_INIOUT (PC_DAT),A

Page 128: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G3 -

LD (RAM_PC),A

LD A,PD_INIOUT (PD_DAT),ALD (RAM_PD),A

LD A,PE_INIOUT (PE_DAT),ALD (RAM_PE),A

;Set PIO IN/OUTLD A,PA_CTLDOUT (PA_CTL),A

LD A,PB_CTLDOUT (PB_CTL),A

LD A,PC_CTLDOUT (PC_CTL),A

LD A,PD_CTLDOUT (PD_CTL),A

LD A,PE_CTLDOUT (PE_CTL),A

LD IX,RAM_A0LD A,_ALD (IX+7),A

LD IX,RAM_A1LD A,_ALD (IX+7),A

LD IX,RAM_A2LD A,_ALD (IX+7),A

LD IX,RAM_A3LD A,_ALD (IX+7),A

LD IX,RAM_CLD A,_CLD (IX+7),A

LD IX,RAM_DLD A,_DLD (IX+7),A

LD IX,RAM_MLD A,_MLD (IX+7),A

LD IX,RAM_OLD A,_OLD (IX+7),A

LD IX,RAM_PLD A,_PLD (IX+7),A

LD IX,RAM_SLD A,_SLD (IX+7),A

LD IX,RAM_VLD A,_VLD (IX+7),A

CALL _DELAY_INICALL _DELAY_INI

LD A,10000110B ;Initialize DAC for A0,A2CALL _HS_FOUT (PD_DAT),AOUT (PE_DAT),ACALL _HS_R

LD A,10001110B ;Initialize DAC for A1,A3CALL _HS_FOUT (PD_DAT),A

OUT (PE_DAT),ACALL _HS_R

CALL _HS_F ;up-dateLD A,(RAM_PD)OUT (PD_DAT),A

LD A,(RAM_PE)OUT (PE_DAT),ACALL _HS_R

RET

;****************** DELAY_INI***********************

_DELAY_INI:NOPLD C,0F0H

_DELAY_II:NOPCALL WAITLD B,10000000B ;Display Voltage LED.OR BOUT (PC_DAT),ACALL WAITCALL WAIT

LD B,01111111B ;Display Current LED.AND BOUT (PC_DAT),A

DEC CJP NZ,_DELAY_IIRET

;****************** MAIN ***************************

_MAIN: NOP_LOOP: NOP

CALL _GET_GPIB

;Case VoltageLD A,(RAM_GP) ;Set new data in Acc.CP _VCALL Z,_Voltage

;Case CurrentLD A,(RAM_GP) ;Set new data in Acc.CP _CCALL Z,_Current

;Case DummyLD A,(RAM_GP) ;Set new data in Acc.CP _DCALL Z,_Dummy

;Case AdjustLD A,(RAM_GP) ;Set new data in Acc.CP _ACALL Z,_Adjust

;Case PeriodLD A,(RAM_GP) ;Set new data in Acc.CP _PCALL Z,_Period

;Case Off TimeLD A,(RAM_GP) ;Set new data in Acc.CP _OCALL Z,_Off_T

;Case ModeLD A,(RAM_GP) ;Set new data in Acc.CP _MCALL Z,_Mode

;Case Stand-byLD A,(RAM_GP) ;Set new data in Acc.CP _SCALL Z,_Standby

;Case ExecuteLD A,(RAM_GP) ;Set new data in Acc.CP _X

Page 129: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G4 -

CALL Z,_Execute

JP _LOOP

;**************************************************

_GET_GPIB: NOP ;Get Data from GP-IB Bus

;This routine returns the input data; through the RAM_GP buffer. The carry flag; is set for the data from "." to "9".

LD B,0 ;Clear B-resistor

D_READ: IN A,(PB_DAT)RRAJR NC,D_READ ;CHK LD-CLK of GP-IBIN A,(PA_DAT) ;Get GP-IB DATA

EX AF,AF'

LD A,(RAM_PB)LD B,11111101BAND BOUT (PB_DAT),A

LD A,(RAM_PB)LD B,00000010BOR BOUT (PB_DAT),AEX AF,AF'CP Plus ;Always neglect "Plus"JP Z,D_READCP Space ;Always neglect "Space"JP Z,D_READCP Slash ;Always neglect "Slash"JP Z,D_READ

;Carry Set, '.' to ':'.CP Ten ;Compare to ASC '.'.JP C,_L_R_E ;If Acc < '.' go out.CP 3BH ;Compare to ';'.CCF

_L_R_E: CCFLD (RAM_GP),A ;Store new data.RET

;**************************************************

_STR_ASC: NOP ;Store ASC-Data in RAM(HL)LD B,0 ;Clear B-resistor

_LASC: NOPCALL _GET_GPIBCP ColonJP Z,_LSCELD (HL),AINC LINC BJP _LASC

_LSCE: NOPLD (IX+0FH),BRET

;*****************************************************

_Voltage: NOP ;Data input for Voltage

;This sub-routine stores the voltage;data to the data input buffer "_RAM_V".

LD IX,RAM_V ;Set IX <- RAM_V

LD B,30H ;Buffer RAM Clear.LD (IX+0),BLD (IX+1),BLD (IX+2),BLD (IX+3),BLD (IX+4),B

LD (IX+5),BLD (IX+6),B

;--------------------------------------;New Data -> Acc & Flag(Carry).

CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_V_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_VCP Colon ;Escape to error routine.JP Z,_L_V_EELD (IX+1),A ;Store Data;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_V_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_VCP Colon ;Escape to END.JP Z,_L_V_E

LD B,(IX+1) ;Move (V+1) -> (V+0).LD (IX+0),BLD (IX+1),A ;Store Data;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_V_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_VCP Colon ;Escape to END.JP Z,_L_V_EJP _L_V_EE ;Escape to error routine.

_L_V: NOP;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_V_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_V_EECP Colon ;Escape to END.JP Z,_L_V_ELD (IX+2),A ;Store Data;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_V_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_V_EECP Colon ;Escape to END.JP Z,_L_V_ELD (IX+3),A ;Store Data;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_V_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_V_EECP Colon ;Escape to END.JP Z,_L_V_EJP _L_V_EE ;Escape to error routine.;--------------------------------------

_L_V_EE: NOP;Case error write "Error" in RAM(V+0FH).LD B,_ErrorLD (IX+0FH),BJP _L_V_F

_L_V_E: NOP;Case valid, write "Valid" in RAM(V+0FH).LD B,_ValidLD (IX+0FH),BJP _L_V_F

_L_V_F: NOPRET

;*****************************************************

Page 130: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G5 -

_Current: NOP ;Data input for Current

;This sub-routine stores the current; data to the data input buffer "_RAM_C".

LD IX,RAM_C ;Set IX <- RAM_C

LD B,30H ;Buffer RAM Clear.LD (IX+0),BLD (IX+1),BLD (IX+2),BLD (IX+3),BLD (IX+4),BLD (IX+5),BLD (IX+6),B

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_C_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_CCP Colon ;Escape to error routine.JP Z,_L_C_EELD (IX+1),A ;Store Data;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_C_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_CCP Colon ;Escape to END.JP Z,_L_C_ELD B,(IX+1) ;Move (V+1) -> (V+0).

LD (IX+0),BLD (IX+1),A ;Store Data;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_C_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_CCP Colon ;Escape to END.JP Z,_L_C_EJP _L_C_EE ;Escape to error routine.

_L_C: NOP;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_C_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_C_EECP Colon ;Escape to END.JP Z,_L_C_ELD (IX+2),A ;Store Data;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_C_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_C_EECP Colon ;Escape to END.JP Z,_L_C_ELD (IX+3),A ;Store Data;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_C_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_C_EECP Colon ;Escape to END.JP Z,_L_C_EJP _L_C_EE ;Escape to error routine.;--------------------------------------

_L_C_EE: NOP

;Case error, write "Error" in RAM(V+0FH).LD B,_ErrorLD (IX+0FH),BJP _L_C_F

_L_C_E: NOP ;Case valid, write "Valid" in RAM(V+0FH).

LD B,_ValidLD (IX+0FH),BJP _L_C_F

_L_C_F: NOPRET

;*****************************************************

_Dummy: NOP ;Case Dummy Resistor

;This sub-routine stores the dummy-resistance; data to the data input buffer "_RAM_D".

LD IX,RAM_D ;Set IX <- RAM_D

LD B,30H ;Buffer RAM Clear.LD (IX+0),BLD (IX+1),BLD (IX+2),BLD (IX+3),BLD (IX+4),BLD (IX+5),BLD (IX+6),B

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_D_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_DCP Colon ;Escape to error routine.JP Z,_L_D_EELD (IX+2),A ;Store Data;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_D_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_DCP Colon ;Escape to END.JP Z,_L_D_EJP _L_D_EE ;Escape to error routine.

_L_D: NOP;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_D_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_D_EECP Colon ;Escape to END.JP Z,_L_D_ELD (IX+3),A ;Store Data;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_D_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_D_EECP Colon ;Escape to END.JP Z,_L_D_EJP _L_D_EE ;Escape to error routine.;--------------------------------------

_L_D_EE: NOP;Case error, write "Error" in RAM(V+0FH).LD B,_ErrorLD (IX+0FH),BJP _L_D_F

_L_D_E: NOP;Case valid, write "Valid" in RAM(V+0FH).LD B,_Valid

Page 131: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G6 -

LD (IX+0FH),BJP _L_D_F

_L_D_F: NOPRET

;*****************************************************

_LA0:NOP ;Data input for A0

;This sub-routine stores the adjustment; data to the input buffer "_RAM_A0".

LD IX,RAM_A0 ;Set IX <- RAM_A

LD B,30H ;Buffer RAM Clear.LD (IX+0),BLD (IX+1),BLD (IX+2),BLD (IX+3),BLD (IX+4),BLD (IX+5),BLD (IX+6),B

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB Read & Check Input DataJP C,_L_A0_N

;Jump to _L_A0_N if '.',':' or '0-9'.CP Minus

;If '-', store sign '-' in RAM(A0+6).JP NZ,_L_A0_EELD (IX+6),ACALL _GET_GPIB ;Re-input DataJP NC,_L_A0_EE ;Escape to error routine.

_L_A0_N:CP Ten ;Jump to small data process.JP Z,_L_A0CP Colon ;Escape to error routine.JP Z,_L_A0_EELD (IX+0),A ;Store Data;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A0_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_A0CP Colon ;Escape to END.JP Z,_L_A0_EJP _L_A0_EE ;Escape to error routine.

_L_A0: NOP;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A0_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A0_EECP Colon ;Escape to END.JP Z,_L_A0_ELD (IX+1),A ;Store Data in RAM_(V+2) ;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A0_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A0_EECP Colon ;Escape to END.JP Z,_L_A0_ELD (IX+2),A ;Store Data in RAM_(V+3)

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A0_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A0_EECP Colon ;Escape to END.JP Z,_L_A0_ELD (IX+3),A ;Store Data in RAM_(V+3)

;--------------------------------------;New Data -> Acc & Flag(Carry).

CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A0_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A0_EECP Colon ;Escape to END.JP Z,_L_A0_EJP _L_A0_EE ;Escape to error routine.

;--------------------------------------_L_A0_EE: NOP

;Case error, write "Error" in RAM(V+0FH).LD B,_ErrorLD (IX+0FH),BJP _L_A0_F

_L_A0_E: NOP;Case valid, write "Valid" in RAM(V+0FH).LD B,_ValidLD (IX+0FH),BJP _L_A0_F

_L_A0_F: NOPRET

;*****************************************************

_LA1:NOP ;Data input for A1

;This sub-routine stores the adjustment; data to the input buffer "_RAM_A1".

LD IX,RAM_A1 ;Set IX <- RAM_A

LD B,30H ;Buffer RAM Clear.LD (IX+0),BLD (IX+1),BLD (IX+2),BLD (IX+3),BLD (IX+4),BLD (IX+5),BLD (IX+6),B

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input Data

JP C,_L_A1_N;Jump to _L_A0_N if '.',':' or '0-9'.

CP Minus;If '-', store sign '-' in RAM(A0+6).

JP NZ,_L_A1_EELD (IX+6),ACALL _GET_GPIB ;Re-input DataJP NC,_L_A1_EE ;Escape to error routine.

_L_A1_N:CP Ten ;Jump to small data process.JP Z,_L_A1CP Colon ;Escape to error routine.JP Z,_L_A1_EELD (IX+0),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A1_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_A1CP Colon ;Escape to END.JP Z,_L_A1_EJP _L_A1_EE ;Escape to error routine.

_L_A1: NOP;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A1_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A1_EECP Colon ;Escape to END.JP Z,_L_A1_ELD (IX+1),A ;Store Data

;--------------------------------------

Page 132: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G7 -

;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A1_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A1_EECP Colon ;Escape to END.JP Z,_L_A1_ELD (IX+2),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A1_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A1_EECP Colon ;Escape to END.JP Z,_L_A1_ELD (IX+3),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A1_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A1_EECP Colon ;Escape to END.JP Z,_L_A1_EJP _L_A1_EE ;Escape to error routine.

;--------------------------------------_L_A1_EE: NOP

;Case error, write "Error" in RAM(V+0FH).LD B,_ErrorLD (IX+0FH),BJP _L_A1_F

_L_A1_E: NOP;Case valid, write "Valid" in RAM(V+0FH).LD B,_ValidLD (IX+0FH),BJP _L_A1_F

_L_A1_F: NOPRET

;*****************************************************

_LA2:NOP ;Data input for A2;This sub-routine stores the adjustment; data to the input buffer "_RAM_A2".

LD IX,RAM_A2 ;Set IX <- RAM_A

LD B,30H ;Buffer RAM Clear.LD (IX+0),BLD (IX+1),BLD (IX+2),BLD (IX+3),BLD (IX+4),BLD (IX+5),BLD (IX+6),B

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input Data

JP C,_L_A2_N;Jump to _L_A0_N if '.',':' or '0-9'.

CP Minus;If '-', store sign '-' in RAM(A0+6).

JP NZ,_L_A2_EELD (IX+6),ACALL _GET_GPIB ;Re-input DataJP NC,_L_A2_EE ;Escape to error routine.

_L_A2_N:CP Ten ;Jump to small data process.JP Z,_L_A2CP Colon ;Escape to error routine.JP Z,_L_A2_EELD (IX+0),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A2_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_A2CP Colon ;Escape to END.JP Z,_L_A2_EJP _L_A2_EE ;Escape to error routine.

_L_A2: NOP;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A2_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A2_EECP Colon ;Escape to END.JP Z,_L_A2_ELD (IX+1),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A2_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A2_EECP Colon ;Escape to END.JP Z,_L_A2_ELD (IX+2),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A2_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A2_EECP Colon ;Escape to END.JP Z,_L_A2_ELD (IX+3),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A2_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A2_EECP Colon ;Escape to END.JP Z,_L_A2_EJP _L_A2_EE ;Escape to error routine.

;--------------------------------------_L_A2_EE: NOP

;Case error, write "Error" in RAM(V+0FH).LD B,_ErrorLD (IX+0FH),BJP _L_A2_F

_L_A2_E: NOP;Case valid, write "Valid" in RAM(V+0FH).LD B,_ValidLD (IX+0FH),BJP _L_A2_F

_L_A2_F: NOPRET

;*****************************************************

_LA3:NOP ;Data input for A3

;This sub-routine stores the adjustment; data to the input buffer "_RAM_A3".

LD IX,RAM_A3 ;Set IX <- RAM_A

LD B,30H ;Buffer RAM Clear.LD (IX+0),BLD (IX+1),BLD (IX+2),BLD (IX+3),BLD (IX+4),BLD (IX+5),BLD (IX+6),B

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input Data

Page 133: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G8 -

JP C,_L_A3_N;Jump to _L_A0_N if '.',':' or '0-9'.

CP Minus;If '-', store sign '-' in RAM(A0+6).

JP NZ,_L_A3_EELD (IX+6),ACALL _GET_GPIB ;Re-input DataJP NC,_L_A3_EE ;Escape to error routine.

_L_A3_N:CP Ten ;Jump to small data process.JP Z,_L_A3CP Colon ;Escape to error routine.JP Z,_L_A3_EELD (IX+0),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A3_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_A3CP Colon ;Escape to END.JP Z,_L_A3_EJP _L_A3_EE ;Escape to error routine.

_L_A3: NOP;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A3_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A3_EECP Colon ;Escape to END.JP Z,_L_A3_ELD (IX+1),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A3_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A3_EECP Colon ;Escape to END.JP Z,_L_A3_ELD (IX+2),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A3_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A3_EECP Colon ;Escape to END.JP Z,_L_A3_ELD (IX+3),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_A3_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_A3_EECP Colon ;Escape to END.JP Z,_L_A3_EJP _L_A3_EE ;Escape to error routine.

;--------------------------------------_L_A3_EE: NOP

;Case error, write "Error" in RAM(V+0FH).LD B,_ErrorLD (IX+0FH),BJP _L_A3_F

_L_A3_E: NOP;Case valid, write "Valid" in RAM(V+0FH).LD B,_ValidLD (IX+0FH),BJP _L_A3_F

_L_A3_F: NOPRET

;*****************************************************

_Adjust: NOP ;Branch for A0,A1,A2,A3

CALL _GET_GPIB

LD A,(RAM_GP) ;Set new data in AccA.CP 30H ;Compare Data against "0"CALL Z,_LA0

LD A,(RAM_GP) ;Set new data in AccA.CP 31H ;Compare Data against "1"CALL Z,_LA1

LD A,(RAM_GP) ;Set new data in AccA.CP 32H ;Compare Data against "2"CALL Z,_LA2

LD A,(RAM_GP) ;Set new data in AccA.CP 33H ;Compare Data against "3"CALL Z,_LA3

RET

;**************************************************_Period: NOP ;Data input for Period

;This sub-routine stores the period; data to the input buffer "_RAM_P".

LD IX,RAM_P ;Set IX <- RAM_P

LD B,30H ;Buffer RAM Clear.LD (IX+0),BLD (IX+1),BLD (IX+2),BLD (IX+3),BLD (IX+4),BLD (IX+5),BLD (IX+6),B

;--------------------------------------;Index Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_P_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_P_EECP Colon ;Escape to error routine.JP Z,_L_P_EELD (IX+5),A ;Store Data

;--------------------------------------;Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_P_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_PCP Colon ;Escape to END.JP Z,_L_P_EELD (IX+1),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_P_EE ;Escape to error routine.

CP Ten ;Jump to small data process.JP Z,_L_PCP Colon ;Escape to END.JP Z,_L_P_EJP _L_P_EE ;Escape to error routine.

_L_P: NOP;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_P_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_P_EECP Colon ;Escape to END.JP Z,_L_P_ELD (IX+2),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input Data

Page 134: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G9 -

JP NC,_L_P_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_P_EECP Colon ;Escape to END.JP Z,_L_P_ELD (IX+3),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_P_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_P_EECP Colon ;Escape to END.JP Z,_L_P_EJP _L_P_EE ;Escape to error routine.

;--------------------------------------_L_P_EE: NOP

;Case error, write "Error" in RAM(V+0FH).LD B,_ErrorLD (IX+0FH),BJP _L_P_F

_L_P_E: NOP;Case valid, write "Valid" in RAM(V+0FH).LD B,_ValidLD (IX+0FH),BJP _L_P_F

_L_P_F: NOPRET

;**************************************************

_Off_T: NOP ;Data-input for Off Time

;This sub-routine stores the off-time; data to the input buffer "_RAM_O".

LD IX,RAM_O ;Set IX <- RAM_OLD B,30H ;Buffer RAM Clear.LD (IX+0),BLD (IX+1),BLD (IX+2),BLD (IX+3),BLD (IX+4),BLD (IX+5),BLD (IX+6),B

;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_O_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_O_EECP Colon ;Escape to END.JP Z,_L_O_EELD (IX+3),A ;Store Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_O_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_O_EECP Colon ;Escape to END.JP Z,_L_O_ELD B,(IX+3) ;Move (O+3) ---> (O+2)LD (IX+2),BLD (IX+3),A ;Store New Data

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_O_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_O_EECP Colon ;Escape to END.JP Z,_L_O_ELD B,(IX+2) ;Move (O+2) ---> (O+1)LD (IX+1),BLD B,(IX+3) ;Move (O+3) ---> (O+2)LD (IX+2),BLD (IX+3),A ;Store Data in RAM_(O+3).

;--------------------------------------;New Data -> Acc & Flag(Carry).

CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_O_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_O_EECP Colon ;Escape to END.JP Z,_L_O_EJP _L_O_EE ;Escape to error routine.

;--------------------------------------_L_O_EE: NOP

;Case error, write "Error" in RAM(V+0FH).LD B,_ErrorLD (IX+0FH),BJP _L_O_F

_L_O_E: NOP;Case valid, write "Valid" in RAM(V+0FH).LD B,_ValidLD (IX+0FH),BJP _L_O_F

_L_O_F: NOPRET

;*****************************************************

_Mode: NOP ;Data-input for Mode

;This sub-routine stores the mode; data to the input buffer "_RAM_M".

LD IX,RAM_M ;Set IX <- RAM_M

LD B,30H ;Buffer RAM Clear.LD (IX+0),BLD (IX+1),BLD (IX+2),BLD (IX+3),BLD (IX+4),BLD (IX+5),BLD (IX+6),B

;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_M_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_M_EECP Colon ;Escape to END.JP Z,_L_M_EELD (IX+3),A ;Store Data in RAM_(M+3) ;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_M_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_M_EECP Colon ;Escape to END.JP Z,_L_M_EJP _L_M_EE ;Escape to error routine.

;--------------------------------------_L_M_EE: NOP

;Case error, write "Error" in RAM(V+0FH).LD B,_ErrorLD (IX+0FH),BJP _L_M_F

_L_M_E: NOP;Case valid, write "Valid" in RAM(V+0FH).LD B,_ValidLD (IX+0FH),BJP _L_M_F

_L_M_F: NOPRET

;*****************************************************

_Standby: NOP ;Data-input for Stand-by

;This sub-routine stores the command; data to the input buffer "_RAM_S".

Page 135: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G10 -

LD IX,RAM_S ;Set IX <- RAM_S

LD B,30H ;Buffer RAM Clear.LD (IX+0),BLD (IX+1),BLD (IX+2),BLD (IX+3),BLD (IX+4),BLD (IX+5),BLD (IX+6),B

;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_S_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_S_EECP Colon ;Escape to END.JP Z,_L_S_EELD (IX+3),A ;Store Data in RAM_(S+3)

;--------------------------------------;New Data -> Acc & Flag(Carry).CALL _GET_GPIB ;Read & Check Input DataJP NC,_L_S_EE ;Escape to error routine.CP Ten ;Escape to error routine.JP Z,_L_S_EECP Colon ;Escape to END.JP Z,_L_S_EJP _L_S_EE ;Escape to error routine.

;--------------------------------------_L_S_EE: NOP

;Case error, write "Error" in RAM(V+0FH).LD B,_ErrorLD (IX+0FH),BJP _L_S_F

_L_S_E: NOP;Case valid, write "Valid" in RAM(V+0FH).LD B,_ValidLD (IX+0FH),BJP _L_S_F

_L_S_F: NOPRET

;*****************************************************

_ASC_BCD: NOP ;Convert Asc to BCD.LD B,4

_L_ASC1: LD A,(IX)SUB 30HLD (IX+8),AINC IXDJNZ _L_ASC1LD A,0FFHLD (IX+8),ARET

;*****************************************************

_BCD_BIN: NOP ;Convert BCD to BIN.;(IX) <--- BIN data in (IX+D)-(IX+E);(IY) <--- BCD data in (IY+8)-(IY+B)

LD A,0 ;Clear result data area.LD (IX+0DH),ALD (IX+0EH),ALD B,4

LD HL,0 ;_L_B_B: ADD HL,HL

LD E,LLD D,HADD HL,HLADD HL,HLADD HL,DE

LD E,(IY+8) ;BCD data (IY+8) ---> ELD D,0 ; data 0 ---> DADD HL,DE ;(BCD)+(HL)INC IYDJNZ _L_B_B

LD (IX+0DH),HLD (IX+0EH),L

RET

;*****************************************************

_OFFSET_BIN: NOP ;Change Data StyleLD A,(IX+6)CP MinusJR Z,_Minus

;case PlusLD A,(IX+0DH)

LD B,00001000BOR BLD (IX+0DH),AJP _OFFSET_END

_Minus: NOP ;Case Data is MinusLD H,00001000BLD L,0LD B,(IX+0DH)LD C,(IX+0EH)OR A ;Reset Carry FlagSBC HL,BCLD (IX+0DH),HLD (IX+0EH),L

_OFFSET_END: RET

;*****************************************************

_EXE_A0: NOPLD IX,RAM_A0 ;Set IX <- RAM_A0CALL _ASC_BCD ;Convert Asc to binary.

LD IX,RAM_A0 ;Set IX <- RAM_A0LD IY,RAM_A0 ;Set IY <- RAM_A0CALL _BCD_BIN ;DATA is in (IX)CALL _OFFSET_BIN ;Change Data Style

LD IX,RAM_A0 ;Set Flag ---> '_Ready'LD A,_ReadyLD (RAM_A0+0FH),A

;--------------------------------------LD IX,RAM_A0 ;Set data(H) in AccLD A,(IX+0DH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00000110BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(H) in Port D.CALL _HS_R

;--------------------------------------LD IX,RAM_A0 ;Set data(M) in AccLD A,(IX+0EH)LD B,0F0HAND BLD B,00000101BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(M) in Port D.CALL _HS_R

;--------------------------------------

LD IX,RAM_A0 ;Set data(L) in AccLD A,(IX+0EH)LD B,0FHAND BSLA A

Page 136: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G11 -

SLA ASLA ASLA ALD B,00000100BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(L) in Port D.CALL _HS_R

;Up Date DAC.CALL _HS_F ;Hand shake front.LD A,(RAM_PD)OUT (PD_DAT),ACALL _HS_R ;Hand shake rear.

RET

;*****************************************************

_EXE_A1: NOPLD IX,RAM_A1 ;Set IX <- RAM_A1CALL _ASC_BCD ;Convert Asc to binary.

LD IX,RAM_A1 ;Set IX <- RAM_A1LD IY,RAM_A1 ;Set IY <- RAM_A1CALL _BCD_BIN ;DATA is in (IX)CALL _OFFSET_BIN ;Change Data Style

LD IX,RAM_A1 ;Set Flag ---> '_Ready'LD A,_ReadyLD (RAM_A1+0FH),A

;--------------------------------------LD IX,RAM_A1 ;Set data(H) in AccLD A,(IX+0DH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00001110BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(H) in Port D.CALL _HS_R

;--------------------------------------LD IX,RAM_A1 ;Set data(M) in AccLD A,(IX+0EH)LD B,0F0HAND BLD B,00001101BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(M) in Port D.CALL _HS_R

;--------------------------------------

LD IX,RAM_A1 ;Set data(L) in AccLD A,(IX+0EH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00001100BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(L) in Port D.CALL _HS_R

;Up Date DAC.CALL _HS_F ;Hand shake front.

LD A,(RAM_PD)OUT (PD_DAT),ACALL _HS_R ;Hand shake rear.

RET

;************************************************

_EXE_A2: NOPLD IX,RAM_A2 ;Set IX <- RAM_A2CALL _ASC_BCD ;Convert Asc to binary.

LD IX,RAM_A2 ;Set IX <- RAM_A2LD IY,RAM_A2 ;Set IY <- RAM_A2CALL _BCD_BIN ;DATA is in (IX)CALL _OFFSET_BIN ;Change Data Style

LD IX,RAM_A2 ;Set Flag ---> '_Ready'LD A,_ReadyLD (RAM_A2+0FH),A

;--------------------------------------LD IX,RAM_A2 ;Set data(H) in AccLD A,(IX+0DH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00000110BOR B

CALL _HS_FOUT (PE_DAT),A ;Output data(H) in Port D.CALL _HS_R

;--------------------------------------LD IX,RAM_A2 ;Set data(M) in AccLD A,(IX+0EH)LD B,0F0HAND BLD B,00000101BOR B

CALL _HS_FOUT (PE_DAT),A ;Output data(M) in Port D.CALL _HS_R

;--------------------------------------

LD IX,RAM_A2 ;Set data(L) in AccLD A,(IX+0EH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00000100BOR B

CALL _HS_FOUT (PE_DAT),A ;Output data(L) in Port D.CALL _HS_R

;Up Date DAC.CALL _HS_F ;Hand shake front.LD A,(RAM_PE)OUT (PE_DAT),ACALL _HS_R ;Hand shake rear.

RET

;*****************************************************

_EXE_A3: NOPLD IX,RAM_A3 ;Set IX <- RAM_A3CALL _ASC_BCD ;Convert Asc to binary.

Page 137: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G12 -

LD IX,RAM_A3 ;Set IX <- RAM_A3LD IY,RAM_A3 ;Set IY <- RAM_A3CALL _BCD_BIN ;DATA is in (IX)CALL _OFFSET_BIN ;Change Data Style

LD IX,RAM_A3 ;Set Flag ---> '_Ready'LD A,_ReadyLD (RAM_A3+0FH),A

;--------------------------------------LD IX,RAM_A3 ;Set data(H) in AccLD A,(IX+0DH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00001110BOR B

CALL _HS_FOUT (PE_DAT),A ;Output data(H) in Port D.CALL _HS_R

;--------------------------------------LD IX,RAM_A3 ;Set data(M) in AccLD A,(IX+0EH)LD B,0F0HAND BLD B,00001101BOR B

CALL _HS_FOUT (PE_DAT),A ;Output data(M) in Port D.CALL _HS_R

;--------------------------------------

LD IX,RAM_A3 ;Set data(L) in AccLD A,(IX+0EH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00001100BOR B

CALL _HS_FOUT (PE_DAT),A ;Output data(L) in Port D.CALL _HS_R

;Up Date DAC.CALL _HS_F ;Hand shake front.LD A,(RAM_PE)OUT (PE_DAT),ACALL _HS_R ;Hand shake rear.

RET

;*****************************************************

_EXE_C: NOPLD IX,RAM_C ;Set IX <- RAM_CCALL _ASC_BCD ;Convert Asc to binary.

LD IX,RAM_C ;Set IX <- RAM_CLD IY,RAM_C ;Set IY <- RAM_CCALL _BCD_BIN ;DATA is in (IX)

;Multiply by '4' for Current level.SLA (IX+0EH)

;Shift one bit to the left with zero.RL (IX+0DH) ; - with CY.SLA (IX+0EH)RL (IX+0DH)

LD IX,RAM_CLD A,_Ready ;Set Flag --> '_Ready'

LD (IX+0FH),A

;--------------------------------------;Perform "Standby/Operate"->StandbyLD IX,RAM_SLD A,_Ready ;Set Flag --> '_Ready'LD (IX+0FH),ALD B,10111111B ;Prepare Stndby DataLD A,(RAM_PC)AND BOUT (PC_DAT),A ;Set Standby ModeLD (RAM_PC),A ;Replace to new data.

;--------------------------------------LD B,01111111B ;Display Current LED.AND BOUT (PC_DAT),ALD (RAM_PC),A ;Replace to new data.

;--------------------------------------LD IX,RAM_C ;Set data(H) of DAC(1)LD A,(IX+0DH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00000010BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(H) in Port D.OUT (PE_DAT),A ;Output data(H) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_C ;Set data(H) of DAC(2)LD A,(IX+0DH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00001010BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(H) in Port D.OUT (PE_DAT),A ;Output data(H) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_C ;Set data(M) of DAC(1)LD A,(IX+0EH)LD B,0F0HAND BLD B,00000001BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(M) in Port D.OUT (PE_DAT),A ;Output data(M) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_C ;Set data(M) of DAC(2)LD A,(IX+0EH)LD B,0F0HAND BLD B,00001001BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(M) in Port D.OUT (PE_DAT),A ;Output data(M) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_C ;Set data(L) of DAC(1)LD A,(IX+0EH)LD B,0FHAND BSLA ASLA ASLA A

Page 138: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G13 -

SLA ALD B,00000000BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(L) in Port D.OUT (PE_DAT),A ;Output data(L) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_C ;Set data(L) of DAC(2)LD A,(IX+0EH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00001000BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(L) in Port D.OUT (PE_DAT),A ;Output data(L) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_PD ;Set Current Source Mode.LD A,(IX)LD B,01111111BAND BLD (RAM_PD),A

CALL _HS_FOUT (PD_DAT),A ;Output data in Port D.CALL _HS_R

;--------------------------------------LD IX,RAM_PELD A,(IX)LD B,01111111BAND BLD (RAM_PE),A

CALL _HS_FOUT (PE_DAT),A ;Output data in Port E.CALL _HS_R

RET

;*****************************************************

_EXE_D: NOP ;Adjust Dummy Resistor.LD IX,RAM_D ;Set Flag ---> '2'LD A,2LD (RAM_D+0FH),A

LD IX,RAM_D ;Set IX <- RAM_DCALL _ASC_BCD ;Convert Asc to binary.

LD IX,RAM_D ;Set IX <- RAM_DLD IY,RAM_D ;Set IY <- RAM_DCALL _BCD_BIN ;DATA is in (IX)

LD IX,RAM_DLD A,(IX+0EH) ;Make PD_DAT & PE_DATSLA A ; as "xxxx 0111"SLA ASLA ASLA ALD B,00000111BOR BLD IX,RAM_TMPLD (IX),A

CALL _HS_FOUT (PD_DAT),AOUT (PE_DAT),ACALL _HS_R

RET

;*****************************************************

_EXE_M:NOPLD IX,RAM_M ;Set IX <- RAM_MCALL _ASC_BCD ;Convert Asc to binary.

LD IX,RAM_M ;Set IX <- RAM_MLD IY,RAM_M ;Set IY <- RAM_MCALL _BCD_BIN ;DATA is in (IX)

LD IX,RAM_PC ;(IX) points RAM_PCLD B,11000011B ;Set bit pattern in B.LD A,(IX)AND BLD (IX),A

;Data (RAM_C) is (XX0000XX)

LD IY,RAM_PD ;(IY) points RAM_PDLD B,10000000B ;Set bit pattern in B.LD A,(IY)AND BLD (IY),A

;Data (RAM_D) is (X0000000)

LD IY,RAM_PE ;(IY) points RAM_PELD B,10000000B ;Set bit pattern in B.LD A,(IY)AND BLD (IY),A

;Data (RAM_E) is (X0000000)

LD IX,RAM_M ;(IX) points RAM_MLD A,(IX+0EH) ;Load Mode Data in Acc.

CP 0 ;Case Mode AC(1)JP Z,_L_EM0CP 1 ;Case Mode DC(+)JP Z,_L_EM1CP 2 ;Case Mode DC(-)JP Z,_L_EM2CP 3 ;Case Mode AC(2)JP Z,_L_EM3

CP 4 ;Case Channel A(+)JP Z,_L_EM4CP 5 ;Case Channel A(-)JP Z,_L_EM5CP 6 ;Case Channel B(+)JP Z,_L_EM6CP 7 ;Case Channel B(-)JP Z,_L_EM7

;--------------------------------------_L_EM0: NOP ;Case Mode AC(1)

LD IX,RAM_PC ;(IX) points RAM_PCLD A,00110100BOR (IX)LD (IX),A

LD IX,RAM_PD ;(IX) points RAM_PDLD A,00011111BOR (IX)LD (IX),A

LD IX,RAM_PE ;(IX) points RAM_PELD A,00001111BOR (IX)LD (IX),A

JP _L_EME ;--------------------------------------

_L_EM1: NOP ;Case Mode DC(+)LD IX,RAM_PC ;(IX) points RAM_PCLD A,00111100BOR (IX)LD (IX),A

LD IX,RAM_PD ;(IX) points RAM_PDLD A,00011111BOR (IX)LD (IX),A

Page 139: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G14 -

LD IX,RAM_PE ;(IX) points RAM_PELD A,00011111BOR (IX)LD (IX),ANOPJP _L_EME

_L_EM2: NOP ;Case Mode DC(-)LD IX,RAM_PC ;(IX) points RAM_PCLD A,00110000BOR (IX)LD (IX),A

LD IX,RAM_PD ;(IX) points RAM_PDLD A,00001111BOR (IX)LD (IX),A

LD IX,RAM_PE ;(IX) points RAM_PELD A,00001111BOR (IX)LD (IX),ANOPNOPJP _L_EME

_L_EM3: NOP ;Case Mode AC(2)LD IX,RAM_PC ;(IX) points RAM_PCLD A,00111000BOR (IX)LD (IX),A

LD IX,RAM_PD ;(IX) points RAM_PDLD A,00001111BOR (IX)LD (IX),A

LD IX,RAM_PE ;(IX) points RAM_PELD A,00011111BOR (IX)LD (IX),ANOPJP _L_EME

_L_EM4: NOP ;Case Channel A(+)LD IX,RAM_PC ;(IX) points RAM_PCLD A,00100100BOR (IX)LD (IX),A

LD IX,RAM_PD ;(IX) points RAM_PDLD A,00011111BOR (IX)LD (IX),A

LD IX,RAM_PE ;(IX) points RAM_PELD A,00001111BOR (IX)LD (IX),ANOPJP _L_EME

_L_EM5: NOP ;Case Channel A(-)LD IX,RAM_PC ;(IX) points RAM_PCLD A,00100000BOR (IX)LD (IX),A

LD IX,RAM_PD ;(IX) points RAM_PDLD A,00001111BOR (IX)LD (IX),A

LD IX,RAM_PE ;(IX) points RAM_PELD A,00001111BOR (IX)LD (IX),ANOPJP _L_EME

_L_EM6: NOP ;Case Channel B(+)

LD IX,RAM_PC ;(IX) points RAM_PCLD A,00011000BOR (IX)LD (IX),A

LD IX,RAM_PD ;(IX) points RAM_PDLD A,00001111BOR (IX)LD (IX),A

LD IX,RAM_PE ;(IX) points RAM_PELD A,00011111BOR (IX)LD (IX),ANOPJP _L_EME

_L_EM7: NOP ;Case Channel B(-)LD IX,RAM_PC ;(IX) points RAM_PCLD A,00010000BOR (IX)LD (IX),A

LD IX,RAM_PD ;(IX) points RAM_PDLD A,00001111BOR (IX)LD (IX),A

LD IX,RAM_PE ;(IX) points RAM_PELD A,00001111BOR (IX)LD (IX),ANOPJP _L_EME

;--------------------------------------

_L_EME: NOPLD IX,RAM_M ;Set Flag ---> '2'LD A,2LD (RAM_M+0FH),A

CALL _HS_F ;Hand shake front.

LD A,(RAM_PC)OUT (PC_DAT),A

LD A,(RAM_PD)OUT (PD_DAT),A

LD A,(RAM_PE)OUT (PE_DAT),A

CALL _HS_R ;Hand shake rear.

RET

;*****************************************************

_EXE_O: NOP ;Set Off TimeLD A,01000111B ;CTC -0-OUT (CTC_0),A

LD IX,RAM_O ;Set IX <- RAM_OLD A,2 ;Set Flag --> '2'LD (IX+0FH),ACALL _ASC_BCD ;Convert Asc to binary.

LD IX,RAM_O ;Set IX <- RAM_OLD IY,RAM_O ;Set IY <- RAM_OCALL _BCD_BIN ;DATA is in (IX)

LD IX,RAM_O ;Set IX <- RAM_OLD A,(IX+0EH)

;(RAM_O+0EH) -> Off Time Data in Binary.OUT (CTC_0),ARET

;*****************************************************

_EXE_P: NOPLD IX,RAM_P ;Set IX <- RAM_P

Page 140: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G15 -

LD A,2 ;Set Flag --> '2'LD (IX+0FH),ACALL _ASC_BCD ;Convert Asc to binary.

LD IX,RAM_P ;Set IX <- RAM_PLD IY,RAM_P ;Set IY <- RAM_PCALL _BCD_BIN ;DATA is in (IX)

LD A,01000111B ;CTC -1-OUT (CTC_1),ALD IX,RAM_P ;Set Period dataLD A,(IX+0EH)OUT (CTC_1),A

LD IX,RAM_P ;Set IX <- RAM_PLD A,(IX+5)

;(RAM_P+5) -> Index data in ASCII.LD B,30HSUB B

;Acc A <-- Index data in BIN.

CP 0JP Z,_L_EP0

CP 1JP Z,_L_EP1

CP 2JP Z,_L_EP2

CP 3JP Z,_L_EP3

CP 4JP Z,_L_EP4

_L_EP0: NOP ;Case Index=0LD A,(RAM_PB) ;Set Extend -> 0LD B,11111011BAND BOUT (PB_DAT),A ;Set Extend -> 0LD (RAM_PB),A

;Set revised data in (RAM_PB)LD A,01000111B ;CTC -2-OUT (CTC_2),ALD A,1 ;Set CTC_2 -> *1OUT (CTC_2),AJP _L_EPE

_L_EP1: NOP ;Case Index=1LD A,(RAM_PB) ;Set Extend -> 0LD B,11111011BAND BOUT (PB_DAT),A ;Set Extend -> 0LD (RAM_PB),A

;Set revised data in (RAM_PB)LD A,01000111B ;CTC -2-OUT (CTC_2),ALD A,10 ;Set CTC_2 -> *10OUT (CTC_2),AJP _L_EPE

_L_EP2: NOP ;Case Index=2LD A,(RAM_PB) ;Set Extend -> 0LD B,11111011BAND BOUT (PB_DAT),A ;Set Extend -> 0LD (RAM_PB),A

;Set revised data in (RAM_PB)LD A,01000111B ;CTC -2-OUT (CTC_2),ALD A,100 ;Set CTC_2 -> *100OUT (CTC_2),AJP _L_EPE

_L_EP3: NOP ;Case Index=3LD A,(RAM_PB) ;Set Extend -> 1LD B,00000100BOR BOUT (PB_DAT),A ;Set Extend -> 1LD (RAM_PB),A

;Set revised data in (RAM_PB)LD A,01000111B ;CTC -2-OUT (CTC_2),ALD A,10 ;Set CTC_2 -> *10OUT (CTC_2),AJP _L_EPE

_L_EP4: NOP ;Case Index=4LD A,(RAM_PB) ;Set Extend -> 1LD B,00000100BOR BOUT (PB_DAT),A ;Set Extend -> 1LD (RAM_PB),A

;Set revised data in (RAM_PB)LD A,01000111B ;CTC -2-OUT (CTC_2),ALD A,100 ;Set CTC_2 -> *100OUT (CTC_2),AJP _L_EPE

_L_EPE: NOPRET

;*****************************************************_EXE_S:NOP

LD IX,RAM_S ;Set IX <- RAM_SCALL _ASC_BCD ;Convert Asc to binary.

LD IX,RAM_S ;Set IX <- RAM_SLD IY,RAM_S ;Set IY <- RAM_SCALL _BCD_BIN ;DATA is in (IX)

LD IX,RAM_SLD A,(IX+0EH)CP 1 ;(RAM_S+0EH) -> 1:Operate

; 0:StandbyJP Z,_L_OPEJP NZ,_L_STB

_L_OPE: NOPLD A,2 ;Set Flag --> '2'LD (IX+0FH),ALD B,01000000B ;Prepare OPEARATE DataLD A,(RAM_PC)OR BOUT (PC_DAT),A ;Set Operate ModeLD (RAM_PC),A ;Replace to new data.JP _L_SE

_L_STB: NOPLD A,2 ;Set Flag --> '2'LD (IX+0FH),ALD B,10111111B ;Prepare Stndby DataLD A,(RAM_PC)AND BOUT (PC_DAT),A ;Set Standby ModeLD (RAM_PC),A ;Replace to new data.JP _L_SE

_L_SERET

;*****************************************************

_EXE_V:NOPLD IX,RAM_V ;Set IX <- RAM_VCALL _ASC_BCD ;Convert Asc to binary.

LD IX,RAM_V ;Set IX <- RAM_VLD IY,RAM_V ;Set IY <- RAM_VCALL _BCD_BIN ;DATA is in (IX)

;Multiply by '4' for Voltage level.SLA (IX+0EH)

;Shift one bit to the left with zero.RL (IX+0DH) ; - with CY.SLA (IX+0EH)RL (IX+0DH)

LD IX,RAM_VLD A,_Ready ;Set Flag --> '_Ready'

Page 141: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G16 -

LD (IX+0FH),A

;--------------------------------------;Perform "Standby/Operate"->StandbyLD IX,RAM_SLD A,_Ready ;Set Flag --> '_Ready'LD (IX+0FH),ALD B,10111111B ;Prepare Stndby DataLD A,(RAM_PC)AND BOUT (PC_DAT),A ;Set Standby ModeLD (RAM_PC),A ;Replace to new data.

;--------------------------------------LD B,10000000B ;Display Voltage LED.OR BOUT (PC_DAT),ALD (RAM_PC),A ;Replace to new data.

;--------------------------------------LD IX,RAM_V ;Set data(H) of DAC(1)LD A,(IX+0DH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00000010BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(H) in Port D.OUT (PE_DAT),A ;Output data(H) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_V ;Set data(H) of DAC(2)LD A,(IX+0DH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00001010BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(H) in Port D.OUT (PE_DAT),A ;Output data(H) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_V ;Set data(M) of DAC(1)LD A,(IX+0EH)LD B,0F0HAND BLD B,00000001BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(M) in Port D.OUT (PE_DAT),A ;Output data(M) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_V ;Set data(M) of DAC(2)LD A,(IX+0EH)LD B,0F0HAND BLD B,00001001BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(M) in Port D.OUT (PE_DAT),A ;Output data(M) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_V ;Set data(L) of DAC(1)LD A,(IX+0EH)LD B,0FHAND BSLA ASLA ASLA A

SLA ALD B,00000000BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(L) in Port D.OUT (PE_DAT),A ;Output data(L) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_V ;Set data(L) of DAC(2)LD A,(IX+0EH)LD B,0FHAND BSLA ASLA ASLA ASLA ALD B,00001000BOR B

CALL _HS_FOUT (PD_DAT),A ;Output data(L) in Port D.OUT (PE_DAT),A ;Output data(L) in Port E.CALL _HS_R

;--------------------------------------LD IX,RAM_PD ;Set(A) Voltage Mode.LD A,(IX)LD B,10000000BOR BLD (RAM_PD),A

CALL _HS_FOUT (PD_DAT),A ;Output data in Port D.CALL _HS_R

;--------------------------------------LD IX,RAM_PE ;Set(B) Voltage Mode.LD A,(IX)LD B,10000000BOR BLD (RAM_PE),A

CALL _HS_FOUT (PE_DAT),A ;Output data in Port E.CALL _HS_R

RET

;*****************************************************

_Execute: NOP ;Case Execute ;--------------------------------------

LD A,1 ;'1' as execute flagLD IX,RAM_S ;Check "Standby-Mode".CP (IX+0FH)CALL Z,_EXE_S

;--------------------------------------LD A,1 ;'1' as execute flagLD IX,RAM_M ;Check "Output-Mode".CP (IX+0FH)CALL Z,_EXE_M

;--------------------------------------LD A,1 ;'1' as execute flagLD IX,RAM_V ;Check "Voltage-Mode".CP (IX+0FH)CALL Z,_EXE_V

;--------------------------------------LD A,1 ;'1' as execute flagLD IX,RAM_C ;Check "Current-Mode".CP (IX+0FH)CALL Z,_EXE_C

;--------------------------------------LD A,1 ;'1' as execute flagLD IX,RAM_A0 ;Check "Adjust(0)-Mode".CP (IX+0FH)CALL Z,_EXE_A0

;--------------------------------------LD A,1 ;'1' as execute flagLD IX,RAM_A1 ;Check "Adjust(1)-Mode".CP (IX+0FH)CALL Z,_EXE_A1

Page 142: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- G17 -

;--------------------------------------LD A,1 ;'1' as execute flagLD IX,RAM_A2 ;Check "Adjust(2)-Mode".CP (IX+0FH)CALL Z,_EXE_A2

;--------------------------------------LD A,1 ;'1' as execute flagLD IX,RAM_A3 ;Check "Adjust(3)-Mode".CP (IX+0FH)CALL Z,_EXE_A3

;--------------------------------------LD A,1 ;'1' as execute flagLD IX,RAM_D ;Check "Dummy-Mode".CP (IX+0FH)CALL Z,_EXE_D

;--------------------------------------LD A,1 ;'1' as execute flagLD IX,RAM_P ;Check "Period-Mode".CP (IX+0FH)CALL Z,_EXE_P

;--------------------------------------LD A,1 ;'1' as execute flagLD IX,RAM_O ;Check "Off Time-Mode".CP (IX+0FH)CALL Z,_EXE_O

RET

;*****************************************************

WAIT: NOPLD A,070H

_LWT1: DEC AJP NZ, _LWT1LD A,070H

_LWT2: DEC AJP NZ, _LWT2LD A,070H

_LWT3: DEC AJP NZ, _LWT3LD A,053H

_LWT4: DEC AJP NZ, _LWT4

RET

;*****************************************************

_HS_F: NOP ;Hand-Shake Front.;Acc data is conserved.;Acc B data is destroyed.

EX AF,AF' ;Acc data is hold._L_HS: IN A,(PC_DAT)

;If 'RTRV/Ready to Receive'=0LD B,00000001B ; then output new dataAND B

; via (RAM_C), (RAM_D) and (RAM_E).JP NZ,_L_HSEX AF,AF'RET

;*****************************************************

_HS_R: NOP ;Hand-Shake Rear.;

LD A,(RAM_PC);Output data Ready (PC) 0 -> 1

LD B,00000010BOR BOUT (PC_DAT),A

LD B,11111101B;Output data Ready (PC) 1 -> 0

AND BOUT (PC_DAT),A

RET

;*****************************************************

END

Page 143: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H1 -

Appendix (H) Measurement Program List

In the case of Windows 95 system, the program was developped using Visual Basic. The

program consists of the following modules.

Form Modules

FRMADJ.FRM frmAdjust

FRMDMY.FRM frmDummySet

FRMGETPR.FRM frmLoadProc

FRMGETSP.FRM frmLoadTCspec

FRMGPIB.FRM frmGPIB

FRMINIT.FRM frmInit

FRMLEVEL.FRM frmLevelSet

FRMLIST.FRM frmPROClist

FRMMAIN.FRM frmMain

FRMOPTN.FRM frmOption

FRMPARA.FRM frmParameter

FRMPROC.FRM frmProcedure

FRMSAVE.FRM frmSaveData

FRMTCSPE.FRM frmTCspec

FRMWAVE1.FRM frmWaveSet1

FRMWAVE2.FRM frmWaveSet2

Code Modules

DIROPER.BAS

HPIB.BAS

MAIN01.BAS

MEASUREM.BAS

TOOLS1.BAS

The form modules control the user-interfaces using the windows. The code modules

control the measurement sequence and the I/O with the instruments. The measurement

sequence are controled by the code module "MEASURM.BAS". The complete list of the

program in the modules "MAIN01.BAS" and "MEASURM.BAS" are as follows:

Page 144: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H2 -

'************************************************************

'Control Program for KST003 FRDC Source

'24/Jul./1996 ver.(7.2.1) by H.Sasaki (ETL,Japan)

'************************************************************

'Ver.(1.0) 03/Mar/'93 Original Version for Microsoft Basic(MS-DOS)

'Ver.(2.0) 17/Mar/'93 Transfered to HP Basic System

'Ver.(3.0) 01/May/'93 Modified for New P.G. circuit.

'Ver.(4.0) 10/Feb/'94 Modified for KST003 New FRDC Source(HP Basic).

'Ver.(5.0) 14/Apr/'94 Transfered to MACintosh Quick Basic.

'Ver.(6.0) 01/Oct/'94 Transfered to MACintosh Future Basic(1.02).

'Ver.(7.0) 10/Oct/'95 Transfered to Visual Basic for Windows(2.0).

'Ver.(7.1) 28/Feb/'96 Measurement Option for Reversal Error.

'Ver.(7.2) 07/Jul/'96 Goto-Stanby-After-Measurement Option.

Option Explicit

'GLOBAL Parameters ------------------------------------

Global Wscrn%, Hscrn% 'window width,height

Global PTRstatus$, FRDCadr&, FRDCoutput$, DVMadr& 'Instrument status parameter

Global ISC&, TimeVal#, maxLen% 'Instrument I/O identifier

Global TCname$, TCtype$, TCmax$, TCout$, TCres$, TCdesc$ 'TC specification parameter

Global Nproc$ 'measurement procedure

Global ProcLevel$(256), ProcPeriod$(256), ProcMode$(256) 'measurement procedure

Global MXdrift%, TrigDelay!, LGwait% 'measurement parameters

Global Nread%, Nrep%, Comment$, SeqNS$ 'measurement parameters

Global DataFile$, SpecFile$, ProcFile$ 'file specifications

Global volSpec%, volProc%, volData% 'file specifications

Global CVmode$, CVlevel!, Sadjust!(5) 'KST003 control parameter

Global Sequence%, SWperiod!, OFFtime%, Rdummy! 'KST003 control parameter

Global Reading#(301), average#, stdev# 'data from K182DVM

Global TCindex$ 'result of 'index' measurement

Global iproc$, ProcList$(256), MesHistory$(256) 'buffer

Global FlagGS$ 'status(OK/Cancel/STOP/Redo…)

Global BufferWD1$(256), DataPointer1% 'output buffer for window1

Global BufferWD2$(256), DataPointer2% 'output buffer for window2

Global BufferWD3$(256), DataPointer3% 'output buffer for window3

Global EndingOption$ '(new) measurement parameters

Sub Main ()

Call SetDefault

frmMain.Show 0 '---set up window/menu

frmInit.Show 1

If FlagGS$ = "OK" Then Call initInstrument

End Sub

'******************** Parameter Defaults **********************

'

Page 145: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H3 -

Sub SetDefault ()

'--- Instrument address and parameter

PTRstatus$ = "Off"

ISC& = 7

FRDCadr& = ISC& * 100 + 3

FRDCoutput$ = "Keep" '"Keep"

DVMadr& = ISC& * 100 + 7

TimeVal# = 5 'timeout in 5 sec

maxLen% = 50 'max. of input data

'--- TC specification defaults

TCname$ = "TCname" 'name

TCtype$ = "TCC" 'type

TCmax$ = "10" 'nominal input

TCout$ = "7.7" 'nominal output

TCres$ = "25" 'load resistance

TCdesc$ = "" 'detailed discription

'---- KST003 defaults

CVmode$ = "V" '(V-voltage/C-current)

CVlevel! = 0!

Sequence% = 0 'AC[1] mode

SWperiod! = 1! '1 ms period(1kHz)

OFFtime% = 10 '10 micro sec.

Rdummy! = 1! 'Dummy 1 kohm

Sadjust!(0) = 0! 'Adjust A+:0%

Sadjust!(1) = 0! 'Adjust A-:0%

Sadjust!(2) = 0! 'Adjust B+:0%

Sadjust!(3) = 0! 'Adjust B_:0%

'---- Default measurement procedures

iproc$ = "1" 'pointer at #1

Nproc$ = "1" 'one measurement

ProcLevel$(1) = "0" 'zero output

ProcPeriod$(1) = "1" '1 ms period(1kHz)

ProcMode$(1) = "V" 'voltage mode

'---- Default measurement parameters

TrigDelay! = 10 'DVM Trigger-Delay(~time-constant*5)

LGwait% = 60 'Waiting time for full-step change(~time-constant*20)

Nread% = 83 'Number of DVM reading (83 is recommended for low frequency)

Nrep% = 10 'Number of measurement per block

Comment$ = "" 'No comments

'---- Default measurement option

MXdrift% = 1 'maximum allowable drift (in ppm/min)

SeqNS$ = "N" 'Normal measurement sequence

'---- Default file name

DataFile$ = "DATA[]"

SpecFile$ = "SPEC[]"

ProcFile$ = "PROC[]"

'---- initial pointer

DataPointer1% = 0

Page 146: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H4 -

DataPointer2% = 0

DataPointer3% = 0

End Sub

Option Explicit

'******************** Automated Adjustment **********************

Sub AdjustAUTO ()

'local call call --- FRDCsend,K182receive,EFoutputWD1'local call call --- FRDCsend,K182receive,EFoutputWD2

'global parameters --- average#,FlagGS$,Sadjust!(),stdev#,TCindex$

'local parameters ---

Dim Achange$, CMD$, Imeas%, Irepeat%, Isource%

Dim Istatus%, itemHit%, MXrepeat%, Nsdev$, outputSTR$

Dim Adjust!, Smode$, SNratio!, work$, Deviation#, msg$

Static Vave#(9), Achg!(5)

outputSTR$ = "*** AUTOMATIC ADJUSTMENT STARTED***"

Call EFoutputWD1(outputSTR$, "LF")

Call FRDCsend("M4:X")

MXrepeat% = 5

For Irepeat% = 1 To MXrepeat%

'---adjust source A1 to A3 --- NOTE CHANGE OF SUFFIX(1-4 to 0-3)

For Isource% = 1 To 3

work$ = Format$(Sadjust!(Isource%), "0.000")

Sadjust!(Isource%) = Val(work$)

CMD$ = "A" + Str$(Isource%) + " " + work$ + ":X"

Call FRDCsend(CMD$)

Next Isource%

'---measure EMF output

For Imeas% = 1 To 8

If Imeas% = 1 Or Imeas% = 8 Then Istatus% = 0

If Imeas% = 2 Or Imeas% = 7 Then Istatus% = 1

If Imeas% = 3 Or Imeas% = 6 Then Istatus% = 2

If Imeas% = 4 Or Imeas% = 5 Then Istatus% = 3

Smode$ = Str$(Istatus% + 4)

CMD$ = "M" + Smode$ + ":X": Call FRDCsend(CMD$)

Call K182receive

Vave#(Imeas%) = average#

outputSTR$ = "DVM READING :" + Format$("0.0000000E+00")

outputSTR$ = outputSTR$ + " AT MODE:" + Smode$ + " LEVEL:" + Str$(Sadjust!(Istatus%))

Call EFoutputWD1(outputSTR$, "LF")

Next Imeas%

'---check st.dev and drift

Nsdev$ = Format$(stdev#, "0.00")

outputSTR$ = "St. dev=" + Nsdev$ + "(ppm)"

Call EFoutputWD1(outputSTR$, "LF")

'---calcurate adjustment

Vave#(0) = (Vave#(1) + Vave#(8)) / 2#

Vave#(1) = (Vave#(2) + Vave#(7)) / 2#

Vave#(2) = (Vave#(3) + Vave#(6)) / 2#

Vave#(3) = (Vave#(4) + Vave#(5)) / 2#

For Istatus% = 1 To 3

Page 147: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H5 -

Deviation# = (Vave#(Istatus%) - Vave#(0)) / (Vave#(0) * Val(TCindex$)) * (-1)

Smode$ = Str$(Istatus% + 4)

Achg!(Istatus%) = 0!

SNratio! = Abs(Deviation# * 1000000!) / (stdev# / Val(TCindex$))

If SNratio! > 1 Then

Achg!(Istatus%) = Int(Deviation# * 100000) / 1000

Adjust! = Sadjust!(Istatus%) + Achg!(Istatus%)

work$ = Format(Adjust!, "0.000")

If Adjust! < -2.047 Or Adjust! > 2.047 Then

msg$ = "Adjust parameter out of range."

itemHit% = MsgBox(msg$, 16, "KST003 FRDC Source")

FlagGS$ = "Cancel": Exit Sub

Else

Sadjust!(Istatus%) = Val(work$) 'set global variable

End If

Else

Achange$ = "0"

End If

outputSTR$ = " CHANGE/SETTING FOR A" + Str$(Istatus%) + " =" + Str$(Achg!(Istatus%))

outputSTR$ = outputSTR$ + "/" + work$ + " SN=" + Format$(SNratio!, "0.0")

Call EFoutputWD1(outputSTR$, "LF")

Next Istatus%

If (Abs(Achg!(1)) < .002 And Abs(Achg!(2)) < .002 And Abs(Achg!(3)) < .002) Then Exit Sub

Next Irepeat%

outputSTR$ = "WARNING---Insufficient adjustment"

Call EFoutputWD1(outputSTR$, "LF"): Beep: Beep: Beep

End Sub

'******************** Check Parameters **********************

Sub CheckPARA ()

'global parameters --- FlagGS$,Nproc$,OFFtime%,ProcLevel$(),ProcPeriod$()

'global parameters --- ProcMode$(),SWperiod!,TCmax$,TCres$,TCtype$,

'local parameters ---

Dim Cabs!, Ccomp!, Cmax!, CVlevel!, id%, proc%

Dim itemHit%, outputSTR$, Pindex%, NRRdummy!, repID%

Dim TbaseCHR$, Vabs!, Vcomp!, Vmax!, msg$

Static FlagCHK$(14)

NRRdummy! = Val(TCres$) / 1000 'Rdummy Not Rounded in this call!

'---clear Flags

For id% = 0 To 13

FlagCHK$(id%) = ""

Next id%

FlagGS$ = "OK"

'---determine current/voltage maximum

Vabs! = 10.23 'maximal output voltage setting

Ccomp! = 20# 'output current complience

Cabs! = 10.23 'maximal output current setting

Vcomp! = 11# 'output voltage complience

Select Case TCtype$

Case "TVC"

Vmax! = Val(TCmax$) * 1.05

Page 148: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H6 -

Cmax! = Vmax! / NRRdummy!

Case "TCC"

Cmax! = Val(TCmax$) * 1.05

Vmax! = Cmax! * NRRdummy!

Case Else

FlagCHK$(1) = "'TCtype' not specified."

End Select

'---check parameters

For proc% = 1 To Val(Nproc$)

CVlevel! = Val(ProcLevel$(proc%))

If CVlevel! < 1! Then FlagCHK$(12) = "Too small output."

Select Case ProcMode$(proc%)

Case "V"

If TCtype$ = "TCC" Then FlagCHK$(13) = "'TCtype'/'Mode' Mismatch."

If CVlevel! > Vmax! Then FlagCHK$(3) = "Voltage exceeds TC spec."

If CVlevel! > Vabs! Then FlagCHK$(5) = "Highest voltage is 10.23(V)."

If CVlevel! > (NRRdummy! * Ccomp!) Then FlagCHK$(7) = "Exceeds current complience (20mA)."

Case "C"

If TCtype$ = "TVC" Then FlagCHK$(13) = "'TCtype'/'Mode' Mismatch."

If CVlevel! > Cmax! Then FlagCHK$(4) = "Current exceeds TC spec."

If CVlevel! > Cabs! Then FlagCHK$(6) = "Current must be less than 10.23(mA)."

If CVlevel! > (Vcomp! / NRRdummy!) Then FlagCHK$(8) = "Exceeds voltage complience (11 Volt)."

Case Else

FlagCHK$(2) = "'ProcMode' not specified."

End Select

SWperiod! = Val(ProcPeriod$(proc%))

Call SelectPindex(SWperiod!, TbaseCHR$, Pindex%)

SWperiod! = Val(TbaseCHR$) * 10 ^ Pindex%

If SWperiod! < .095 Then FlagCHK$(9) = "Shortest Period is 0.10 ms."

If SWperiod! > 25500! Then FlagCHK$(10) = "Longest Period is 25500 ms."

If Val(TbaseCHR$) * 1000 < (OFFtime% + 20) Then FlagCHK$(11) = "parameter conflict(Period/OFFtime)."

Next proc%

'---report results

For repID% = 1 To 13

msg$ = FlagCHK$(repID%)

If outputSTR$ <> "" Then

Select Case repID%

Case 12

itemHit% = MsgBox(FlagCHK$(repID%), 65, "KST003 FRDC Source")

If itemHit% = 1 Then FlagGS$ = "Cancel"

Case 13

itemHit% = MsgBox(FlagCHK$(repID%), 129, "KST003 FRDC Source")

If itemHit% = 2 Then FlagGS$ = "Cancel"

Case Else

itemHit% = MsgBox(FlagCHK$(repID%), 16, "KST003 FRDC Source")

FlagGS$ = "Cancel"

End Select

End If

Next repID%

End Sub

'******************** Ending Procedure **********************

Sub endingProcedure ()

Page 149: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H7 -

'local FN call --- FRDCsend,K182send,EFoutputWD1,printResult

'global parameters --- Sadjust!(),PTRstatus$

'local parameters ---

Dim Isource%, CMD$, proc%

Call EFoutputWD1("ending procedure started ---", "LF")

For Isource% = 0 To 3

CMD$ = "A" + Str$(Isource%) + Str$(Sadjust!(Isource%)) + ":X"

Call FRDCsend(CMD$)

Next Isource%

Call FRDCsend("P3 .1:O 10:X")

If EndingOption$ = "A" Then Call FRDCsend("S0:X")

Call K182send("R0F0X")

Call EFoutputWD1("OK", "")

'store MesHistory to disk

Open DataFile$ For Append As 1

Print #1, " "

Print #1, " "

Print #1, "Mes#; Time; Level;; Frequency;; ACDC(ppm);; (sd)"

For proc% = 1 To Val(iproc$)

Print #1, MesHistory$(proc%)

Next proc%

Close #1

'print MesHistry and exit

'If PTRstatus$ = "On" Then Call printResult

Beep: Beep: Beep

Call EFoutputWD1("*Measurement Complete.", "LF")

End Sub

'******************** Create Header **********************

Sub makeHedder ()

'local call call --- EFoutputWD2

'global parameters --- Comment$,DataFile$,Nread%,Nrep%,OFFtime%,Rdummy!,volData%

'global parameters --- TCname$,TCtype$,TCmax$,TCout$,TCres$,TCdesc$

'local parameters ---

Dim Ioutput%

Static Pdata$(12)

Pdata$(1) = "Data from the KST003 FRDC source"

Pdata$(2) = " "

Pdata$(3) = "Comment; " + Comment$

Pdata$(4) = "TC name/type; " + TCname$ + "; " + TCtype$

Pdata$(5) = "TC description; " + TCdesc$

Pdata$(6) = "TC/Dummy Res.; " + TCres$ + "; " + Str$(Rdummy! * 1000) + "Ohm"

Pdata$(7) = "Off-Time; " + Str$(OFFtime%) + "us"

Pdata$(8) = "Repeat No.; " + Str$(Nrep%) + "times"

Pdata$(9) = "Waiting Time; " + Str$(TrigDelay!) + "s"

Pdata$(10) = "Reading Number; " + Str$(Nread%) + "sampling"

Pdata$(11) = " "

Open DataFile$ For Output As 1

For Ioutput% = 1 To 11

Page 150: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H8 -

Call EFoutputWD2(Pdata$(Ioutput%), "LF")

Print #1, Pdata$(Ioutput%)

Next Ioutput%

Close #1

End Sub

'******************** Index Measurement **********************

Sub MeasINDEX ()

'local call call --- Wtime,FRDCsend,K182receive,EFoutputWD1

'global parameters --- average#,LGwait%,MXdrift%,TCindex$,TrigDelay!

'local parameters ---

Dim CMD$, Dadjust!, Imeas%, Index!, Irepeat%, MXrepeat%

Dim outputSTR$, Rdrift!, twait!, stopTime!, startTime!

Static Vave#(4)

outputSTR$ = "*** INDEX MEASUREMENT STARTED ***"

Call EFoutputWD1(outputSTR$, "LF")

Call FRDCsend("M4:X")

MXrepeat% = 10 'repetition number

For Irepeat% = 1 To MXrepeat%

startTime! = Timer

twait! = LGwait%

Call Wtime(twait!)

For Imeas% = 1 To 3

If Imeas% = 1 Or Imeas% = 3 Then Dadjust! = -.1

If Imeas% = 2 Then Dadjust! = .1

CMD$ = "A0 " + Str$(Dadjust!) + ":M4:X"

Call FRDCsend(CMD$)

Call Wtime(TrigDelay!)

Call K182receive

Vave#(Imeas%) = average#

outputSTR$ = "DVM READING :" + Format$(Vave#(Imeas%), "0.0000000E+00")

outputSTR$ = outputSTR$ + " AT LEVEL:" + Str$(Dadjust!)

Call EFoutputWD1(outputSTR$, "LF")

Next Imeas%

Vave#(0) = (Vave#(1) + Vave#(3)) / 2!

Index! = ((Vave#(2) - Vave#(0)) / ((Vave#(2) + Vave#(0)) / 1000))

TCindex$ = Format$(Index!, "0.00") 'resistor 'TCindex' as global parameter

outputSTR$ = "Normalized Index is " + TCindex$

Call EFoutputWD1(outputSTR$, "LF")

'---calcurate drift

stopTime! = Timer

If startTime! > stopTime! Then stopTime! = stopTime! + 86400

Rdrift! = ((Vave#(3) - Vave#(1)) / (Vave#(0) * 2)) / ((stopTime! - startTime!) / 60!)

Rdrift! = Int(Rdrift! * 100000000# + .5) / 100

outputSTR$ = "Drift Rate is " + Str$(Rdrift!) + " (ppm)"

Call EFoutputWD1(outputSTR$, "LF")

CMD$ = "A0 0:M4:X"

Call FRDCsend(CMD$)

If Abs(Rdrift!) < MXdrift% Then Exit Sub

Next Irepeat%

If Abs(Rdrift!) > MXdrift% Then

Page 151: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H9 -

outputSTR$ = "WARNING---Too large drift"

Call EFoutputWD1(outputSTR$, "LF"): Beep: Beep: Beep

End If

End Sub

'******************** Execute Automated Measurement **********************

Sub MesExecute ()

'global parameters --- PTRstatus$,FRDCadr&,FRDCoutput$,DVMadr&

' TCname$,TCtype$,TCmax$,TCout$,TCres$,TCdesc$

' Nproc$,ProcLevel$(),ProcPeriod$(),ProcMode$()

' MXdrift%,TrigDelay!,LGwait%,Nread%,Nrep%,Comment$,SeqNS$

' DataFile$,volSpec%,volProc%,volData%

' CVmode$,CVlevel!,Sadjust!(),Sequence%,SWperiod!,OFFtime%,Rdummy!

' average#,stdev#,TCindex$

' iproc$,ProcList$(101),MesHistory$(101),FlagGS$

' EndingOption$

'local parameters ---

Dim CMD$, CVlevelSTR$, CVunit$, DmeanCHR$, DsdevCHR$, mark$, outputSTR$, msg$

Dim Pdata0$, Pdata1$, Pdata2$, Pdata3$, Pdata4$, Pdata5$, Pdata6$, Pdata7$

Dim Range$, RdummySTR$, Status$, SWfreq$, TbaseCHR$, twait!, Adjust!

Dim Dmean!, Dsdev!, LossFactor!, Nsdev!, SWfrequency!, Tbase!

Dim Dacdc#, Deviation#, Dssum#, Dsum#, Vac1#, Vac2#

Dim Var#, Vdcm#, Vdcp#, Vssum#, Vsum#, Irep%, Smode$

Dim Imeas%, Ioutput%, proc%, Istatus%, itemHit%, Nstatus%, Pindex%

'---define local arrays

Static SSmode$(4), Pdata$(12), Aadj!(5), AadjSTR$(5), Vave#(10), Achg!(5)

'---define mode characters

SSmode$(0) = "*"

SSmode$(1) = "+"

SSmode$(2) = "-"

SSmode$(3) = "/"

Call EFoutputWD1("Initial Set-up procedure started.", "LF")

'---prepare for measurement(1:Setting Dummy Temporary)

Call FRDCsend("S0:X") 'Temporary disable current/voltage output

Rdummy! = Val(TCres$) / 1000

RdummySTR$ = Format$(Rdummy!, "0.0")

Rdummy! = Val(RdummySTR$) 're-set global parameter

outputSTR$ = "Setting Dummy Resistance (" + RdummySTR$ + "kÍ) ---"

Call EFoutputWD1(outputSTR$, "LF")

CMD$ = "D" + RdummySTR$ + ":X"

Call FRDCsend(CMD$)

Call EFoutputWD1("OK", "")

'---prepare for measurement(2:Setting Output)

CVlevelSTR$ = ProcLevel$(1)

If ProcMode$(1) = "V" Then CVunit$ = "V" Else CVunit$ = "mA "

outputSTR$ = "Setting Output (Mode:" + CVunit$ + " , Level:" + CVlevelSTR$ + ") ---"

Page 152: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H10 -

Call EFoutputWD1(outputSTR$, "LF")

CMD$ = ProcMode$(1) + CVlevelSTR$ + ":X:S1:X"

Call FRDCsend(CMD$)

'---prepare for measurement(3:Checking polarity)

Call EFoutputWD1("Checking polarity---", "LF")

Do

Call K182receive

If average# < 0 Then

msg$ = "Negative EMF voltage."

itemHit% = MsgBox(msg$, 17, "KST003 FRDC Source")

If itemHit% = 1 Then FlagGS$ = "Redo" Else Exit Sub

End If

Loop Until FlagGS$ <> "Redo"

Call EFoutputWD1("OK", "")

'---prepare for measurement(4:Making Headder)

Call makeHedder

'---Measurement Loop for one procedure

For proc% = 1 To Val(Nproc$)

'---setting period (Tbase and Pindex)

SWperiod! = Val(ProcPeriod$(proc%))

Call SelectPindex(SWperiod!, TbaseCHR$, Pindex%)

Tbase! = SWperiod! / 10 ^ Pindex%

TbaseCHR$ = Format$(Tbase!, "0.00")

outputSTR$ = "Setting Tbase(" + TbaseCHR$ + ") and Pindex(" + Str$(Pindex%) + ") ---"

Call EFoutputWD1(outputSTR$, "LF")

CMD$ = "P" + Str$(Pindex%) + " " + TbaseCHR$ + ":X"

Call FRDCsend(CMD$)

Call EFoutputWD1("OK", "")

'---level-adjustment for steady-state output

CVmode$ = ProcMode$(proc%)

CVlevel! = Val(ProcLevel$(proc%))

If CVmode$ = "V" Then CVunit$ = "V": Else CVunit$ = "mA "

LossFactor! = 1 - (OFFtime% / (SWperiod! * 1000))

CVlevel! = Val(ProcLevel$(proc%)) * Sqr(LossFactor!)

CVlevelSTR$ = Format$(CVlevel!, "0.00")

outputSTR$ = "output adjusted for steady-state mode(" + CVlevelSTR$ + ") ---"

Call EFoutputWD1(outputSTR$, "LF")

CMD$ = CVmode$ + CVlevelSTR$ + ":X:S1:X:M4:X" '---set mode to "Source A+"

Call FRDCsend(CMD$)

Call EFoutputWD1("OK", "")

'---Fixing the range of K182

Call K182send("R0X") '--- 96/07/24

Call EFoutputWD1("Fixing the range of K182---", "LF")

twait! = LGwait% / 2!: Call Wtime(twait!)

Call K182receive

Range$ = "R1X"

If average# > 2900000! Then Range$ = "R2X"

If average# > 29000000# Then Range$ = "R3X"

If average# > 290000000# Then Range$ = "R4X"

Call K182send(Range$)

Page 153: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H11 -

Call EFoutputWD1("OK", "")

'---measurement of index "N" (index!)

Call MeasINDEX

'---adjust the four sources

Call AdjustAUTO

For Istatus% = 0 To 3

Aadj!(Istatus%) = Sadjust!(Istatus%) 'store initial value

Next Istatus%

'---resume output level for sequencial modes

CVlevel! = Val(ProcLevel$(proc%))

CVlevelSTR$ = Format$(CVlevel!, "0.00")

outputSTR$ = "resume output level(" + CVlevelSTR$ + ") ---"

Call EFoutputWD1(outputSTR$, "LF")

CMD$ = CVmode$ + CVlevelSTR$ + ":X:S1:X:M0:X" 'set mode to "AC(1)"

Call FRDCsend(CMD$)

Call EFoutputWD1("OK", "")

'---output measurement parameters

iproc$ = Str$(proc%)

Call recordParameters

'---measurement sequence

Call EFoutputWD1("*** Measurement sequence started ***", "LF")

twait! = LGwait% / 2!: Call Wtime(twait!)

Dsum# = 0: Dssum# = 0

For Irep% = 0 To Nrep%

outputSTR$ = Time$ + " Meas#" + Str$(Irep%) + " Mode--- "

Call EFoutputWD1(outputSTR$, "LF")

Var# = 0

For Imeas% = 1 To 8

Vsum# = 0: Vssum# = 0

If SeqNS$ = "N" Then

If Imeas% = 1 Or Imeas% = 8 Then Smode$ = "0"

If Imeas% = 2 Or Imeas% = 7 Then Smode$ = "1"

If Imeas% = 3 Or Imeas% = 6 Then Smode$ = "2"

If Imeas% = 4 Or Imeas% = 5 Then Smode$ = "3"

Else

If Imeas% = 1 Or Imeas% = 5 Then Smode$ = "0"

If Imeas% = 2 Or Imeas% = 7 Then Smode$ = "1"

If Imeas% = 3 Or Imeas% = 6 Then Smode$ = "2"

If Imeas% = 4 Or Imeas% = 8 Then Smode$ = "3"

End If

mark$ = SSmode$(Val(Smode$)): Call EFoutputWD1(mark$, "")

CMD$ = "M" + Smode$ + ":X"

Call FRDCsend(CMD$)

Call K182receive

Vave#(Imeas%) = average#

Var# = Var# + stdev# ^ 2

Next Imeas%

'---calucurate frdc-dc difference

If SeqNS$ = "N" Then

Vac1# = (Vave#(1) + Vave#(8)) / 2

Page 154: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H12 -

Vdcp# = (Vave#(2) + Vave#(7)) / 2

Vdcm# = (Vave#(3) + Vave#(6)) / 2

Vac2# = (Vave#(4) + Vave#(5)) / 2

Else

Vac1# = (Vave#(1) + Vave#(5)) / 2

Vdcp# = (Vave#(2) + Vave#(7)) / 2

Vdcm# = (Vave#(3) + Vave#(6)) / 2

Vac2# = (Vave#(4) + Vave#(8)) / 2

End If

Deviation# = (Vac1# + Vac2# - Vdcp# - Vdcm#) / 2

Dacdc# = (-Deviation# / (Vac1# * Val(TCindex$))) * 1000000!

Nsdev! = Sqr(Var# / 8)

'---accumrate result exept for Irep%=0

If Irep% > 0 Then

Dsum# = Dsum# + Dacdc#

Dssum# = Dssum# + Dacdc# ^ 2

End If

'---report result

Pdata1$ = Format(Irep%, "000")

Pdata2$ = Format(Vac1#, "0.0000000E+00")

Pdata3$ = Format(Vdcp#, "0.0000000E+00")

Pdata4$ = Format(Vdcm#, "0.0000000E+00")

Pdata5$ = Format(Vac2#, "0.0000000E+00")

Pdata6$ = Format(Nsdev!, "0.00")

Pdata7$ = Format(Dacdc#, "0.00")

Pdata0$ = Pdata1$ + "; " + Time$ + "; " + Pdata2$ + "; " + Pdata3$ + "; " + Pdata4$

Pdata0$ = Pdata0$ + "; " + Pdata5$ + "; " + Pdata6$ + "; " + Pdata7$

Call EFoutputWD2(Pdata0$, "LF")

Open DataFile$ For Append As 1

Print #1, Pdata0$

Close #1

'---re-adjustment of the sources

For Nstatus% = 1 To 3 Step 2

If Nstatus% = 1 Then Deviation# = (Vac1# + Vdcp# - Vdcm# - Vac2#) / (Vac1# * Val(TCindex$))

If Nstatus% = 3 Then Deviation# = (-Vac1# + Vdcp# - Vdcm# + Vac2#) / (Vac1# * Val(TCindex$))

Status$ = Str$(Nstatus%)

Achg!(Nstatus%) = Int(Deviation# * 100000) / 1000

Adjust! = Aadj!(Nstatus%) + Achg!(Nstatus%)

AadjSTR$(Nstatus%) = Format$(Adjust!, "+0.000")

Aadj!(Nstatus%) = Val(AadjSTR$(Nstatus%))

If Aadj!(Nstatus%) < -2.047 Or Aadj!(Nstatus%) > 2.047 Then

outputSTR$ = "Adjust parameter out of range."

itemHit% = MsgBox(outputSTR$, 16, "KST003 FRDC Source")

outputSTR$ = outputSTR$ + "(A" + Str$(Nstatus%) + ")=" + AadjSTR$(Nstatus%)

Call EFoutputWD1(outputSTR$, "LF")

Exit Sub

End If

CMD$ = "A" + Status$ + " " + AadjSTR$(Nstatus%) + ":X"

Call FRDCsend(CMD$)

Next Nstatus%

outputSTR$ = " change(A-/B-) :" + Str$(Achg!(1)) + " /" + Str$(Achg!(3))

Call EFoutputWD1(outputSTR$, "")

Page 155: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H13 -

'---handle 'Break' command

outputSTR$ = " status:" + FlagGS$

Call EFoutputWD1(outputSTR$, "")

If FlagGS$ = "STOP" Then

outputSTR$ = "Measurement going to be aborted."

itemHit% = MsgBox(outputSTR$, 49, "KST003 FRDC Source")

If itemHit% = 1 Then FlagGS$ = "ABORT" Else FlagGS$ = "OK"

End If

Next Irep%

'---calcurate average for repetition(Nrep%)

Dmean! = Dsum# / Nrep%

Dsdev! = Sqr((Dssum# / Nrep%) - Dmean! ^ 2)

DmeanCHR$ = Format$(Dmean!, "0.00")

DsdevCHR$ = Format$(Dsdev!, "0.00")

'---output results to disk

Pdata$(2) = " FRDC-DC diff;(in ppm); " + DmeanCHR$ + "; +/- " + DsdevCHR$ + ";(sd) ;(ex. #0)"

Pdata$(1) = "": Pdata$(3) = "": Pdata$(4) = ""

Open DataFile$ For Append As 1

For Ioutput% = 1 To 4

Call EFoutputWD2(Pdata$(Ioutput%), "LF")

Print #1, Pdata$(Ioutput%)

Next Ioutput%

Close #1

'---output results to "history" window

SWfrequency! = 1000! / SWperiod!

SWfreq$ = Format$(SWfrequency!, "0.000E+00")

Pdata0$ = iproc$ + ";" + Time$ + "; " + CVlevelSTR$ + ";(" + CVunit$ + "); " + SWfreq$ + ";(Hz)"

MesHistory$(proc%) = Pdata0$ + "; " + DmeanCHR$ + "; +/- " + DsdevCHR$

Call DispHistory

'---handle 'abort' command

If FlagGS$ = "ABORT" Then

Call endingProcedure

Exit Sub

End If

Next proc%

'---ending procedure (print if neccesary)

Call endingProcedure

End Sub

'******************** Prerpare for Measurement **********************

Sub PrepExecute ()

'local FN call ---CheckPARA,MesExecute,EFoutputWD1

'local FN call ---SetTCspec,SetProcedure,SetParam,selectFile

'global parameters --- FlagGS$

'local parameters ---

Dim itemHit%, msg$, proc%

Page 156: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H14 -

'---TC spec. input

Do

frmTCspec.Show 1

If FlagGS$ = "Cancel" Then

msg$ = "TC/TVC spec. not resistord."

itemHit% = MsgBox(msg$, 17, "KST003 FRDC Source")

If itemHit% = 2 Then Exit Sub

End If

Loop Until FlagGS$ = "OK"

'---dialog for procedure input and check

Do

frmProcedure.Show 1

If FlagGS$ = "Cancel" Then

msg$ = "Procedure not determined."

itemHit% = MsgBox(msg$, 17, "KST003 FRDC Source")

If itemHit% = 2 Then Exit Sub

Else

Call EFoutputWD1("Checking parameters---", "LF")

Call CheckPARA

If FlagGS$ = "Cancel" Then

msg$ = "Unallowable procedure."

itemHit% = MsgBox(msg$, 17, "KST003 FRDC Source")

If itemHit% = 2 Then Exit Sub

Call EFoutputWD1("Cancelled", "")

Else

Call EFoutputWD1("Passed", "")

End If

End If

Loop Until FlagGS$ = "OK"

'---measurement parameter input

Do

frmParameter.Show 1

If FlagGS$ = "Cancel" Then

msg$ = "Parameter not determined."

itemHit% = MsgBox(msg$, 17, "KST003 FRDC Source")

If itemHit% = 2 Then Exit Sub

End If

Loop Until FlagGS$ = "OK"

'---specify output file

Do

frmSaveData.Show 1

If FlagGS$ = "Cancel" Then

msg$ = "Filename not specified."

itemHit% = MsgBox(msg$, 17, "KST003 FRDC Source")

If itemHit% = 2 Then Exit Sub

End If

Loop Until FlagGS$ = "OK"

'---clear buffer

For proc% = 1 To 100

MesHistory$(proc%) = ""

Next proc%

Page 157: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi

- H15 -

'---execute measurement

frmOption.Show 1

If FlagGS$ = "Cancel" Then Exit Sub

frmMain.textFieldStatus.Caption = "Running"

frmMain.textFieldStatus.Refresh

frmMain.textFieldWait.Caption = ""

frmMain.textFieldWait.Refresh

Call MesExecute

End Sub

'******************** Save Measurement Data **********************

Sub recordParameters ()

'local call call --- EFoutputWD2

'global parameters --- CVlevel!,CVmode$,DataFile$,iproc$,Sadjust!()

'global parameters --- SWperiod!,TCindex!,volData%

'local parameters ---

Dim CVunit$, Ioutput%, proc%, SWfreq$, SWfrequency!

Static Pdata$(12)

proc% = Val(iproc$)

If CVmode$ = "V" Then CVunit$ = "V" Else CVunit$ = "mA"

SWfrequency! = 1000! / SWperiod!

SWfreq$ = Format$(SWfrequency!, "0.000E+00")

Pdata$(1) = "Mes. No.= " + iproc$

Pdata$(2) = "Date/Time; " + Date$ + "; " + Time$

Pdata$(3) = "Output Level; " + Str$(CVlevel!) + "; " + CVunit$

Pdata$(4) = "SW Period; " + Str$(SWperiod!) + "; ms ; (" + SWfreq$ + "Hz)"

Pdata$(5) = "TC Index; " + TCindex$

Pdata$(6) = "Adjust A+/-; " + Str$(Sadjust!(0)) + "; " + Str$(Sadjust!(1))

Pdata$(7) = "Adjust B+/-; " + Str$(Sadjust!(2)) + "; " + Str$(Sadjust!(3))

Pdata$(8) = "Rep#; Time; Vac*(nV); Vdc+(nV); Vdc-(nV); Vac/(nV); Vsd(ppm); FRDC-DC(ppm)"

Open DataFile$ For Append As 1

For Ioutput% = 1 To 8

Call EFoutputWD2(Pdata$(Ioutput%), "LF")

Print #1, Pdata$(Ioutput%)

Next Ioutput%

Close #1

End Sub

Page 158: A Guide for the Evaluation of Thermoelectric Effects in ......A Guide for the Evaluation of Thermoelectric Effects in Thermal Converters Using KST003 Fast-Reversed DC Source Hitoshi