a guide to mineral separation (v. 1) - middlebury...

36
1 A Guide to Mineral Separation (v. 1) By: William Amidon Updated: 6/13/10 Part 1: Preliminaries…………………………………………………………………………….page 1 11: Set aside a hand sample 12: Cut a thin section billet 13: Describe the sample in your notebook Part 2: Crushing, Sieving, and Magnetic Separation…………………………...page 1 Safety Notes 21: Pick a target grain size 22: Set up a sieve stack 23: Jaw crusher 24: Disc Mill 25: Sieve shaker 26: Magnetic scalper 27 Sample rinsing 28: Frantzing Part 3: Heavy Liquids…………………………………………………………………….…..page 7 Safety Notes 31: Safety and Overview 32: Heavy Liquids Setup 33: Floating the sample 34: Filtering the sample 35: Clean up Part 4: Sample cleanup and loading…………………………………………………page 10 Safety Notes 41: Dilute acid leach 42: Final frantzing 43: Dry/wet sieving with Nitex mesh 44: Hand picking: positive and negative picking 45: Photographing and dimensioning 46: Crushing in mortar and pestle 47: Loading and weighing Part 5: Other Techniques…………………………….……………………………….…page X 51: Paper shaking 52: Preparing polished grain mounts Appendix A: List of Magnetic Susceptibilities Appendix B: Material Safety Data Sheets for common heavy liquids Appendix C: Estimating sample mass “sample_mass_calculator.xls.”

Upload: others

Post on 26-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

1  

A Guide to Mineral Separation (v. 1) By: William Amidon    Updated: 6/13/10 

 Part 1: Preliminaries…………………………………………………………………………….page 1 1‐1:  Set aside a hand sample 1‐2:  Cut a thin section billet 1‐3:  Describe the sample in your notebook 

Part 2: Crushing, Sieving, and Magnetic Separation…………………………...page 1 Safety Notes 2‐1:  Pick a target grain size 2‐2:  Set up a sieve stack 2‐3:  Jaw crusher 2‐4:  Disc Mill 2‐5:  Sieve shaker 2‐6:  Magnetic scalper 2‐7   Sample rinsing 2‐8:   Frantzing  Part 3:  Heavy Liquids…………………………………………………………………….…..page 7 Safety Notes 3‐1: Safety and Overview 3‐2: Heavy Liquids Setup 3‐3: Floating the sample 3‐4: Filtering the sample  3‐5:  Clean up  

Part 4:  Sample cleanup and loading…………………………………………………page 10 Safety Notes 4‐ 1: Dilute acid leach 4‐2:   Final frantzing 4‐3:  Dry/wet sieving with Nitex mesh 4‐4:  Hand picking: positive and negative picking 4‐5:  Photographing and dimensioning 4‐6:  Crushing in mortar and pestle 4‐7:  Loading and weighing  Part 5:  Other Techniques…………………………….……………………………….…page X 5‐ 1: Paper shaking 5‐2: Preparing polished grain mounts  

Appendix A: List of Magnetic Susceptibilities Appendix B:  Material Safety Data Sheets for common heavy liquids Appendix C:  Estimating sample mass “sample_mass_calculator.xls.”    

Page 2: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

2  

Part 1: Preliminaries  1‐1:  Cut a billet for a thin section (optional) If you are not sure what minerals are in your rock, or if you would like to do electron microprobe analyses to determine the composition of your minerals, then you may want to have thin section (or polished thin section) made.   Alternatively, you can make a polished grain mount following the instructions in section XXX.  Cheap rates and very fast service can be obtained from Ron Alkaly at:  R.A. Petrographic,  3206 Cardiff Ave.,  Los Angeles, CA 90034 310‐838‐9689/310‐753‐9587 [email protected]  For very careful work, and finely polished sections, try Burnham Petrographic.  1‐2: Set aside a hand sample (optional) Do you need to know the bulk composition of your rock sample?  If yes, then you need to set aside at least a fist‐sized chunk for bulk rock analysis via XRF or LA‐ICPMS.  In the past, we have had these performed by Tom Vogel at Michigan State University:  http://geology.msu.edu/xrf_lab.html  1‐3: Describe the sample in your notebook You may want to record the mass of the sample before you begin.  Depending upon your application, you may also want to record the size and thickness of the sample, its mineralogy, its weathering characteristics, hardness, % phenocrysts, etc, etc..     Each sample should have an entry in your notebook where you can record observations about it during the process, or record any problems that occur.  This is very important, as you will want to refer to these notes when your data does not make sense, or does not agree between samples.  

Part 2: Crushing, Sieving, and Magnetic Separation Safety Notes: Make sure to always wear eye protection and a dust mask.  Never stick your head directly above, or close to the top opening.  Use the paddle to cover the opening of the jaw crusher after you drop a rock fragment into it.     2‐1:  Pick a target grain size  ‐This question governs nearly every other step of the process.  The idea is to pick the narrowest grain size possible that will allow you to process the least amount of material in subsequent steps, but still get the mineral yield you are looking for.  Typical size fractions (YOUR ROCK WILL VARY): 0‐190 um: zircon, apatite, titanite, rutile, xenotime, allanite. 190‐425 um: Pyroxene, Hornblende, often titanite, often olivine, garnet, kyanite 300‐600 um: often olivine, sometimes pyroxene, quartz, biotite, plagioclase 

Page 3: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

3  

300‐833 um: Good range for 21Ne or 10Be in quartz for  (for quartz prep see: http://www.geog.ucsb.edu/~bodo/pdf/bookhagen_chemSeparation_UCSB.pdf)   2‐2:  Set up a sieve stack At the minimum, your sieve stack should contain sieves that bracket the size fraction you are ultimately interested in.  For example, if you want to recover the 300‐425 um fraction, you need both the 300 and 425 um sieves in your stack.   Small meshes go on the bottom, big meshes on the top in ascending order.  ‐ If you do not need to recover very tiny grains, I recommend using a “bottom sieve” sized at ~<40 um.  The bottom sieve will get rid of the powder and fines, and make the rest of the process easier.  If you are not going to be working with the <300 (or <190) um fraction, you do not need to use a bottom sieve.  The powder will simply be stored with your smallest fraction.  ‐It is important to have larger sieves in your stack.  Typically a ~1 mm and a ~2 mm.  These allow you to easily recover large chunks and prevent damage to finer‐mesh sieves below.  ‐Clean sieves with a plastic brush (never metal).  If 100% cleanliness is required (for detrital U‐Pb zircon work, for example) you may want to clean the sieve in the ultrasonic bath, or with a needle to dislodge the final grains.  Disposable nylon “Nitex” sieves can also be used, and are typically used with a “blank” copper sieve ring, that has no mesh of its own.    2‐3:  Jaw crusher  Cleaning the jaw crusher:  Not that one of the plates is removable.  Remove this plate and then scrub both plates with a wire brush.  Use the air hose to blow out all of th cavities above and below the plates.  Pay particular attention to the cavity immediately below and behind the fixed plate.  This often fills with debris, and can easily contaminate your sample in a significant way.  Use the air hose and vaccum to clean out the chamber where the receptacle fits, below the jaws.  After making sure the jaw crusher is clean, press the green “on” button and drop your samples (not larger than fist‐sized chunks) into the jaws.  Drop them one at a time to make sure all samples are properly crushed.  Remove the crushed fragments from the collection bin, and pass them quickly through the sieve stack, you do not need to thoroughly shake the sieves.  The purpose of this initial sieve step is to remove material that is already well crushed so that it does not get powderized during subsequent steps.  2‐4: Disc Mill Rules of thumb:  Don’t over crush.  Sieve after every pass.  Set plate spacing to about half the minimum dimension of your larger fragments. 

Page 4: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

4  

 Pass 1: Set plates ~4‐6 mm apart (or about half the minimum width of your larger fragments)  Pour material through the disc mill and sieve it again afterwards.  Pass 2: Set plates ~2 mm apart (or about half the minimumwidth of your larger fragments).  Pour material through and sieve it again afterwards.  Passes 3 and 4 (optional):  After the second pass you will need to look closely at your rock.  Ask yourself several key questions:  ‐ Have most of the individual mineral grains been broken out of the matrix of the rock?    ‐Is there enough material in the fractions of interest to yield a measurable quantity?  If the answer to both of these questions is “no”, then you probably need to perform additional passes through the disc mill.  Try a third pass at a spacing of ~1 mm.  This is almost always enough.  In extreme cases you may need to do a fourth pass at a smaller spacing.  Cleaning the disc mill:  Go over all parts with the vacuum first.  Next use the air hose to blast all of the hard to reach places while running the vacuum to suck up dust.  Pay special attention to the “lips” below the disc where the receiving tray sits.   Use a wire brush to clean the grinding discs.  You do not need to remove the crushing discs unless you are finishing a batch of starting a new batch.  When finished with a batch, wipe all surfaces clean with alcohol and paper towels, including the receiving tray.  2‐5: Sieve shaker Place a lid on your sieve stack and load it onto the sieve shaker.  Always tighten the knobs on the side of the restraining bar first, and the tighten the center knob last.  There is no need to overtighten, as you may strip the threads.    Turn the sieve shaker on for 3‐5 minutes.  When it is finished, verify that sieving is complete by manually shaking each individual sieve to see if additional material comes out.  If a lot of additional material comes through the sieve, repeat the process.  If your sample is very large or dusty, finer grained sieve meshes may become clogged with dust or small grains.  You may need to clean these off and repeat the process.  When you are satisfied that your sample is well sieved, transfer each size fraction into a properly labeled Ziploc bag.  Always label bags with a sharpie in at least two places and write as thickly as possible so it does not rub off.  Grain sizes that are not needed can be placed into long‐term storage.    2‐6: Magnetic scalper 

Page 5: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

5  

The purpose of this step is to remove any highly magnetic particles so that they do not clog the Frantz in subsequent steps.  This includes crystals of magnetite and any iron filings that were accumulated during crushing.    Make sure that your receptacle boxes are clean and properly positioned.  Make sure the feeder tray is closed, and is open to a spacing that will pour your sample at a moderate rate.   Empty your samples into the feeder, turn the magnet on (with maximum rotational velocity), and open the gate.    For coarse samples (>300 um) one pass should be sufficient.  For fine grained samples (<300 um) you will probably want to do a second pass, and perhaps more for very dusty samples.  If the sample is clumping, you may want to run the magnetic fraction once more at the very end to liberate grains that were accidentally trapped in the magnetic fraction.  If the magnetic fraction contains usable Fe‐Oxides it should be stored in a vial.  Otherwise, iron filings can be thrown away.  If the sample is very dusty, the vacuum can be used to draw off dust as the sample is pouring.  This is a good way to get rid of dust prior to subsequent steps.  2‐7   Sample Rinsing The purpose of this step is to remove dust and small grains from the sample so that a cleaner separation can be obtained in the Frantz and heavy liquids. This step is critical for <300 um size fractions, and optional for larger fractions.  Larger fractions often benefit from being rinsed with an ultrasonic bath to break apart poly0mineralic grains.  When rinsing the sample, you should not pour sediment‐rich water down the drain, it always needs to be poured into a sediment trap first.  At Caltech, you can use the sink in the sub‐basement near the rock saws, which drains into a sediment trap.  Find a large plastic tub and rinse it thoroughly with water.  Pour the sample in, and inundate it with water.  Stir it initially with your hands, to mix up all the fine particulates.  Let the tub settle for about 30 seconds, and VERY GENTLY pour of the swirling brown liquid.  Water should only be ~1‐2 mm deep as it pours out, and should be poured out as slowly as possible.  Take care that a tongue of sediment does not build up to the edge of your container and begin to discharge fine sand or silt directly into the sink.  It is very easy to lose your sample this way, especially if you are trying to separate apatite or zircon.  If you are going after coarser fractions, you can be a bit more aggressive.    Never try and pour out all the water.  Pour out about 4/5 of the water, and then refill the container and repeat the process 2‐15 times until the water is mostly clear when you fill the tub.  You can reduce the settling time slightly during the later rinses, but be careful not to pour out your fine apatites.  Check the sediment that accumulates in the sink by rubbing it between your thumb and forefinger.  It should feel like clay… if it is gritty, then you are being too aggressive.    

Page 6: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

6  

When you are finished rinsing, pour out all of the liquid and tilt the container ~20 degrees on its side.  Let the water pond on one end of the container for ~2 minutes, and then drain it again.  Repeat this process until no more water is ponding.  Next, pour in enough acetone to submerse your sample, and thoroughly slosh the sample back and forth, swirling the sediment in the acetone.  This process will help remove water and allow your sample to dry faster.  Pour off the acetone into the sink when you are finished, and place the sample under a drying lamp, or on the roof of the building to dry.  Note: your sample will dry MUCH FASTER if you stir it periodically, about every 10‐20 minutes.  Otherwise, the rate of drying is slowed down by the amount of air that can circulate through your sample.   When your sample is dry, bag it up and you are ready for frantzing.   2‐9:   Frantzing Introduction: The purpose of this step is to capitalize on the magnetic properties of some minerals to separate them from non or lesser magnetic minerals.  This is done by feeding the minerals down a track which is tilted both forward and to the side.  The force of gravity acts to pull all minerals downwards in the direction of the side tilt.  As the minerals move down the track, a magnetic field is applied that acts to push only the magnetic minerals back upwards, against the force of gravity.  Both the side‐tilt and the strength of the magnetic field can be adjusted to get the desired split between magnetic and non‐magnetic minerals.    Basic Use: The side tilt can be adjusted using the wheel on the right hand side and the tilt angle can be read off the dial on the right hand side.    The forward tilt is adjusted by grabbing the entire magnet assembly and tilting it left or right.  The forward tilt angle can be read off the dial behind the magnet.  The magnet is turned on by the two switches on the far right hand side (not the front).  The dial can be used to adjust the amount of current being fed to the magnet, ranging from 0 to 1.8 amperes.  Note that this does not tell us anything about the actual strength of the magnetic field, but because most Frantz are identical, this amperage is a standard reference unit used in Frantzing.  The shaker is turned on with the switch on the front, and can be adjusted using the dial.  Always make sure that the shaker is firmly screwed into the track prior to use, so that you do not strip the threads.  The feeder cone should also be completely screwed in (gently) prior to loading the sample.  This is the “closed” position, and can be opened by slowly unscrewing the feeder cone. Use the large‐hole feeder for coarse samples (>300 um) and the small‐hole feed for large grain samples (>300 um).  

Page 7: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

7  

When you have found the flow rate that is good for your sample, use a piece of tape to hold the feeder cone in place.  It tends to rotate closed over time.  Make sure your collection cups are clean and attached before you start.  The closer cup collects the magnetic fraction, the further cup collects the non magnetic fraction.  Always lay down clean kim‐wipes or paper in case of spills or overflows.  You will not regret taking the time to do this.  Recommended Passes: Rules of thumb: Start with a pilot sample, and apply what you have learned to subsequent samples if they have the same mineralogy.  Always start at a low magnetic field, and work slowly toward stronger fields.  Never split off more than ~50% of your sample in a single pass.  Watch closely to see if magnetic grains are being held by the magnet, as this will eventually lead to a clogged track and overflow.  You will always need to do multiple passes, so don’t be greedy.  Example passes for non magnetic minerals (zircon, apatite, quartz, plagioclase)  Pass 1:  Side tilt: ~15°, Forward tilt: ~20°, Magnet: 0.05‐0.3 amps, Flow rate: high 

Pass 2:  Side tilt: ~15°, Forward tilt: ~20°, Magnet: 0.5‐0.7 amps, Flow rate: high Pass 3:  Side tilt: ~15°, Forward tilt: ~20°, Magnet: 1.8 amps, Flow rate: high Pass 4**:  Side tilt: ~4°, Forward tilt: ~20°, Magnet: 1.8 amps, Flow rate: low‐medium  **The lower tilt increases the effectiveness of the magnet.  Note that many non magnetic minerals can be slightly magnetic due to inclusions or coatings.  Check the contents of passes 3 and 4 to make sure you have not pulled off significant quantities of zircon or apatite.  However, if you can afford to lose some material, this final pass is an effective way to screen out inclusion‐bearing grains (particularly important for 10Be/21Ne in quartz).  Example passes for magnetic minerals (olivine, pyroxene, garnet, ilmenite, etc.)  Pass 1:  Side tilt: ~15°, Forward tilt: ~20°, Magnet: 0.05‐0.2 amps, Flow rate: medium  

Pass 2:  Side tilt: ~15°, Forward tilt: ~20°, Magnet: 0.3 amps, Flow rate: medium Pass 3:  Side tilt: ~15°, Forward tilt: ~20°, Magnet: 0.4 amps, Flow rate: medium Pass 4:  Side tilt: ~15°, Forward tilt: ~20°, Magnet: 0.5‐0.6 amps, Flow rate: medium  After completing initial passes for a “pilot” sample, look at each fraction under the microscope and determine which fractions contain your mineral of interest.   Reprocess those fractions as necessary until you maximize the ratio of the mineral of interest to other minerals.  Do not try and frantz poorly sorted samples (i.e. 150‐800 um fraction) all at the same time.  Large and small grains feel gravity and magnetism differently, and you will have trouble getting a clean separate.  

Page 8: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

8  

Part 3:  Heavy Liquids Safety Notes:  Many heavy liquids are toxic, even from very trace exposure.  Never touch heavy liquids, and NEVER BREATHE them.  Never take heavy liquids, or used filter paper outside of the fume hood.  Refer to the materials safety data sheets in appendix B for detailed safety information.  Always wear latex or nitrile gloves when in the heavy liquids lab, and use the heavy rubber gloves when working with the liquids.  3‐1: Overview The goal of heavy liquids is to separate dense mineral from lighter minerals by dropping them into a separatory funnel filled with liquid of known density.  The light minerals float, whereas heavy minerals sink.  The two fractions can then be drawn off separately through the bottom of the funnel.  Commonly Used Heavy Liquids:  Methylene Iodide (MI or MEI):  Density 3.3 g/cm3, soluble in acetone, HIGHLY TOXIC Acetylene Tetrabromide (ATB): Density 3.0 g/cm3, soluble in acetone, HIGHLY TOXIC Lithium Metatungstate: Density <3.0 g/cm3, soluble in water, MODERATELY TOXIC Sodium Polytungstate: Density <2.9 g/cm3, soluble in water, MODERATELY TOXIC  Rules of thumb:  Do not try heavy liquids on samples that have not been rinsed at least once in DI water.  You will ruin the liquids.    Always do everything you can to reduce the amount of material that you need to process through heavy liquids (i.e. sierving, frantzing, rinsing)… use the liquids sparingly.  They are very expensive.    Do not attempt heavy liquids with grain sizes >~800 um, as you will have trouble getting your sample through the stopcock.  For the sake of efficiency, try to perform heavy liquids on all of your samples at the same time.  This minimizes the amount of heavy liquids that are lost during transfer and clean up.  It also minimizes the number of times the glassware has to be completely cleaned.   3‐2: Heavy Liquids Setup Assemble a clean separatory funnel (pear shaped funnel) by inserting the stopcock through the hole at the bottom of the funnel.  Make sure to secure the stopcock in place with a rubber gasket, flat plastic washer, and threaded plastic nut (put them on in that order).  If you are processing a large grain size, make sure to use a large funnel and stopcock so the sample can pass through.  Locate a glass funnel, and slide a green rubber stopper onto the base of it.  Find two clean Erlenmeyer flasks and label one of them “pure” and one of them “wash” with a Sharpie.   Place the funnel with the stopper onto the “pure” flask.  Fold a piece of filter paper into quadrants (so it looks like a 90° arc), and nestle it snugly into the glass funnel.  

Page 9: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

9  

Place the separatory funnel into one of the O‐ring stands.  Slide the erlenmeyer flask with/funnel under the separatory funnel, and adjust the spout of the separatory funnel  so that it is ~ 1‐2 inches above the filter paper below it.    MAKE SURE THE STOPCOCK IS CLOSED ON THE SEPERATORY FUNNEL  Fill the separatory funnel with the desired heavy liquid (ATB, MEI, Polytungstate).  Always keep a flask and/or funnel below the liquids to catch any drops that might leak out. Separate      3‐3: Floating  the sample Take a look at the folded cone of filter paper in the funnel.  Select  an amount of sample material that will NOT FILL THE CONE OF FILTER PAPER MORE THAN ~2/3 FULL.  Dump an appropriate amount of sample material into a folded piece of paper, and use the paper to pour your sample carefully into the separatory funnel.    Use the stirring rod to thoroughly mix the sample into the heavy liquid, trying to evenly distribute the material throughout the available liquid.    If the sample is extremely thick, consider adding more liquid, but only if absolutely necessary.  Let the sample material settle for ~5 minutes.  You should notice some material settling out, but most of the material floating towards the top.  Once you can see CLEARLY THROUGH THE SOLUTION IN THE MIDDLE, you have achieved a good separation.  Mix the material thoroughly a second time.  Try to use all the available liquid space, without disturbing the material that has already settled.  Let this sit for 10‐ 15 minutes, until it appears that no material is moving up or down, and complete separation has been achieved.  3‐4: Filtering the sample  The dense fraction Once you are satisfied with your separation, attach the vacuum house to the flask and turn the vacuum on.  Before opening the stopcock, make sure the filter paper is pushed down as deep into the funnel as possible, and is flush against the glass of the funnel.  Open the stopcock and allow the settled portion of the sample to drip into the filter paper.   Try to create a flush seal between the wet filter paper to increase the vacuum pressure.  Do this by placing your thumbs in the creased parts of the filter paper, and gently trying to push the entire cone of filter paper deeper into the funnel.  Listen for the flow of air, and watch the pressure gauge on the vacuum pump to determine if you are getting good vacuum pressure.  After ALL OF THE PURE HEAVY LIQUID HAS BEEN PULLED THROUGH (I.E. IT HAS STOPPED DRIPPING) move the funnel and filter paper from the “pure” beaker onto the “wash” beaker.  Move the vacuum hose to the wash beaker.  Thoroughly rinse the sample with acetone, paying careful attention to the creased parts of the filter paper.  You will know the sample is clean when there is no sign of the viscous heavy liquid dripping from the bottom of the funnel.  Remove the well‐rinsed filter paper and set it under the heat lamp to dry.  If it is well rinsed, it should dry within ~10 minutes.  If there are still wet spots on the filter paper after 10 minutes, this may be 

Page 10: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

10  

residual heavy liquids.  Once dry, pour the sample into its container inside the fume hood.  Place the used filter paper into the large Ziploc trash bag.  Never take used filter paper out of the fume hood.  Filter the light fraction of the sample Repeat the above steps in section 3‐4 with one key difference.  After you have filtered all of the pure liquid and the filter cone has been moved onto the “wash” flask, rinse the inside of the separatory funnel with acetone to wash off grains and heavy liquid that are stuck to the inside of the funnel.  If you process multiple samples, you will quickly accumulate a large volume of acetone+liquid washings.  These should be poured out of the “wash” flask and into a large beaker as necessary.  The beaker should be left out for 6‐12 hours, or until most of the acetone has evaporated, leaving a heavy liquid residue which can later be reclaimed.  The residue should be stored in a separate bottle marked “for reclamation.”  3‐5:  Clean up  Once all of your samples have been separated, it is time to clean up the heavy liquids.    Choose a clean glass funnel and decant the pure heavy liquids out of the “pure” flask and back into the bottle.  If there is any chance that grains have contaminated your “pure” flask, you need to filter the heavy liquids into a third, clean flask prior to returning it to the bottle.    Once the pure liquid has been stored, rinse the “pure” flask into the “wash” flask with acetone.  If necessary, rinse the separatory funnel with acetone into the “wash” flask.  Next rinse the “wash” flask and the glass funnel into the evaporation beaker.  ALWAYS STORE LIQUIDS IN A LIGHT‐PROOF BOTTLE, AND KEEP THEM STORED IN THE DARK WHENEVER POSSIBLE, OR THEY WILL BECOME DISCOLORED.  Always store MEI with a piece of copper in the bottle.  Once a piece of glassware has been thoroughly rinsed with acetone, move it into the sink and immediately fill it with water or submerse it in water.  Glassware can then be cleaned with the brushes  and DILUTE dish soap and placed on the drying rack to dry.  MAKE SURE TO RINSE ALL GLASSWARE WELL SO THAT SOAP DOES NOT CONTAMINATE THE LIQUIDS NEXT TIME THE GLASSWARE IS USED.  

Part 4:  Sample cleanup and loading Safety Notes: Before working with acids, make sure that you have been properly trained in lab safety techniques.  Always wear safety goggles, latex glove, a protective lab‐coat, and closed‐toed shoes.  Never place your head inside of the fume hood or smell the acids. 

 Overview: After frantzing and heavy liquids your sample may or may not be pure.  Depending upon the level of contamination and the contaminating phases, there are several steps that can be taken.  TAKE PAINS TO KEEP YOUR SAMPLE EXTREMELY CLEAN DURING THESE FINAL STAGES.  IT IS NOW PARTICULARLY VULNERABLE TO CONTAMINATION.  4‐ 1: Dilute acid leach DO NOT USE WEAK ACIDS ON APATITE OR CALCITE.  THEY WILL DISSOLVE IMMEDIATELY.  

Page 11: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

11  

This step is important because it cleans the sample well to ensure no heavy liquids contaminate the mass spectrometer.  It can also dissolve adhering groundmass, coatings, or other impurities and help to further break apart poly‐mineralic grains.    Transfer the sample into a 5 ml Teflon beaker and label the screw top.  Add ~3 ml of deionized water to the sample, and ~200 μl of concentrated 2: 1 HF:HNO3.  This makes ~4.5% acid.   Tightly close the screw cap and gently invert the sample several times.  Do not shake the sample violently.  Place the sample in the ultrasonic bath, with the heat “on” and sonicate for at least one hour.    When the sample is finished sonicating, carefully decant the dilute acid into the plastic jug labeled “HF waste” in the fume hood.  Make sure not to dump your sample into the bottle… the Teflon is slippery.  Rinse the sample with deionized water at least 3 times, each time closing the cap and gently shaking the vial.  Give the sample a final rinse with acetone, and decant it into a drying dish.  Rinse all acetone out of the drying dish and place the dish in the drying oven.    Repeat the above process as many times as necessary until your mineral phase appears to be clean and free of adhering groundmass.   Bonus tip:  Zircon, rutile and kyanite can withstand full strength HF:HNO3 allowing all other contaminant phases can be dissolved.    4‐2:  Final frantzing Look at your sample when it is dry.   If the acid rinse has broken apart poly‐mineralic grains, you may want to consider frantzing your sample a final time to remove undesirable grains that are now liberated.  This seems redundant, but can save you time during the final mineral picking stage.    During the final frantzing, simply repeat the frantz settings that were used to purify the separate initially.  For example, for olivine this might be a pass at 0.3A and another at 0.45 A.   You may find that the magnetic properties have changed slightly now that the minerals are clean.  For zircon or apatite, this might mean a single pass at 1.8 A (4° tilt) to pull off any remaining magnetic grains.  4‐3:  Final sieving To this point, we have been processing a relatively wide grain size fraction to make sure enough material is obtained in the final separate.  Prior to analysis, you may want to sieve your grains into a narrower grain size range, either to make them easier to pick clean, or to make calculations related to implant/export (i.e. alpha ejection, or Li‐implantation calculations).  Suggested grain size fractions:   Olivine, pyroxene, titanite, garnet:  190‐300 um or 300‐600 for very large grains.  Zircon and apatite: 150‐190, 125‐150, 100‐125, 75‐100, <75 (depending on application)  Dry Sieving For the final sieving, use disposable “Nitex” sieve screens.    These come in a range of sizes, and the exact size fraction depends on the specific sample and application.   After choosing your mesh size cut the Nitex fabric into a ~4”x 4” square.  Place the nitex screen on the smaller plastic ring, and slide the larger plastic ring over it, to create a temporary sieve.  Place pieces of scotch tape on either side to hold the two pieces of plastic in place against the restoring forces of the mesh.  Lay out a clean piece of paper (on top of another clean piece of paper) with the sides folded upwards into a temporary box, and sieve 

Page 12: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

12  

the sample into this.  When finished, simply fold the piece of paper, and pour the smaller fraction into a well labeled storage vial.  Use weighing paper to funnel the larger fraction back into its vial.  Wet Sieving  If you are sieving grain sizes of <~ 150 um, you will want to “wet sieve” your sample because static cling will prevent efficient sieving of small grain sizes.    To do this, set up the sieve screen as described above, but place it into a large glass petri‐dish.  Add the sample, and gently rinse it with ethanol.  If necessary, put clean latex gloves on and gently rub your fingers over the mesh to help massage the grains through the fine mesh and into the petri dish below.  When finished, remove the sieve screen, fold it in half, and gently rinse it with ethanol to wash the larger grain size fraction into a clean petri dish.  You can spray the outside of the folded sieve screen to ensure that no grains are washed through during this rinse phase.  Rinse the acetone out of both petri dishes, and place them in the drying oven to dry.  If you need to sieve into multiple size fractions, start with the larger fraction.  After each sieving, you can simply pour the smaller fraction directly onto the next smaller sieve screen, without drying the sample each time.  4‐4: Mineral picking Once you have completed the second round of sieving and frantzing, your sample should be ready to pick your sample clean of contaminant phases.   “Negative picking” for Cosmogenic Dating  Rules of thumb: If your sample is not already at least 90% pure, picking will take too long and you may want to consider alternative approaches.    Larger grain sizes are much easier to pick.  Always use the biggest grain size possible.  If the sample is relatively pure, weigh out the desired amount of sample into a plastic or glass petri dish.  To determine the approximate amount of sample to use, please consult the attached spreadsheet titled “sample_mass_calculator.xls.”    Purify the sample by “negative picking” (i.e. pick out all contaminant mineral phases).  Make sure to pick out any poly‐mineralic grains, discolored grains, or grains with large inclusions.  Alternate between using reflected light (from above) and transmitted light (from below).  Transmitted light can be especially effective for discriminating transluscent grains based on relief (i.e. apatite and quartz), and for identifying inclusions.  If you are not sure which minerals are which, ask Willy for help.  “Positive picking” for single grain applications   Many applications, such as (U‐Th)/He dating, require single grains of very high quality to be picked.  This section will be written when someone needs to do this.  See Willy or Lindsey.  4‐5: Photographing grains  For many applications, it is important to document the exact size of the grain(s) you will be measuring.  For cosmogenic samples, this entails several microscope‐photographs of the sample, which can later be dimensioned.    

Page 13: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

13  

First spread your sample out in a glass or plastic dish (try tapping the dish) so that grains are not on top of each other and can be clearly viewed in their average cross sectional geometry.  Find a representative portion of your sample and either ZOOM THE MICROSCOPE ALL THE WAY IN (110x) OR ALL THE WAY OUT (18x).  Note that the microscope is only calibrated for these two magnifications and you will not get accurate measurements if you use another setting.     Turn on the computer next to the microscope (user: farley, password: kf123).  Open Olympus microsuite from the desktop.  Click on the icon of the video camera to view a live feed from the microscope camera.    Find the small metal lever on the right hand side of the microscope just below the eye piece and slide it backwards to open the camera aperature.  Adjust the lighting (you can use either reflected or transmitted) and the focus until you can see a clear image on the computer screen.  When you are happy with the image, press the camera icon to “take” the photo.    At the top of the window choose “Image   Set Magnification”, and then choose the appropriate magnification option as defined above.  Next go to” Image   Scale Bar   burn scale bar into image”, a scale bar should appear in the bottom right hand side of the image.  Finally go to “File  Save As”, and save the image in your folder.    Repeat this process as necessary until you have enough photographs to measure ~200 grains, which will be sufficient for a statistical count.  To measure grain sizes, open an image.  Go to “measure   measure arbitrary length”.   You are now in dimensioning mode.  Measure the length of a grain by left clicking once at the tip of the grain, and then left clicking again at the other end of the grain.  Next measure the width in the same fashion.   When you are finished measuring all of your grains, right click and choose “yes” to stop measuring.  A spreadsheet will appear on the screen, which you can save as either a text file or excel spreadsheet.  The measurements appear on the spreadsheet in the order they were made, so make sure you ONLY HAVE PAIRS OF LENGTHS AND WIDTHS, WITH NO EXTRANEOUS MEASUREMENTS INTERSPERSED.  4‐6: Crushing the sample  Because many mineral phases can contain magmatic helium bound in inclusions, it is important to crush the crystals and liberate this gas prior to fusion.  To ensure that as much as possible of the magmatic gas is removed, it is also necessary to sieve the crushed material.  Begin by finding a small mortar and pestle and cleaning it very thoroughly with alcohol and kim‐wipes.  If there is still residue, try sonicating the pieces in alcohol.  Use weighing paper to transfer your sample into the pestle, and thoroughly grind it into a powder.  Next, follow the instructions under the “wet sieving” section above, using a 26 um sieve cloth.  Each time you sieve a sample through the 26 um cloth, make sure to let it settle for a couple minutes before pouring off the alcohol, so that you do not loose part of your sample in suspension.   As described above, rinse off the coarse fraction into a petri dish and dry it in the oven.  Repeat this process of crushing and sieving until your entire sample is <26 um, and is sitting in one petri dish.  Gently pour off the alcohol and dry your sample in the oven. 

Page 14: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

14  

 4‐7: Loading and weighing  Rules of thumb:  Always wear gloves.  Always put down clean paper near the scale before you put any of your sample dishes down.  Make sure the balance is clean.  Put on gloves.  You will now make an Al “cup” to hold your sample.  Find a roll of aluminum foil and tear off a small piece ~2 inches in diameter.  Place your index finger in the center of the foil, and wrap the side around your finger.  As you pull your finger out, flatten the base of the cup with your other hand. The cup should now stand on its own inside the balance.  Place the Al cup on the balance, close all doors, and tare the balance.  Transfer your sample powder into weighing paper and carefully pour the powder into the Al cup.  Do not spill.  If you spill, you need to start over because some of your sample will be included in the weight, but will not be in the cup.    Record the sample mass in your notebook.  Find a clean plastic dish (perhaps the one the sample was in previously), and label the dish with the sample name and mass.  Carefully remove the foil ball from the scale and crimp down the top so that no material can spill.  Wrap the sample in a second piece of foil of similar size, and roll it between your thumb and index finger to shape it into a perfect ball.    Your ball must be spherical and have a diameter between XXX and XXX mm.   It should be very firm with no lose scraps of aluminum hanging of it.  The specifications are CRITICALLY IMPORTANT to avoid problems with the automated feeder when your sample is dropped into the furnace.  Place your ball in the plastic container and tape it closed with scotch tape.  It is now ready to run.    

 

Page 15: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

COM

MON

HEAV

YM

INER

ALS

INSE

DIM

ENTA

RYRO

CKS

ARRA

NGED

INGRO

UPS

BASE

DON

MAS

SM

AGNE

TIC

SUSC

EPTI

BILI

TY*

Si

de

Slo

pe

20

0Si

dS

lop

e5

0e

AB

C0

EF

mag

netic

mag

netic

mag

netic

mag

netic

nonm

agne

ticH

and

mag

net

at0.

4A

mps

at0.

8A

mps

at1.

2A

mps

at1.

2A

mps

at1.

2A

mps

Mag

netit

eIlm

enite

Hor

nble

nde

Dio

psid

eSp

hene

Zirc

on

Pyrrho

tite

Gar

net

Hyp

ersthe

neTr

emol

iteLe

ucox

ene

Rut

iIe

Oliv

ine

Aug

iteEn

stat

iteA

patit

eA

nata

se

Chr

omite

Act

inol

iteSp

inel

And

aIu

site

Bro

okite

Ch

lorit

oid

Stau

rol

iteSt

auro

lite

Mon

azite

Pyrit

e

Epid

ote

(Iig

ht)

Xen

otin

eCor

undu

m

Bio

tite

Mus

covi

teTo

paz

Ch

lorit

eZo

isite

Fluo

rite

Tour

mal

ine

Clin

ozoi

site

Kya

nite

(dar

k)To

urm

alin

eSi

llim

anite

(Iig

ht)

Anh

ydrit

e

Ber

yI

*In

asm

uch

asm

iner

als

vary

cons

ider

ably

inco

mpo

sitio

n,th

eyal

sova

ryco

nsid

erab

lyin

mag

netic

susc

eptib

ility

.A

nygi

ven

min

eral

ma'y

befo

und

inso

me

grou

pot

her

than

liste

din

the

tabl

e.Th

eta

ble

mer

ely

indi

cate

srh

esu

scep

tibili

tyw

hich

isus

ually

foun

d.

Page 16: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

The free fall setup is advantageous where more rapid separations or separations of larger quan-

tities of material are desired. Fifty pounds an hour may be run through the magnetic field. It isalso particularly useful for diamagnetic separations. The magnet is rotated ,to the vertical po-

sition and given a 2°to SOslope forward and do'wnward. For a diamagnetic separation, the fun-nel is inserted in the forward hole of the carrier and adjusted in position until it is approximate-ly in the plane of the forward face of the magnet poles. Suppose a concentrate of zircon, rutileand monazite are to be separated. A high field strength should be used (1.2 Amps.) The dia-magnetic zircon will be thrown forward as it falls; the rutile may be expected to fall almost ver-tically; and the slightly magnetic monazite will be attracted back towards the pole pieces. Byadjustment of the position of the divider below the magnet, various cuts may be made as desiredfrom the falling stream. For any particular separation, some trial experimentation in the adjust-ment of the position of the feed funnel above and divider below is necessary. Free fall doesnot give as clean separations as does the inclined chute. It is often convenient to make a freefall, rapid, first concentrate from a large sample. The concentrate can then be refined by theinclined chute method.

The magnet is set in the vertica I position and slanting steeply downward and forward. A pieceof wrapping paper is fastened over the sloping surface with Scotch tape or if many such separa-tions are to be made, an aluminum sheet tapered at the bottom to a funnel is so affixed. The

magnetite containing sample is poured down the sloping surface with a small current flowingthrough the magnet. The magnetite sticks to the paper or plate and the remainder of the sampleflows to the bottom where it is collected in a tray or suitable container. A fairly pure concen-tration of magnetite is thus obtained and a,nother concentrate completely free of magnetite. Inthe magnetite fraction, some minerals may be trapped between the magnetite grains. If the mag-netic fraction is freed from the sheet by cutting off the current, it can then be passed over thesheet again perhaps at a somewhat lower field strength. In this way, the magnetite concentratecan be rapidly cleaned up.

9. MASS MAGNETIC SUSCEPTIBILITY DETERMINATION.

An approximate determination of the mass susceptibility of any material passed through the sep-arator can be made by application of the following equation:

2 sin X

·2I

mass susceptibility = magnetic susceptibilitydensity

X angle of side slopecurrent in amperes

Th is can be appl ied in the cases where Km is much less than 1. It may not be used for magne-tite or other substances with a very high value for Km• Above a current strength of 1.3 amperes,saturation sets in so that determinations must be made at currents lower than this value. Theequation given above is solved graphically in the nomogram on the next page.

Page 17: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

40

30

20

I!l 15 1.5WWa:19 10 1.0W 9 .90

8 .8~ 7 .7

6 .6W

5a. .50 tI).-l

4 .4- WtI) cr.35 WW 3 .3

0.0 LVi <1

I'IS 2 .2

.15

.1

.09.08.07.06

.05

.04

.035

.03

EQUATiON: K = 20 SIN 0< x 10-6 CGSM It

EXAMPLE:00< 10

I .3 AMP .

KM38 • 10-<0

.15

.2

.25

.3

.35

.4

.5

.6

.7

.8

.91.0

\.s

22.5

33.5 \ll

I4 0

5U1

6 l'J

7 U

8 >-9 r-iO -l

COf=

15Q.

wutf)

20 ::JUl

25 <f)<f)

;'0 <l:~

35 I40 L::c:5060708090100

150

200

250

300350400

5006007008009001000

Page 18: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 1 of 3 Geoliquids, Inc. 1-800-827-2411

June, 2009MSDS: METHYLENE IODIDE

IDENTIFICATION: Product Name: METHYLENE IODIDE

SYNONYM: DIODOMETHANE

CAS Number: 75-11-6

Molecular Weight: 267.84

Chemical Formula: CH2I2

Shipping Information: Toxic liquid, organic, n.o.s. (methylene iodide),

UN2810, 6.1, PGIII

PHYSICAL DATA:

Boiling Point (F): 180 - 181°C.

Melting Point: 5-8°C

Odor: Ethereal

Vapor Density (Air=1): 9.25

Appearance/Odor: Light yellow, clear liquid (light sensitive)

Flash Point: >110°C(>230° F)

Specific Gravity: 3.30-3.33 @ 20°C (water = 1)

Solubility: insoluble in cold water

___________________________________________________________________________________________________________

FFIIRREE AANNDD EEXXPPLLOOSSIIOONN HHAAZZAARRDD::

Flash Point: None

LEL: Not Known

UEL: Not Known

Extinguishing Media: Dry Chemica, CO2 or alcohol foam.

SPECIAL FIRE FIGHTING PROCEDURES: Wear full protective equipment

including self-contained breathing apparatus (eye, body, respiratory).

UNUSUAL FIRE HAZARDS: Emits toxic fumes under fire conditions.

REACTIVITY DATA:

INSTABILITY: THis chemical is initially colorless, but may darken with exposure to air and light.

This product reacts violently with alkali metal salts and explosions could result.

HAZARDOUS POLYMERIZATIONS: Will not occur.

INCOMPATIBLES: Strong bases, strong oxidizing agents, alkali metal salts.

DECOMPOSITION PRODUCTS: Carbon Monoxide, Hydrogen Iodide, and Carbon Dioxide.

Page 19: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 2 of 3 Geoliquids, Inc. 1-800-827-2411

___________________________________________________________________________________________________________

STORAGE, SPILL, AND DISPOSAL:

STORAGE: Product must be kept away from light, heat, moisture, air, flame and other sources of

ignition. Store in a cool, dark, dry area.

SPILL: Absorb onto diatomaceous earth, sand or other noncombustible absorbent material. Placein proper container for disposal. Then wash area with water.

DISPOSAL: Collect and dispose of waste in accordance with applicable local, state and federals

laws.

SPECIAL PROTECTIVE EQUIPMENT:

Use in adequately ventilated area, (chemical fume hood recommended). Utilize eye

protection and protective rubber gloves and apron. Use a NIOSH approved

respirator with proper vapor/gas cartridge when necessary or when ventilation is

inadequate.

___________________________________________________________________________________________________________HEALTH HAZARD DATA:

HAZARD RATING SYSTEM:

HEALTH =2

FLAMMABILITY = 1

REACTIVITY = 1

HAZARD RATINGS ARE 0-4 (0= NO HAZARD; 4= EXTREME HAZARD)

POSSIBLE ROUTES OF ENTRY: Eye, skin, ingestion, inhalation

POTENTIAL HEALTH EFFECTS: Harmful if swallowed, inhaled or absorbed through skin. Causes

skin and eye irritation. Vapor may cause respiratory tract irritation.

EFFECTS OF OVEREXPOSURE: Prolonged and repeated contact with this chemical may be

harmful. Always avoid contact with skin, eyes and mucous membrane. Prolonged

exposure to iodides may produce iiooddiissmm in sensitive individuals. Symptoms of iiooddiissmm

exposure include: skin rash, running nose, headach and irritation of mucous membrane.

For severe cases the skin may show pimples, boils, hives, blisters and black and blue spots.Iodides are readily diffused across the placenta. Neonatal deaths from respiratory distress secondry to goiter have been reported. Iodides have been known to cause drug-induced fevers, which are usually of short duration. Always avoid contact with skin, eyes and mucous membranes.

Page 20: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

FIRST AID:

EYES: Remove any contact lenses and immediately flush eyes with water for at least 15 minutes.

If irritation develops or persists, seek medical attention.

SKIN: Remove any contaminated clothing and immediately flush area with water for at least 15minutes. If irritation develops or persists, seek medical attention. Wash contaminated clothing before reuse.

INHALATION: If inhaled, remove victim to fresh air, if not breathing give artificial respiration. If

breathing is difficult, give oxygen. Seek medical attention.

INGESTION: If ingested can conscious, give several glasses of water. Never give anything by mouth to an unconscious person. Do not induce vomiting. Seek medical advice immediately.

____________________________________________________________________________________________________________

SSPPEECCIIAALL PPRREECCAAUUTTIIOONNSS::

AALLWWAAYYSS UUSSEE PPEERRSSOONNAALL PPRROOTTEECCTTIIVVEE EEQQUUIIPPMMEENNTT AANNDD FFOOLLLLOOWW SSAAFFEE LLAABBOORRAATTOORRYY PPRRAACCTTIICCEESS

DDUURRIINNGG HHAANNDDLLIINNGG AANNDD SSTTOORRAAGGEE OOFF TTHHIISS CCHHEEMMIICCAALL.. HHAANNDDLLEE OONNLLYY IINN WWEELLLL VVEENNTTIILLLLAATTEEDD AARREEAASS..TTHHEE DDAATTAA PPRROOVVIIDDEEDD IISS CCOORRRREECCTT TTOO TTHHEE BBEESSTT OOFF OOUURR KKNNOOWWLLEEDDGGEE.. WWEE SSHHAALLLL NNOOTT BBEE HHEELLDD LLIIAABBLLEE FFOORR AANNYY DDAAMMAAGGEESS RREESSUULLTTIINNGG FFRROOMM HHAANNDDLLIINNGG OORR CCOONNTTAACCTT WWIITTHH TTHHIISS PPRROODDUUCCTT..

The information herein is true and accurate to the best of our knowledge. No warranty or guarantee is expressedor implied in this data. It is the user’s responsibility to determine the suitability for his own use of the productsdescribed within. Nothing shall constitute permission, inducement or recommendation to practice any inventioncovered by and patent owned by Geoliquids, Inc. or by others, nor as a recommendation to use and product or topractice any process in violation of any law or government regulation.This material is supplied for use in laboratories with proper ventilation by skilled people only.

Page 3 of 3 Geoliquids, Inc. 1-800-827-2411

Page 21: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 1 of 3 Geoliquids, Inc. 1-800-827-2411

June, 2009

MSDS: ACETYLENE TETRABROMIDE

CHEMICAL DATA: Synonyms:1,1,,2,,2 -Tetrabromoethane; acetylene tetrabromide; TBE tetrabromoacetylene;Muthmann’s liquid

Chemical family: Brominated alkanes

Formula: C2H2Br4;CHBr2CHBr2Molecular weight: 345.7

CAS RN: 79-27-6

INGREDIENTS: Tetrabromoethane - 100% (approximately)

PHYSICAL DATA: Boiling point: 119°C at 15 mm Hg150°C at 50 mm Hg

Freezing point: -1°=1°C

Vapor pressure: 0.02-0.1 mm Hg at 20°C

Vapor density: 11.9 (air = 1)

Solubilityin water: 0.063g/100 at 20°C; 0.28g/100 at 80°C

in other solvents: Miscible in all proportions with a number of well known organicsolvents like acetone, alcohol, benzene, carbon tetrachloride, chloform, etc.

Specific gravity: 2.96 at 25°C

Evaporation rate: >100 (ethyl ether = 1)

Decomposition: Decomposes at 239 -242°C (760 mm Hg)

Appearance and odor: Colorless to yellowish liquid with sweet pungent odor.

FIRE AND EXPLOSIONHAZARD DATA: Flash point: Non-flammable

Autoignition temperature: 335°C

Flammable (explosive) limits: Non-flammable

Extinguishing media: Water, foam, fog, CO2 or dry chemical

Special fire fighting procedures: Provide fire-fighters with full protective clothes, imperviousgloves, boots and apron and self-contained breathing apparatus.

Unusual fire and explosion hazards: When heated, emits highly toxic fumes of bromine,hydrogen bromide, and carbonyl bromide.

Page 22: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 2 of 3 Geoliquids, Inc. 1-800-827-2411

HEALTH HAZARD DATA: Toxcity: LD50 (oral, rabbit) - 400 mg/kg

LD50 (oral,rat) - 1100 mg/kg

LD50 (dermal, rat) - 5250 mg/kg

Threshold limit value: Air: 1 ppm (14 mg/m3)

Effects of overexposure:

Eve contact: Mild irritant.

Skin contact: Moderate irritant

Skin absorption: Not likely to be absorbed in toxic amounts.

Mutagenicity: Positive in DNA repair system using Escherichia coli (10 mg/disc).

Emergency & first aid procedures:

Eye contact: Flush eyes promptly with plenty of water for at least 15 minutes. Get medicalattention immediately.

Skin contact: Remove all contaminated clothing including shoes. Wash skin thoroughly with mildsoap and plenty of water. If irritation persists, get medical attention. Wash clothing before re-use.

Inhalation: Remove person to fresh air. Place him in half upright position and keep him quiet andwarm. Apply artificial respiration if necessary and get medical attention.

Ingestion: If swallowed, give two glasses of water and induce vomiting. Get medical attentionimmediately. Do not induce vomiting or give liquids when person is unconscious.

Note to physician: Treat symptomatically - no known antidote.

REACTIVITY DATA: Stability: Stable under normal conditions. Decomposes slowly at 50°C.

Conditions to avoid: High temperatures.

Incompatibility: Reacts with chemically active metals or strong caustics. In the presence of steam,contact with hot iron, aluminum, and zinc may cause formation of toxic vapors. Softens ordestroys most plastics and rubbers.

Hazardous decomposition products: Upon heating to decomposition, irritant, toxic hydrogenbromide, bromine, and carbonyl bromide fumes may evolve.

Hazardous polymerization:Will not occur.

SPILL OR LEAKPROCEDURES: Steps to be taken in case material is released or spilled: Instruct others to keep at a safe

distance. Wear breathing apparatus and gloves. Contain large spills by diking. Pump as much aspossible into drums. Absorb the rest with earth, sand or sawdust; flush area with water. Preventliquid from entering sewers.

Waste disposal method: Salvage if possible. Bury in an approved landfill. Keep out of watersupplies. If this is not practical, rinse drums with a flammable TBE miscible solvent. Addresulting mixture in small portions to a furnace equipped with a good scrubbing system to containtoxic gases such as bromine, HBr and carbonyl bromide which evolve at high temperatures.

Page 23: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 3 of 3 Geoliquids, Inc. 1-800-827-2411

SPECIAL PROTECTION INFORMATION:

Ventilation requirements: Sufficient to control to TLV.

Protective equipment

Eyes: Safety glasses

Gloves: Impervious gloves

Respirator: Minor leaks - full face gas mask and organic canister.

Major leaks - contained breathing apparatus or an air supplied hood.

Clothing: Clean, full body-protecting clothes, boots and apron.

Other protective equipment: Eye fountain and safety shower near work area.

SPECIAL PRECAUTIONS:

Precautions to be taken in handling and storage: Use gloves and eye protection when handling;avoid inhalation of vapor above threshold limit value.

REGULATION INFORMATION:

Transportation:

IMO: Class 6.1 - Poisons; label no. 6, HARMFUL - Stow Away From Foodstuffs;Packaging group: III (IMDG CODE - Page 6008-1, amendment 18-79)

RID/ADR:

6.1/62B

UN No.: 2504Reported in EPA TSCA Inventory, 1983.LIsted in EPA Genetic Toxicology Program,1984.Not listed in NTP.

DOT Classification:ORM-A

The information herein is true and accurate to the best of our knowledge. No warranty or guarantee is expressedor implied in this data. It is the user’s responsibility to determine the suitability for his own use of the productsdescribed within. Nothing shall constitute permission, inducement or recommendation to practice any inventioncovered by and patent owned by Geoliquids, Inc. or by others, nor as a recommendation to use and product or topractice any process in violation of any law or government regulation.TThhiiss mmaatteerriiaall iiss ssuupppplliieedd ffoorr uussee iinn llaabboorraattoorriieess wwiitthh pprrooppeerr vveennttiillaattiioonn bbyy sskkiilllleedd ppeeooppllee oonnllyy..

Page 24: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 1 of 9 Geoliquids, Inc. 1-800-827-2411

June, 2009

MMSSDDSS:: SSOODDIIUUMM PPOOLLYYTTUUNNGGSSTTAATTEE

Sodium Polytungstate is a new component in the production of heavy solutions. It brings a number of advantages with itwhen compared to Zinc-Chloride solutions or highly toxic halogenous hydrocarbons used in Sink or Swim analysis.

FORMULA: Na6[H2W12O40] or 3Na2WO4 9WO3 H2O

APPEARANCE: white crystals or light yellow-green, transparent solution

PROPERTIES: well soluble in water, pH-neutral solution, maximum attainable solution density 3,1 g/cm3 at 25°C

ADVANTAGES: Non-toxicNonflammableNon-odorousWorking under an extractor unnecessaryReusableDensity may be regulated with water from density 1,1 – 3,1 g/cm3

Low viscosityEasy to handleThe sink or swim material is extremely easy to clean with waterEcologically friendly

APPLICATIONS: The dense solution is produced by dissolving sodium polytungstate in deionised water.In this association, one is dealing with an extremely water soluble sat. The maximum attainablesolution density at room temperature is 3,1 g/cm3. Further chemo-physical details may be read from both diagrams, which illustrate density as a function of sodium polytungstate (Fig. 1).viscosity as a function of density (Fig. 2). As is demonstrated in Figure 2, viscosity rises insignificantly to a density of 2,5 g/cm3. Separation is therefore possible even in the fine particles realm. In areas of higher density a laboratory centrifuge should be employed to accelerate separation.

STABILITY: Moreover, the solution may be reused after filtration. The used solution need then only be heatedto a temperature of max. 70°C and reduced to achieve the desired density. Complete dehydration is also possible add no problem.

STRUCTURE: It is a 12-fold aggregated iso polytungstate with a molar mass of >2986,12 g/mol.According to models, polytungstate is built up of octohedrons in which the oxygen ions are to befound on the corners and the tungsten ions in the center of octohedron. When represented as aspherical model, the oxygen ions comprise a dense spherical shell in which the tungstate ions fill the open spaces in the octohedron.

Page 25: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 2 of 9 Geoliquids, Inc. 1-800-827-2411

So composed, one may consider this a “true” meta-tungstate, structurally represented asNa6[H2W12O40] . It is known of true meta-tungstate that both of the oxygen atoms are to be

found in the central cavity of the polyanions and are incapable of transcending the spherical casing.

DIRECTIONS: Solid crystalline sodium polytungstate is anhydrous and has an unlimited shelf life atroom temperature.Please note the following when using aqueous polytungstate solution:

a) Use only distilled or demineralised waterb) Close all vessels properly after usec) Use only glass, synthetic or stainless-steel vesselsd) Do not bring the solution into contact with reduced materials. In such cases the resultant blue

coloring will not have any effect on the pre-set density. A few drops of hydrogen peroxide willremove or prevent the solution from turning blue.

e) The sink or swim material should not contain any water soluble ions. In particular Pb2+, Ag+,

Sn2+, and Ba2+ ions lead to the formation of insoluble precipitations of Polytungstate. Shouldsoluble ions be present in the material, it should be washed beforehand in hot water.

ANALYSIS: Solid sodium polytungstate contains a minimus of 86± 1% WO3. The amount of water bound in sodium polytungstate may deviate marginally.Typical analysis results (no guarantee):Al <0,0015%; As <0,012%; Bi <0,0005%; Ca <0,008%; Mg <0,0015%Cu <0,001%; Fe <0,008%; Mn <0,001%; Mo <0,02%; Ni <0,001%P <0,005%; Pb <0,0005%; S <0,004%; Sb <0,001%; Si <0,005%;Sn <0,0005%; Ti <0,001; V <0,001%; K <0,006%.

SUPPLY FORM: Sodium polytungstate is usually supplied as an instantly usable aqueous solution with a density of 2.82± 0,02 g/cm3 or a density of >3.0 g/cm3 in 1 kg, 5 kg, 10 kg and 25 kg units.In special cases, sodium polytungstate may be supplied in crystaline form in1 kg, 5 kg, 10 kg and 25 kg units.

TOXICOLOGY: Generally all tungsten compounds are considered non-toxic (cf. “Metal Toxicity in Mammals - 2”, Chemical Toxicity of Metals and Metalloids by B. Venugopal and T.D. Luckey, Department ofBiochemistry, University of Missouri, Columbia 1978, as well as Handbook on the Toxicology of Metals, Chapter 39, by L. Fridberg, G.F. Nordberg and V.B. Vouk, ElsevierlNorth Holland Biochemical Press (1979)). Further, tungsten is not mentioned in the phannacological textbook by Bader, in which the whole spectrum of toxic heavy metals is listed. Sodium metatungstate/sodium polytungstate was considered a new substance within the parameters of the new Chemicals Act (ChemG) and as such thoroughly analysed according to the given legal provisions (in accordance with the declaration and registration duties and the detailed test certificate provided for by the ChemPriifV [Test Certificate Decree]). Sodium polytungstate was considered non-toxic in terms of the Chemicals Act. Sodium polytungstate provided the following test results: LD50 oral, Rat = 1715 mg/kg; LD50 dermal, Rat = > 2000 mg/kg. Sodium polytungstate will not lead to skin irritation or skin sensibility. Crystallised sodium polytungstate should not come into eye contact (eye irritation).

Page 26: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

WASTE MANAGEMENT: The Sodium Polytungstate material can be reused over and over again by filtering out unwanted minerals leaving the clear Sodium Polytungstatematerial. Once the material does get used up from multiuse etc. you will need to contact a waste disposal company in your area to get rid of it. They will consult with you to dispose of the unwanted material.

VISCOSITY: Density approx. 2.45 g/cm3

, approx. 8 mPa.s *

Density approx. 2.89 g/cm3

, approx. 26 mPa.s **

*1 mPA is the viscosity of pure water. Therefore 8 mPa.s means that S/P is 8 times higher than pure water.

** The viscosity of the S/P at this density means that S/P is 26 times higher than the viscosity of pure water.

Page 3 of 9 Geoliquids, Inc. 1-800-827-2411

POLY-GEE BRAND SODIUM POLYTUNGSTATE:

The mixing of powder material:

Combine the POLY-GEE Brand Sodium Polytungstate powder and very pure distilled water in a pyrex beaker. Heat the waterand powder combined, to more than 20ºC to dissolve the powder. Heat slowly so as not to burn the POLY-GEE material.Using the guidelines below for dilution, there might be a bit of variance in the density. If there is a variance, either boil offa bit of water (to increase the density), or add water (to decrease the density). The liquid will remain in liquid form. Keepin a plastic container. A bit of material may settle out over time. You need not be concerned about this.

For a Density of 2.45. Amounts of POLY-GEE material and distilled water:1lb. Poly-Gee (454 grams) + 160 grams of water = Density approx. 2.45 g/cm35 lbs. Poly-Gee (2270 grams) + 800 grams of water = Density approx. 2.45 g/cm310 lbs. Poly-Gee (4540 grams) + 1600 grams of water = Density approx. 2.45 g/cm3

For a Density of 2.89. Amounts of POLY-GEE material and distilled water:1 lb. Poly-Gee (454 grams) + 101 grams of water = Density approx. 2.89 g/cm35 lbs. Poly-Gee (2270 grams) + 505 grams of water = Density approx. 2.89 g/cm310 lbs. Poly-Gee (4540 grams) + 1010 grams of water = Density approx. 2.89 g/cm3

Do not boil the S/P Solution, maximum temperature is 158° F (70°C)

Page 27: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 4 of 9 Geoliquids, Inc. 1-800-827-2411

Figure 1:The density of aqueous sodium polytungstatesolution as a function of the mass portion at 25ºC.

concentration in %

3.0

2.5

2.0

1.5

20 40 60 80

dens

ity in

g/c

m

3

1.0 viscosity in mPa s

3.0

2.5

2.0

1.5

20 40 60 80

dens

ity in

g/c

m

3

1.0

Figure 2:The viscosity of aqueous sodium polytungstatesolutions as a function of density at 25ºC.

Figure 3:The viscosity of a heterogenous mixture of aqueous sodium polytungstatesolutions and tungsten carbide as a function of the solid material volumeportion starting from a saturated aqueous sodium polytungstate solution.

4.6

4.2

3.8

3.4

10 20 30 40 50

p/g • cm -35.0

Vol %WC

Page 28: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 5 of 9 Geoliquids, Inc. 1-800-827-2411

1. INDENTIFICATION OF THE SUBSTANCE/PREPARATION:Sodium metatungstate, Sodium polytungstate andaqueous solution of Sodium metatungstate, Sodium polytungstate

2. COMPOSITION/INFORMATION ON INGREDIENTS:CAS name: tungstate (W12(OH) 20386-), hexasodium, hydrate

CAS No.: 12141-67-2 ELINCS No.: 412-770-9

Hazard symbol: Xn

R-phrases: 22-41-52/53

3. HAZARD IDENTIFICATION: Harmful if swallowed. Risk of serious damage to eyes. Harmful to aquatic organisms.

May cause long-term adverse effects in the aquatic environment.

4. FIRST-AID MEASURES: After inhalation take the patient into fresh air. Symptomatic treatment.

After contact with skin, wash immediately with plenty of water.

After contact with eyes, rinse eyes with water for at least 15 minutes, keeping the lids open.Consult a doctor.

In case of swallowing drink plenty of water. Induce vomiting. Symptomatic treatment.Consult a doctor.

5. FIRE-FIGHTING MEASURES: Suitable extinguishing media: No restriction in fire situations.For reasons of security unsuitable extinguishing media: None.Special risk due to the substance or the preparation itself, its combustion products or the gas being produced: In case of fire, tungsten trioxide is formed.Special protective equipment when fighting fires: Firemen have to wear self-contained breathing apparatus.

6. ACCIDENTAL RELEASE Avoid contact with skin and eyes.MEASURES: Use the personal protective equipment listed in Number 8.

Do not empty into drains or waters.

Take up mechanically, avoid dust formation. Fill into labeled, sealable containers.

7. HANDLING & STORAGE: Information on safe handling Recommended is: Use filling and siphoning unit which can be sealed dust-tight. Information On fire and explosion prevention: noneStorage requirements on storerooms and containers: The Water Resources Management Act and the relevant Local Waste Water Legislation and the Regulations on Plants for Storing, Filling and Transportation of Substances which are Hazardous to Water must be observed.

Information on common storage: Products of storage class 13 may be stored in the same section of the warehouse. Further information on storage conditions: Keep in sealed containers in a dry place. Storage class according to VCI: 13

8. EXPOSURE CONTROLS/ Respiratory protection: particle filter, e.g. DIN 3181 - P 2PERSONAL PROTECTION: Hand protection: gloves

Eye protection: tightly fitting protective goggles (acid protection goggles).

Body protection: Wear protective clothing.

SS AA FF EE TT YY DD AA TT AA SS HH EE EE TT

Page 29: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

9. PHYSICAL AND CHEMICAL PROPERTIES: Form: crystals

Color: white to yellow

Odor: lachrymatory

pH value: approx. 3 at 4000 g/l water at 20 °C

Melting point: decomposition

Inflammability: no

Spontaneous flammability: no

Boiling point: not applicable for crystals

Boiling point of solution: 100 °C (depends on density of the aqueous solution)

Vapor pressure: not relevant

Density: approx. 5,47 g/cm3 at 20 °C

Bulk density: approx. 1570 kg/m3

Solubility in water: >1000 g/l at 20 °C

Solubility in fat: <0,7 mg/100 g fat at 37 °C

Partition coefficient n-octanol/water: Log POW = < - 5,2 at 20 °C

Viscosity: not applicable

Viscosity of the solution: 1 mPas (depends on density of the aqueous solution)

10. STABILITY AND Conditions to avoid: none REACTIVITY: Substance to avoid: none known

Hazardous decomposition products: In case of fire, tungsten trioxide is formed.

11. TOXICOLOGICAL INFORMATION: Acute toxicity: LD50 oral, rat: 1715 mg/kg

Acute toxicity: LD50 dennal, rat: more than 2000 mg/kg Irritation of the eyes/rabbit: irritant, risk of serious damage to eyes (method: directive 84/449/EEC, B.5.). Irritation of the skin/rabbit ( exposure 4 h): non-irritant. (method: directive 84/449/EEC, B.4.).

Non sensitizising (method: directive 84/449/EEC, B.6.): Magnusson and Kligmann maximization test

Subacute toxicity: NOEL, oral, rat: 150 mg (28-day test)

Mutagenic effect: Salmonella/microsome test (Ames test): No indication of mutagenic effects. Micronucleus test: No indication of pI as to genic effects.

12. ECOLOGICAL Aquatic toxicityINFORMATION:

Acute fish toxicity 96 h LC0 = 320 mg/I (Cyprinus carpio) 96 h LC5o = 420 mg/l (Cyprinus carpio) 24 h LC5o = 420 mg/l (Cyprinus carpio)

Acute toxicity for daphnia: 48 h NOEC: 32 mg/l (Daphnia magna) 48 h EC5o : 83 mg/l (Daphnia magna) 24 h EC5o : 261 mg/I (Daphnia magna)

Page 6 of 9 Geoliquids, Inc. 1-800-827-2411

Page 30: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 7 of 9 Geoliquids, Inc. 1-800-827-2411

13 DISPOSAL CONSIDERATIONS: Unused material: reuse if possible. May be disposed of on approved landfills after

chemical/physical conditioning.

Waste code number: 51540

14 TRANSPORT INFORMATION: GGV See/IMDG Code: -- UN No. : -- EmS: --

PG: -- MPO: NO

GGVE/GGVS: Class -- No. -- RID/ADR: Class -- No. --

Warning sign: Hazard no. -- Substance no. --

ADNR: Class -- No. -- Cat -- ICAO/IATA-DGR: not restr

Declaration for land shipment: --

Declaration for sea shipment: --

Declaration for shipment by air: --

Other information: Not dangerous cargo. Keep separated from foodstuffs.

15. REGULATORY INFORMATION: Labeling in accordance with directive 79/831/EEC (definition principle) and its amendments

and adaptations:

Symbol: Xn, hazard description : harmful sodium metatungstate

R 22: Harmful if swallowed.

R 41: Risk of serious damage to eyes.

R 52: Harmful to aquatic organisms.

R 53: May cause long-term adverse effects in the aquatic environment.

S 22: Do not breathe dust.

S 26: In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.

S 39: Wear eye/face protection.

S 61: Avoid release to the environment. Refer to special instructions/Safety data sheets.

16. OTHER The data given here is based on current knowledge and experience. The purpose of this Safety INFORMATION: Data Sheet is to describe the products in terms of their safety requirements. The data does not

signify any warranty with regard to the products’ properties.

Page 31: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 8 of 9 Geoliquids, Inc. 1-800-827-2411

DIRECTIONS FOR USE:

HOW DO I WORK WITH SODIUM POLYTUNGSTATE?

a) Use only distilled or demineralized water.b) Use only glass, plastic or stainless steel containers.c) Always add solutions in portions to water, not vice versa, in order to expedite formation of solution.d) Do not allow the solution to come in contact with reducing agents.e) The samples to be separated should be free of soluble calcium ions.f ) Laboratory centrifuges should be used for very rapid separations in the higher density range.g) Avoid evaporation of the solution to dryness, since it takes many hours to redissolve the concrete-like solid formed

which cannot be removed mechanically from glass containers.

RECOVERY OF SODIUM POLYTUNGSTATEThe polytungstate solution can be recovered by washing respective particles with distilled or demineralized water and thenevaporating to the desired density respectively solid polytungstate is added.

1. THE VISCOSITY INCREASES RAPIDLY IN THE HIGH DENSITY RANGEWhenever possible, use a centrifuge (not a separatory funnel) for your work, since it shortens very substantially theseparation process and in overcoming problems caused by viscosity in high concentration ranges.

2. THE SAMPLES TO BE PROCESSED CONTAIN SOLUBLE CALCIUM IONSThe sample material to be separated should be free of soluble calcium ions. Otherwise, insoluble calcium polytungstateis formed. A respective example are clay-type minerals. If in doubt, wash sample thoroughly in hot water. If experimentsshow that there is still a reaction, simply use a minor amount of ethylenediamine tetraacetic acid, the common watersoftening agent. This complex is water soluble.

3. IF THE SOLUTION SUDDENLY TURNS BLUEThe solution has come into contact with reducing agents. This, however, does not influence the selected density. If thecolor is not to dark let the solution stand for a few days under admission of air or add a few droplets of hydrogenperoxide. The solution then returns to its original color or slightly yellow.

4. IF YOU WORK WITH SULFIDES, ETC.These could act as reducing agents. Wash the samples before separation with hot water or decompose the same with adiluted mineral acid.• Depending on whether the specified SPT you work with has 2, 12 or 24 H2O bonded as crystal water, there may beslight variations.

• Example: A solution with a density of 2.94 g/cm3 at 20ºC is obtained by an 84 mass % solution (e.g. 840g solid and160g water).

5. PROCEDURE FOR RECYCLING SODIUM POLYTUNGSTATEa) Pour Na Polytungstate through a 55mm glass microfibre filter (Whatman Cat. No. 1820 055)b) Discard the filters (use many to filter a 2-liter solution)c) Pour the filtrate into plastic pans, and place in oven at 50C. After 2–3 days, the liquid has evaporated,

leaving a solid.d) Grind solid, recycled Na Polytungstate using a mortar and pestle.

The information herein is true and accurate to the best of our knowledge. No warranty or guarantee is expressedor implied in this data. It is the user’s responsibility to determine the suitability for his own use of the productsdescribed within. Nothing shall constitute permission, inducement or recommendation to practice any inventioncovered by and patent owned by Geoliquids, Inc. or by others, nor as a recommendation to use and product or topractice any process in violation of any law or government regulation.TThhiiss mmaatteerriiaall iiss ssuupppplliieedd ffoorr uussee iinn llaabboorraattoorriieess wwiitthh pprrooppeerr vveennttiillaattiioonn bbyy sskkiilllleedd ppeeooppllee oonnllyy..

Page 32: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 9 of 9 Geoliquids, Inc. 1-800-827-2411

SODIUM POLYTUNGSTATE GENERAL INFORMATION:

Should you encounter difficulties or make observations not mentioned on these pages, we would appreciate yourrespective information so that we will be able to assist you.

WHY SODIUM POLYTUNGSTATE?Because it is superior to known and so far used heavy liquids

a) It is non-toxicb) It is safe in respect to ecology and simple to handlec) It is easy to recover almost fullyWe have developed this product for you- and worldwide many of your colleagues avail themselves of sodium polytungstatefor mineral separations and for the density gradient centrifugation. Earthquake researchers also use the product.It is by no means difficult to switch from a familiar but health damaging chemical like TBE to a non-toxic product, which additionally offers many advantages.

CHEMICAL DESCRIPTIONSodium Polytungstate (SPT) is the generic name for the compound here involved: Sodium metatungstate Ns6(H2 W12 O40),which is a spherical molecule having 40 oxygen atoms in its outer shell, 12 tungsten atoms in tetrahedrsl configuration inan inner shell and 2 hydrogen atoms in the center, all surrounded by 6 sodium cations.The analytic data are: WO3 = 86.66%; Na 4.50%; H2O= 8.84%.

TRACE ELEMENTSAs< 5 ppm; Bi< 2 ppm; Co< 1 ppm; Cu< 1 ppm; Fe< 1 ppm; Mn< 1 ppm; Mo< 2 ppm; Nb= 6 ppm; Ni< 1 ppm; P= 8 ppm; Pb< 1 ppm; Sb= 2 ppm; Si= 17 ppm; Sn= 7 ppm; Sr< 1 ppm; Ta< 1 ppm; Ta< 1 ppm; U< 10 ppm.

In view of the high water solubility of SPT, these trace elements can be totally removed from the separated goods by a fewwashings with a little water.

*US Pat. 4,557,718

2.2

2.4

2.6

2.8

3.0

7.0 7.5 8.0 7.5

ρ

DENSITY VERSES CONCENTRATION AT 20°C

Page 33: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 1 of 4 Geoliquids, Inc. 1-800-827-2411

June, 2009

MSDS: LITHIUM METATUNGSTATE (LMT)

HHAAZZAARRDDOOUUSS IINNGGRREEDDIIEENNTTSS//IIDDEENNTTIITTYY IINNFFOORRMMAATTIIOONN::

Trade Name: Lithium Metatungstate

Ingredient Name CAS # OSHA PEL ACGIH TLV OTHER* %

Lithium Metatungstate 127463-01-8 1 MG/M3 1MG/M3 BC 79.2as tungsten as tungstenSTEL-3 MG/M3 STEL-3 MG/M3

Water 7732-18-5 A 20.8

AA - EPA TSCA Inventory List 1989 BB - Canadian Ingredient Disclosure List CC - SARA Title III Sect 311 and 312

CHEMICAL CHARACTERISTICS:

Boiling Point: NA

Melting Point: NA

Freezing Point: NA

Specific Gravity (H2O = 1): Approx. 3.7

Percent Volatile by Volume: 20%

Theoretical VOC Content (Percent of Weight): 0

Weight Per Gallon: 30.9

pH: 6

Conc: NA

Vapor Pressure (mm of HG): NA

Vapor Density (Air = 1):NA

Density:NA

Evaporation Rate Basis (Water = 1): NA

Solubility in Water: Soluble

Reactivity in Water: None

Appearance and Odor: High specific gravity supersaturated solution with no odor and a pale yellow color.

Page 34: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 2 of 4 Geoliquids, Inc. 1-800-827-2411

FIRE AND EXPLOSION HAZARD DATA:

Flash point: n/a

Method: n/a

Flammable limits in air (%): Upper = n/a Lower = n/a

Auto ignition temperature: n/a

NFPA codes: Health = 1; Flammability = 0; Reactivity = 0; Other = 0

HMIS codes: Health = 1; Flammability = 0; Reactivity = 0; Protection = 0

Extinguisher media: Choose media suitable for surrounding materials.

Unusual fire and explosion hazards: None

Unusual Fire and Explosion Hazards: None

Extinguisher Media: Choose media suitable for surrounding materials.

Special fire fighting procedures: Water spray should be used to cool containers exposed to fire and to disperse vapors. As in any fire situation, use NIOSH/MSHA approved positive pressure breathing apparatus, when any material is involved in a fire.

REACTIVITY DATA:

Is this chemical stable under normal conditions of handling/Storage? Yes

Conditions to Avoid (Regarding Stability):Keep away from material listed in incompatibility section.

Incompatibility (Materials to Avoid):Tungsten may react with bromine trifluoride, chlorine trifluoride, fluorine, iodine pentafluoride, lead dioxide. Lithium may react with arsenic, beryllium, bromine, bromoform, carbides, carbon dioxide, carbon monoxide and water, carbon tetrabromide, carbon tetrachloride, chlorine, chloroform, chromic oxide, chromium, chromium trichloride, cobalt alloys, diborane, ferrous sulfide, halogenated hydrocarbons, hydrogen iodine, iodoform, iron alloys, maleic anhydride, manganese alloys, methyl dichloride, methyl diiodide, molybdenum trioxide, monofluorotrichloromethane, nickel alloys, niobium pentoxide, nitric acid, nitrogen, organic matter, oxygen, phosphorus, platinum, rubber, sillicates, sodium nitrite, sulfur, tantalum pentoxide, tetrachloroethylene, titanium dioxide, trichloroethylene, trichlorotrifluoroethane, tungsten trioxide, vanadium, vanadium pentoxide, zirconium tetrachloride.

Hazardous Decomposition Products:May release lithium oxide and other toxic and irritating fumes upon decomposition. Solutions begin to decompose 800C/1750F.

Hazardous Polymerization Possible? No

Conditions to Avoid (Regarding Polymerization): None

Page 35: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 3 of 4 Geoliquids, Inc. 1-800-827-2411

HEALTH HAZARDS:

Routes of Entry: Inhalation, ingestion

Signs and Symptoms Of—

Acute Overexposure: Soluble tungsten compounds have the potential to cause systemic effects involving the gastrointestinal tract and the central nervous system. Dust or mist may irritate the eyes, skin and respiratory system. The oral lethal dose of similar tungsten salts is approximately 1000 mg/kg (oral,rats). Laboratory animal experiments show symptoms of anorexia colic, incoordination of movement, trembling, dyspnea and weight loss. Lithium compounds have been implicated development of aplastic anemia and may cause dizziness, prostration, kidney damage, anorexia, nausea, apathy, and coma.

Chronic Overexposure: Central nervous system disturbances.Chemical Listed As a Carcinogen Or Potential Carcinogen

National Toxicology Program: No

IARC Monographs: No

OSHA: No

Medical Conditions Generally Aggravated By Exposure: No specific condition specified.

EEMMEERRGGEENNCCYY AANNDD FFIIRRSSTT AAIIDD PPRROOCCEEDDUURREESS::

Emergency Phone Number: 1-800-535-5053

Inhalation: Immediately remove victim to fresh air. If victim is not breathing, initiate CPR. Seek medical attention.

Eye Contact: Immediately flush with water for 15 minutes and seek medical attention.

Skin Contact: Immediately wash with soap and water. If irritation results, seek medical attention.

Ingestion: Immediately seek medical attention. Call local poison control center. Consult 29 CFR 1910.151 requirements for medical services.

PRECAUTIONS FOR SAFE HANDLING AND USE:

Precautions To Be Taken In Handling And Storage: Avoid contact with skin and eyes. Harmful if swallowed. Avoid breathing mists or dust. Store in a cool, dry, well ventilated space. Store away from incompatible substances listed in incompatibility section.

Other Precautions: Wear personal protective equipment to prevent excessive skin and/or eye contact.

Steps To Be Taken In Case Material Is Released Or Spilled: Wear personal protective equipment. Clean up the absorbed material and place in a suitable container for disposal.

Waste Disposal Methods:This substance is not currently listed as a hazardous waste. Ordinary disposal measures should be suitable. Observe all federal, state, and local regulations when disposing of this chemical substance.

Page 36: A Guide to Mineral Separation (v. 1) - Middlebury Collegecommunity.middlebury.edu/~wamidon/pdfs/mineral_sep_guide.pdfIf the sample is very dusty, the vacuum can be used to draw off

Page 4 of 4 Geoliquids, Inc. 1-800-827-2411

CONTROL MEASURES:

Respiratory Protection: Respiratory protection not generally required under normal use conditions. If concentrations do not exceed 10 times the PEL, an air purifying respirator approved for dusts, mists, and fumes will be suitable. In higher concentrations, a greater level of protection is required. Refer to 29 CFR 1910.134 for guidance.

Ventilation Requirements: General exhaust ventilation should be maintained.

Local Exhaust: Suggested to control potential decomposition products during heating.

Mechanical: General exhaust ventilation is suggested.

Protective Gloves: Any type glove to prevent excessive skin contact is suggested.

Eye Protection: Safety glasses. Consult 29 CFR 1910.133 for general requirements for eye and face protection.

Other Protective Clothing Or Equipment: None specifically indicated. Consult 29 CFR 1910.132 general requirements for personal protective equipment.

Work/Hygienic Practices: Wash thoroughly before eating, drinking, smoking, or leaving the work place. Consult 29 CFR 1910.141 general requirements for sanitation.

The information herein is true and accurate to the best of our knowledge. No warranty or guarantee is expressedor implied in this data. It is the user’s responsibility to determine the suitability for his own use of the productsdescribed within. Nothing shall constitute permission, inducement or recommendation to practice any inventioncovered by and patent owned by Geoliquids, Inc. or by others, nor as a recommendation to use and product or topractice any process in violation of any law or government regulation.TThhiiss mmaatteerriiaall iiss ssuupppplliieedd ffoorr uussee iinn llaabboorraattoorriieess wwiitthh pprrooppeerr vveennttiillaattiioonn bbyy sskkiilllleedd ppeeooppllee oonnllyy..