a novel grid-based visualization approach for metabolic...

12
A Novel Grid-based Visualization Approach for Metabolic Networks with Advanced Focus&Context View Markus Rohrschneider 1 , Christian Heine 1 , Andr´ e Reichenbach 1 , Andreas Kerren 2 , and Gerik Scheuermann 1 1 University of Leipzig, Department of Computer Science, Germany 2 axj¨ o University, School of Mathematics and Systems Engineering, Sweden Abstract. The universe of biochemical reactions in metabolic pathways can be modeled as a complex network structure augmented with domain specific annotations. Based on the functional properties of the involved reactions, metabolic networks are often clustered into so-called pathways inferred from expert knowledge. To support the domain expert in the exploration and analysis process, we follow the well-known Table Lens metaphor with the possibility to select multiple foci. In this paper, we introduce a novel approach to generate an interactive layout of such a metabolic network taking its hierarchical structure into account and present methods for navigation and exploration that pre- serve the mental map. The layout places the network nodes on a fixed rectilinear grid and routes the edges orthogonally between the node po- sitions. Our approach supports bundled edge routes heuristically mini- mizing a given cost function based on the number of bends, the number of edge crossings and the density of edges within a bundle. 1 Introduction To fully comprehend and appreciate the existing knowledge on chemical pro- cesses in living organisms it is essential to develop suitable tools to explore and navigate through vast amounts of information stored in biological databases. In biochemistry, complex networks defined by interactions and relations between different chemical compounds are considered as pathways, such as regulatory pathways controlling gene activity or metabolic pathways comprising chemical reactions for synthesis, transformation and degradation of organic substances in biological systems. In this work, we combine and apply information visualization techniques to present the complete set of biochemical reactions of metabolic pathways in a eucaryotic cell supplying means of exploration and navigation. Although the emphasis of this paper is placed on biochemical network data, the presented application is not limited to this area. Instead, it can handle any large graph carrying arbitrary annotational information by mapping given data properties to attributes being visualized by the software. To capture the complex chemical interactions of such a reaction network, metabolic pathways may be modeled as

Upload: others

Post on 27-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

A Novel Grid-based Visualization Approachfor Metabolic Networks

with Advanced Focus&Context View

Markus Rohrschneider1, Christian Heine1, Andre Reichenbach1,Andreas Kerren2, and Gerik Scheuermann1

1 University of Leipzig, Department of Computer Science, Germany2 Vaxjo University, School of Mathematics and Systems Engineering, Sweden

Abstract. The universe of biochemical reactions in metabolic pathwayscan be modeled as a complex network structure augmented with domainspecific annotations. Based on the functional properties of the involvedreactions, metabolic networks are often clustered into so-called pathwaysinferred from expert knowledge. To support the domain expert in theexploration and analysis process, we follow the well-known Table Lensmetaphor with the possibility to select multiple foci.In this paper, we introduce a novel approach to generate an interactivelayout of such a metabolic network taking its hierarchical structure intoaccount and present methods for navigation and exploration that pre-serve the mental map. The layout places the network nodes on a fixedrectilinear grid and routes the edges orthogonally between the node po-sitions. Our approach supports bundled edge routes heuristically mini-mizing a given cost function based on the number of bends, the numberof edge crossings and the density of edges within a bundle.

1 Introduction

To fully comprehend and appreciate the existing knowledge on chemical pro-cesses in living organisms it is essential to develop suitable tools to explore andnavigate through vast amounts of information stored in biological databases. Inbiochemistry, complex networks defined by interactions and relations betweendifferent chemical compounds are considered as pathways, such as regulatorypathways controlling gene activity or metabolic pathways comprising chemicalreactions for synthesis, transformation and degradation of organic substances inbiological systems.

In this work, we combine and apply information visualization techniques topresent the complete set of biochemical reactions of metabolic pathways in aeucaryotic cell supplying means of exploration and navigation. Although theemphasis of this paper is placed on biochemical network data, the presentedapplication is not limited to this area. Instead, it can handle any large graphcarrying arbitrary annotational information by mapping given data propertiesto attributes being visualized by the software. To capture the complex chemicalinteractions of such a reaction network, metabolic pathways may be modeled as

Andreas Kerren
In Proceedings of the 17th International Symposium on Graph Drawing (GD '09), pages 268-279, volume 5849 of LNCS, Chicago, USA, 2009. © Springer, 2009. This is the authors' version of the work. It is posted here by permission of Springer for your personal use. Not for redistribution. The original publication is available at www.springerlink.com. Springer Verlag.
Page 2: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

2 M. Rohrschneider et al.

L-Glu

tamate

Oxalo-

acetate

2-Keto-

glutarate

L-Asp

artate

Fig. 1. A hyperedge depicting a transaminase reaction, which converts amino acidsinto corresponding alpha-keto acids and vice versa. In this example, the enzyme As-partate Aminotransferase converts the substrates L-Aspartate (amino acid) and 2-Ketoglutarate (alpha-keto acid) [input nodes] into the products Oxaloacetate (alpha-keto acid) and L-Glutamate (amino acid) [output nodes]. Many reactions are reversible,so the direction of the hyperedge simply gives a hint on the reaction’s chemical equi-librium.

hypergraphs, where unlike a regular graph, each edge can connect an arbitrarynumber of nodes. In this hypergraph model, each substance is represented bya node of the graph, and each reaction by a (directed) hyperedge connectingthe input node set—substrates—with the output node set—products— of thechemical reaction (see Fig. 1). To obtain a hierarchical graph, each metabolicpathway is represented by a node at the top level, where the pathway’s reactionnetwork constitutes the nested graph at the bottom level. The division intoseparate pathways, although based on expert knowledge, is somewhat arbitraryand may not be a strict partition of the graph. Nevertheless, we consider theclustering of the node and edge set as a partition to obtain a strictly confinedhierarchy on the graph. Compound nodes and reactions belonging to more thanone pathway are simply duplicated for the sake of simplicity of the resultinggraph. This step has two benefits: layouting the graph will be a much simplertask, and we can use the hierarchy to explore the network in a top-down mannerby examining the top-level graph at first and adding additional information onpathways of interest by expanding nodes.

2 Related Work

The visualization of large and complex biological networks is one of the key anal-ysis techniques to cope with this enormous amount of data. Here, the layout ofnetworks should be in agreement with biological drawing conventions and drawattention to relevant system properties that might remain hidden otherwise [14,13]. Further important issues are the preservation of the so-called mental map [1]when applying small changes to the graph and the possibility of clustering nodes.Depending on the concrete network drawing, there are further important visualrepresentation and interaction techniques that play important roles, e.g., nav-igation in the complete network, focusing on parts of the network, or gradualdifferentiability of nodes with less importance (side metabolites) [12]. However,only little research has been done in the past to solve the special layout andvisualization problems arising in this area. A lot of the most used software sys-tems for the visual analysis of generic biological networks, i.e., different kinds of

Page 3: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

Visualizing Metabolic Networks using Advanced Focus&Context Techniques 3

networks like regulatory networks or protein-protein interactions, only provideimplementations of standard graph drawing algorithms, such as force-directedor hierarchical approaches [8].

Cytoscape [5] is one of the most popular tools for generic biochemical net-work visualization and supports a number of standard graph layout algorithms.Filtering functions are provided to reduce network complexity. For instance, theuser can select nodes and edges according to their name and other attributes.This system allows a simple mapping of data attributes to visual elements ofnodes and edges. VisANT [4] is another system designed to visualize genericbiochemical networks. In addition to the features of Cytoscape, it provides sta-tistical analysis tools, e.g., based on node degrees or the distribution of clusteringcoefficients. Their results are displayed in separate views, such as scatter plots.

Especially for metabolic networks, large and hand-drawn posters were pro-duced in the past, for example, Nicholson’s pathway map [9] or the widely-used metabolic pathway poster published by Roche Applied Science [18]. Otherprojects have created graphical representations of metabolic networks and offerthem via web pages (e.g., the BioCyc collection [7]). The widespread pathwaydrawings of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database[16], see also Section 3, were also produced by hand. These drawings are con-nected via links, but real interaction is not available. Because of their manualgeneration, they are well readable and can thus serve as an example in terms ofquality and user conventions. Moreover, the availability of these representationshas established a de facto standard for metabolic network drawings: it featuresnear-orthogonal drawings where, for example, important paths are aligned orrelevant subgraphs are placed close to the center of the drawing [14, 13].

Newer approaches are based on a close interdisciplinary work between re-searchers in visualization and biochemistry. An example is the Caleydo frame-work [21] that extends the standard pathways of KEGG into 2.5D, similar to thereport of Kerren [12] and the work of Brandes et al. [15], combined with brush-ing, highlighting, focus&context, and detail on demand. In this way, it supportsthe interactive exploration and navigation between several interconnected (butstatic!) networks.

Saraiya et al. [19] discussed the requirements of metabolic network visualiza-tion collected from interviews with biologists. They observed five requirementsthat are important for biologists working on pathway analysis, but still not com-pletely realized in existing visualization systems (adapted from [10]):

1. automated construction and updating of pathways by searching literaturedatabases;

2. overlaying information on pathways in a biologically relevant format;3. linking pathways to multi-dimensional data from high-throughput experi-

ments, such as microarrays;4. overlooking multiple pathways simultaneously with interconnections between

them; and5. scaling pathways to higher levels of abstraction to analyze effects of complex

molecular interactions at higher levels of biological organization.

Page 4: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

4 M. Rohrschneider et al.

Currently, our approach addresses several of the aforementioned requirementsand improves the most previous work by using of interaction techniques frominformation visualization. Our new, interactive layouts are based on the KEGGdata (Req. 1), and we provided the visualization with an intuitive focus&contextview. In this way, we can handle, for example, the complete metabolism of ageneralized eucaryotic cell (Req. 4) by following Shneiderman’s mantra [20]:overview first, zoom and filter, details on demand. If the user explores the path-ways interactively, the visualization approach preserves the mental map. To thebest of our knowledge, no other system can provide that to this extent. Oursystem is also able to embed textual information into the drawings and to useglyphs/icons for the representation of lower-level subgraphs if needed, similar tothe Pathway tools [3]. The integration of more complicated attributes as wellas biological patterns regarding topological substructures are still missing. Here,other tools, such as BioPath [6], still have an advantage to be fully accepted bybiologists.

The generation of the actual layout of the hierarchical pathway graph is mo-tivated by the style of the “official” KEGG diagrams to be consistent with thedomain experts expectations. The diagrams usually use the orthogonal style fordrawing edges. To avoid overlapping labels, we ensure a minimum separationof the diagrams elements by using a regular grid based approach. Algorithmsfor orthogonal grid drawing have been widely studied; we cannot provide an ex-tensive overview here and refer the reader to [8, 26] for an introduction. Theseapproaches often follow a topology-shape-metrics approach [25]: First, computea planar embedding of the input graph, possibly planarizing it by augmentingvertices at crossings, second, compute an orthogonal representation of the em-bedding, and finally generate coordinates by compaction of the orthogonal repre-sentation. Usually, edges are not allowed to run simultaneously on the same gridsegment, i.e., connection between two neighboring grid positions. The pathwaysof the KEGG database can be converted into graphs, but a planarization of themrequires an enormous amount of augmented vertices. If edges are not allowed torun on the same grid segment, their layout dominates the area of the drawingresulting in poor resolution. Furthermore, as a pathway constitutes a semanticentity, they should be presented as a unit and without diagram elements fromforeign pathways interfering. No existing orthogonal drawing algorithm was ableto take these constraints into account, therefore we developed our own that doesnot planarize the graph but keeps track of edge crossings and heuristically mini-mizes them, allows “edge bundling” although it penalizes it, shows pathways asunits and performs dynamic compactions based on the currently focused partsof the pathway hierarchy.

3 Network Data Source

The development of graph interaction techniques especially suited to fit bio-logical problems makes it necessary to experiment with realistic datasets. Togenerate artificial graph data is of course possible, but it is hard to estimate therequired complexity of such datasets to simulate realistic scenarios. The Kyoto

Page 5: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

Visualizing Metabolic Networks using Advanced Focus&Context Techniques 5

Encyclopedia of Genes and Genomes (KEGG, [16]) System provides annotatedpathway data facilitating the construction of metabolic pathway graphs of differ-ent sizes. KEGG is one of the major bioinformatics resources publicly accessible.It integrates genomic, chemical, i.e., molecular, and systemic functional informa-tion describing cellular processes and organism behavior. It provides a knowledgebase for systematic analysis in bioinformatics research and the life sciences. Weextracted the hypergraph structure including semantic information as discussedin [17]. The constructed graph covers the complete metabolism of a general-ized eucaryotic cell and contains 4980 compound and 154 pathway nodes, 4943reactions and 1248 inter-pathway edges.

4 Hierarchical Orthogonal Grid Layout

A hypergraph H = (V,E) as an extension of the graph concept allows the ele-ments of E called hyperedges to connect multiple vertices. Conceptually, a chem-ical reaction can be described as a hyperedge between compounds that are mod-eled as vertices. This requires a mark whether a vertex is a substrate or product.We model the data in the KEGG database as a hierarchy of one top-level graphthat contains a vertex for each pathway and one hypergraph per pathway. Iftwo pathways exchange compounds according to KEGG, both a regular edgeexists between them in the top level graph as well as an edge between the twohypergraphs representing the two pathways.

The layout of the hierarchical KEGG hypergraph is generated by convertingthe hypergraphs of the hierarchy into their corresponding bipartite graphs andcomputing a layout of this graph hierarchy. The generated layout is orthogonalto match the style of the official KEGG diagrams. Furthermore, its vertices’positions lie on a grid to ensure both a minimum separation between labels and tomake the algorithm both simpler and faster. The layout algorithm allows multi-edges but no loops and proceeds recursively—parents before their children. Foreach graph of the hierarchy, the layout consists of three phases named: VertexPosition, Edge Routing, and Edge Bundling.

In the Vertex Position phase, we try to find a unique integer positionfor each vertex that minimizes the stress: the amount of error that takes placeby the projection of the “high-dimensional” graph-theoretic distances to thegeometric distances between the vertices positions. As vertices and edges arelaid out on a regular grid, the Manhattan distance is used as geometric distance.When an edge leads outside the graph, its hierarchy parent has already beenlaid out. Thus, the direction from which the edge enters the graph is known.For each of the four orientations, we temporarily add a port vertex to the graphand connect the edges to foreign graphs to that port. Unlike the other graph’svertices the position of ports is fixed on the boundary of the grid in the upcomingoptimization phase.We implemented a stress minimization algorithm inspired by Kamada and Kawai[22]: starting from an inital random integer positioning of vertices, we select avertex with high local stress and find a continuous position for that vertex whereits local stress becomes minimal using the Newton-Raphson method. We insert

Page 6: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

6 M. Rohrschneider et al.

it then at the closest integer position not taken by any vertex. We comparedthis method with two different approaches. A brute force version picks a randomvertex and tests all integer positions in a vincinity of its position and insert it atthe best position. A simulated annealing [23] variant picks a random vertex andnew position in the vincinity of the old position, but performs the insertion onlyon improvement and deterioration with decreasing likelihood. We found that thebrute force method optimized quality as it is difficult to trap this method in alocal minimum. The simulated annealing is very fast, but does not provide nearlythe same quality. All heuristics terminate after a fixed number of iterations thatis proportional to the number of vertices.The Edge Routing phase computes a combinatorial description of an edgerouting along the edges of the regular grid. The vertices’ positions are not alteredby this phase. The combinatorical description is computed one edge at a timeand after all edges have been processed once, an iterative process removes singleedges and adds them again optimizing on the global cost of the layout. Given acombinatorial description of the current edge routing, we construct a route graphthat consists of the original graph’s vertices and the grid’s edges as vertices andedges for valid transitions between these elements. Given this representation,we are able to compute the optimal routing of an edge by solving a single-pair-shortest-path instance on the route graph. The optimality is given by a costfunction that takes the number of crossings, the number of bends, the lengthof an edge, and the “density” of edges on a grid segment into account. Notethat the quality of the resulting configuration depends both on the originalvertices’ positions and the actual order of edge insertions. Good performancewas achieved when inserting the edges in the order of increasing distances oftheir incident vertices. To reduce runtime and memory consumption, we usethe A∗ search algorithm [24] to solve the SPSP instance using the Manhattandistance as heuristic.

The Edge Bundling phase shifts segments of edges’ routes orthogonal tothe grid segments they lie on to remove overlaps. It preserves the edges’ relativeordering and straightens them in the process. This problem can be solved for eachrow and each column separately. We generate for each row and each column adirected acyclic graph that contains line segments as vertices and edges betweenthese lines, if they are ordered in the combinatorial edge routing. Any topologicalnumbering of this graph gives a displacement that avoids occlusions betweenedge routes of the same column/row, and using the topological numbering ofminimum weight packs the edge bundles nicely together.

5 Graph Interaction

The graph interaction and exploration methods described in this section haveall been implemented in our visualization software. The grid layout algorithmis the central component of the adapted Table Lens method to explore hierar-chical graphs. We firstly present this technique with supplementary search andhighlighting operations and explain later how the graphical user interface letsthe user apply these methods to interact with the metabolic network graph.

Page 7: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

Visualizing Metabolic Networks using Advanced Focus&Context Techniques 7

5.1 Exploration Techniques

Two fundamental navigation operations on hierarchical graphs are node expan-sion to reveal the node’s nested graph and collapse. For 2D graph representa-tions, it is natural and desirable to present a flat graph at all times regardlessthe graph’s expansion state. This means that the expansion of a node requiresit to be hidden and replaced by its nested graph. The inverse operation replacesthe nested graph by its parent. The well-known Table Lens metaphor [2] appliedto hierarchical graph exploration fulfills this requirement. It is an establishedfocus&context method to give an overview on large tabular datasets to examineobvious patterns and to provide detailed view on specific items at the same time.In our application, pathway nodes at the top level are placed in the center of acell, edges are routed along the cell borders as intended result of the previouslypresented layout algorithm. When a node is expanded, the row and the columnare enlarged in which the node is situated. Edges leading to and from one of thefour ports (see Sec. 4 and Fig. 4 for example) of the pathway node are elongatedwhile the remaining elements keep their relative position.This approach followsBen Shneiderman’s mantra of visual information-seeking: overview first, zoomand filter, details on demand [20]. Our application supports this concept in thefollowing ways:Overview first. The grid layout algorithm positions top-level nodes on a regulargrid where each grid position can be regarded as a cell in a table. The user startswith examining the completely collapsed graph, i.e., only top-level nodes are vis-ible. The application allows to display a node simply by showing the associatedpathway’s name as caption (see Fig. 2) or by creating an iconized view of thenode’s nested graph.Zoom and Filter. We have implemented semantic zooming to display labels oncea certain threshold is reached. Tool tips add additional information on eachpathway node. If enabled, icons in top-level nodes depicting the nested graphgive a quick hint on the pathway’s size and complexity.Details on Demand. The user can expand selected pathway nodes to explore thedetailed network of chemical reactions. In contrast to the established Table Lensmethod, an arbitrary number of cells (pathways) can be enlarged (multiple foci)and examined in detail (see Fig. 3 and 4). Advanced selection and highlightingtechniques facilitate and support the exploration process: selecting a pathwaynode highlights all objects belonging to that cluster. Selecting a specific reac-tion node highlights all edges to the associated substrate and product nodes.Selecting a compound node highlights all reactions this compound is involvedincluding its connections to adjacent pathways.

5.2 Design of the Graphical User Interface

The GUI of the visualization software basically consists of three components,see Fig. 6 and 7.

The Graph View at the left hand side of the window renders the graph andprovides an interface to interact with or edit the topology of the graph directly.Each graphical object can be individually selected, and applicable properties canbe assigned via a context menu. The integrated graph editing capability allows

Page 8: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

8 M. Rohrschneider et al.

Aminosugars

metabolism

ositol phospha

metabolism

Inositol

metabolism

Gly oxy late and

dicarboxy late

metabolism

Butanoate

metabolism

Fructose and

mannose

metabolism

Propanoate

metabolism

Nucleotide

sugars

metabolism

entose phospha

pathway

Citrate cy cle

(TCA cy cle)

Py ruv ate

metabolism

Pentose and

glucuronate

nterconv ersions

Ascorbate and

aldarate

metabolism

Gly cosami

nogly can

degradation

Peptidogly can

biosy nthesis

D-Glutamine

and D-glutamate

metabolism

map01051

Purine

metabolism

Nitrogen

metabolism

Vitamin

B6 metabolism

Glutamate

metabolism

Gly cine, serine

and threonine

metabolism

Histidine

metabolism

Urea cy cle and

metabolism

of amino groups

Alanine and

aspartate

metabolism

Py rimidine

metabolism

Fatty acid

biosy nthesis

Fatty acid

elongation

n mitochondria

Nicotinate and

nicotinamide

metabolism

Gly coly sis /

Gluconeogenesi

Starch and

sucrose

metabolism

C5-Branched

dibasic acid

metabolism

Galactose

metabolism

Carbon f ixation

n photosy ntheti

organisms

Lipopoly sa

ccharide

biosy nthesis

Gly ceropho

spholipid

metabolism

Retinol

metabolism

Sy nthesis and

degradation

f ketone bodie

Valine, leucine

and isoleucine

degradation

map01056

3-Chloroac

ry lic acid

degradation

Pantothenate

and CoA

biosy nthesis

map00523

beta-Alanine

metabolism

Methane

metabolism

Fatty acid

metabolism

Ty rosine

metabolism

Valine, leucine

and isoleucine

biosy nthesis

Ribof lav in

metabolism

Ly sine

biosy nthesis

Fig. 2. The top-level graph of the ”Car-bohydrate Metabolism” (bright) and re-lated pathways (dark). The highlightednodes can be expanded to reveal the de-tailed reaction network.

Fig. 3. Detailed view of the expandednode ”Citrate Cycle (TCA)”. The high-lighted compound node ”Acetyl-CoA”plays a central role within this pathwayand establishes several connections to ad-jacent pathways.

the user to manually construct pathway graphs or to modify a given layouteither generated by the algorithm or loaded from file. Expanding or collapsingindividual nodes can be performed by either double-clicking a node or selectingthe operation via the associated entry in the context menu.

The Data Browser displays the hierarchical structure of the grap (explorerlayout) and grants access to textual or numerical attributes of each graph ele-ment. Generic graph element properties, e.g., edge width, node size and shape,color or transparency, can be manipulated, and the effects will be directly dis-played in the graph view. A simple search function among the textual attributescan be used as a filter to highlight and select a group of graph elements. Thisis an intuitive way to state queries like ”Select all pathways containing the com-pound Pyruvate” (see Fig. 5). Highlighting elements matching a given searchpattern is also propagated to the top-level.

The Algorithm Info Area at the bottom-right hand side displays textual out-put giving feedback on the progress of invoked graph or layout algorithms andto present search results, cf. Fig. 7.

6 Performance Results

Our KEGG import routine is suitable to construct pathway graphs of differentsize and complexity. To implement, test and demonstrate the discussed tech-niques, we constructed two graphs. Images 2 through 5 were created from 17pathway files downloaded from the KEGG database covering the complete car-bohydrate metabolism. Additional non-expandable pathway nodes were createdwhen referenced in one of the input files. A graph with a total of 649 compound

Page 9: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

Visualizing Metabolic Networks using Advanced Focus&Context Techniques 9

Aminosugars

metabolism

ositol phospha

metabolism

Inositol

metabolism

Gly oxy late and

dicarboxy late

metabolism

Butanoate

metabolism

Fructose and

mannose

metabolism

Propanoate

metabolism

Nucleotide

sugars

metabolism

D-Gly cera

ldehy de

3-phosphate

alpha-D

-Glucose 6

-phosphate

2-Amino

-2-deoxy -D

-gluconate

D-Glucose

2-Dehy dro-3

-deoxy -D

-gluconate

Py ruv ate

2-Dehy dro-3

-deoxy -6

-phospho-D

D-Ribose

5-Phospho

-alpha-D

-ribose 1

D-Sedohep

tulose 7

-phosphate

D-Gly cera

ldehy de

3-phosphate

beta-D

Fructose 1,6

bisphosphate

D-Ery th

rose 4

-phosphate

6-Phospho-2

-dehy dro-D

-gluconate

Deoxy

ribose2.7.1.15

D-Gly

cerate

D-Glucono-1,

-lactone 6

-phosphate

2-Deoxy

-D-ribose

1-phosphate

beta-D

-Fructose 6

-phosphate

D-Gly cer

aldehy de

D-Xy lulose 5

-phosphate

D-Xy lulose 5

-phosphate

Py ruv ate

metabolism

2.7.4.23

5.3.1.9

4.1.2.-

Succiny l

-CoA

Thiamin

diphosphate

S-succiny l

dihy droli

poy lly sine

2-(a-Hy dr

oxy ethy l)

thiamine

S-acety ld

ihy drolip

oy lly sine

Pentose and

glucuronate

nterconv ersions

N6-(lipo

y l)ly sine

1.3.99.1

-(dihy drolipo

ly sine

Ascorbate and

aldarate

metabolism

Gly cosami

nogly can

degradation

Peptidogly can

biosy nthesis

D-Glutamine

and D-glutamate

metabolism

map01051

Purine

metabolism

Nitrogen

metabolism

Vitamin

B6 metabolism

Glutamate

metabolism

Gly cine, serine

and threonine

metabolism

Histidine

metabolism

Urea cy cle and

metabolism

of amino groups

Alanine and

aspartate

metabolism

Py rimidine

metabolism

Fatty acid

biosy nthesis

Fatty acid

elongation

n mitochondria

Nicotinate and

nicotinamide

metabolism

5.4.2.7

4.1.2.4

1.1.1.44

3.1.3.11

3.1.3.37

2.2.1.1

5.3.1.6

4.1.2.13

3.1.1.17

1.2.7.5

1.1.5.2 1.1.99.3

Ribose 1

-phosp

1.2.7.3

Py ruv ate

1.8.1.4

1.3.5.1

4.2.1.3

4.1.3.6

4.2.1.3

2.3.3.1

1.1.1.376.4.1.1

1.2.4.1

4.1.1.49

Starch and

sucrose

metabolism

1.2.- 4.1.2.1

4.1.3.16

C5-Branched

dibasic acid

metabolism

Galactose

metabolism

Carbon f ixation

n photosy ntheti

organisms

Lipopoly sa

ccharide

biosy nthesis

Gly ceropho

spholipid

metabolism

Retinol

metabolism

Sy nthesis and

degradation

f ketone bodie

Valine, leucine

and isoleucine

degradation

map01056

3-Chloroac

ry lic acid

degradation

Pantothenate

and CoA

biosy nthesis

map00523

beta-Alanine

metabolism

Methane

metabolism

Fatty acid

metabolism

Ty rosine

metabolism

Valine, leucine

and isoleucine

biosy nthesis

Ribof lav in

metabolism

Ly sine

biosy nthesis

Thiamin

diphosphate

2.3.1.61

D-Ribose

1,5-bis

phosphate

D-Glucono

-1,5-lactone

D-Gluco

nic acid

D-Ribose

5-phosphate

6-Phospho

-D-gl

uconate

beta-D

-Glucose

alpha-D

-Ribose

1-phosphate

D-Ribul

ose 5

-phosphate

2-Deoxy

-D-ribose

5-phosphate

beta-D

-Glucose

6-phosphate

2-Dehy dro-D

-gluconate

2-Phospho-D

-gly cerate5.3.1.9 1.1.1.49

1.1.1.435.1.3.1

2.7.6.15.4.2.2

5.4.2.7

2.7.1.11

2.7.1.15

2.2.1.1

2.7.1.134.3.1.9

2.7.1.45

4.2.1.12

3.1.1.31

2.7.1.12

4.2.1.39

1.1.3.4

1.1.3.5

1.1.99.10

2.2.1.2

1.1.1.472.7.1.-

1.1.1.215

4.1.2.9

Oxalosu

ccinate

Fumarate (S)-Malate

Oxaloa

cetate

Acety l-

CoA

Isocitrate

cis-Ac

onitate

Citrate

Succinate

N6-(lipo

y l)ly sine

N6-(dihy drol

ipoy l)ly sine

2-Oxogl

utarate

3-Carboxy -1

-hy droxy p

ropy l-ThPP

1.2.4.2

Phosphoen

olpy ruv ate

1.2.4.2

6.2.1.4

6.2.1.5

6.2.1.4

6.2.1.5

2.3.3.8

1.1.1.42

1.1.1.41

1.1.1.42

4.2.1.2

1.2.4.1

1.8.1.4

2.3.1.12

1.2.7.1

4.1.1.32

D-Gly cera

ldehy de

3-phosphate

beta-D

-Fructose 6

-phosphate

5.3.1.1

5.1.3.3

1.3.13 5.4.2

5.4.2.4

1.2.1.12

1.2.1.59

Salicin

3.2.1.86

2.7.1.69 PTS

-Glc-EIIC,

beta-D

-Glucose

6-phosphate

alpha

-D-Glucose

2-Phospho-D

-gly cerate

Phosphoen

olpy ruv ate

3-Phospho-D

-gly cerate

Ethanol

3-Phospho-D

-gly ceroy l

phosphate

Acety l-CoA

1.2.1.3

Salicin

6-phosphate

beta-D

Fructose 1,6

bisphosphate

alpha-D

-Glucose 6

-phosphate

(S)-Lactate

1.1.1.2

1.2.1.5

1.2.4.1

4.1.1.1

Acetate

3.1.3.11

3.1.3.37

4.2.1.11 2.7.1.403.1.3.9

5.3.1.9

2.7.1.1

2.7.1.2

5.1.3.15

5.3.1.9

3.1.3.10

2.7.1.412.7.1.63

1.3.13 5.4.2

5.4.2.4

D-Glucose

D-Glucose 1

-phosphate

Gly cerone

phosphate

beta-D

-Glucose

Enzy me N6

-(lipoy

l)ly sine

2-(alpha

Hy droxy ethy

l)thiamine

y drolipoy lly s

-residue

ty ltransf eras

Thiamin

diphosphatePy ruv ate

Acetal

dehy de

Enzy me N6

-(dihy droli

poy l)ly sine

Arbutin

6-phosphate

Arbutin

2.7.2.3

Oxaloa

cetate

2,3-Bisp

hospho

-D-gly cerate

4.1.1.1

1.8.1.4

6.2.1.1

1.1.1.1

EUTG

1.2.4.1

4.1.2.132.7.1.11

5.3.1.9 2.3.1.121.1.1.27

1.3.13 5.4.2

5.4.2.4

5.4.2.2

2.7.1.1

2.7.1.2

2.7.1.63

2.7.1.69 PTS

-Arb-EIIC,

2.7.1.69

PTS-Asc

4.1.1.32

3.2.1.86

1.1.99.8

4.1.1.49

1.2.7.5

1.2.7.6

1.2.1.9

1.2.7.1

Fig. 4. Three expanded pathway nodes:”Citrate Cycle (TCA)”, ”Pentose Phos-phate Pathway”, and ”Glycolysis / Glu-coneogenesis”; the latter being high-lighted in red with the connections to ad-jacent pathway nodes.

D-Gly cera

ldehy de

3-phosphate

beta-D

-Fructose 6

-phosphate

5.3.1.1

5.1.3.3

N-Acety l

-alpha-D

-glucosamine

1.3.13 5.4.2

5.4.2.4

1.2.1.12

1.2.1.59

Salicin

3.2.1.86

2.7.1.69 PTS

-Glc-EIIC,

beta-D

-Glucose

6-phosphate

alpha

-D-Glucose

2-Phospho-D

-gly cerate

Phosphoen

olpy ruv ate

3-Phospho-D

-gly cerate

Ethanol

3-Phospho-D

-gly ceroy l

phosphate

Acety l-CoA

1.2.1.3

Salicin

6-phosphate

beta-D

Fructose 1,6

bisphosphate

alpha-D

-Glucose 6

-phosphate

(S)-Lactate

N-Palmitoy l

gly coprotein

N-Acety ln

euraminate

N-Acety l-D

-manno

samine

UDP-N-acety

-3-(1-carb

oxy v iny l)

CMP-N

-gly coloy ln

euraminate

UDP-N-acety

-D-gal

actosamine

UDP-N

-acety l-D

-mannosami

UDP-N

-acety l

muramate

Chitin

alpha-D

Glucosamine

-phosphate

2.7.1.1

2.7.1.2

N-Acety l-D

-gluco

samine

Ferrocy to

chrome b5

UDP-N-acety

-D-gal

actosamin

Chitosan

N-Acety l

-D-man

nosamine

N-Gly co

loy l-ne

uraminate

CMP-N

-acety lne

uraminate

1.1.1.-

2.5.1.56

N-Acety lmu

ramic acid 6

-phosphate

5.1.3.14

5.4.2.3

2.6.1.16

-Phosphatidy

-1D-my o

-inositol 5

4.2.-.-

2.7.1.68

D-my o-Inosito

1,4,5

trisphosphate

-Phosphatidy

-1D-my o

-inositol 3

my o-Inos

itol 4

-phosphate

D-my o-Inosito

1,3

bisphosphate

1D-my o

-Inositol 1,4

bisphosphate

1D-my o

-Inositol 3

-phosphate

1,2-Diacy l

-sn-gly cerol

my o-Inositol

2-Deoxy -5

-keto-D

luconic acid

2.1.1.40

3-O-Met

hy l-my o

-inositol

2,4,6/3,5

-Pentah

y droxy cy

Acety l-CoA

D-Gly

cerate

my o-Inositol

5.3.1.1

iolB

Oxaloa

cetate

meso-Tart

aric acid

2-Hy droxy

-3-oxos

uccinate

D-Ribulose

1,5-bis

phosphate

2-Hy droxy

-3-oxop

ropanoate

2-Phospho

gly colate

Dihy drox

y f umarate

5,10-Meth

eny ltetra

hy drof olate

Hy droxy

py ruv ate

10-Formy

ltetrahy

drof olate

5,10-Methy

lenetetrah

y drof olate

1.1.1.79

Formy l

-CoA

2-Oxogl

utarate

N-Formy ld

eriv ativ es

1.5.1.5

1.1.1.79

6.2.1.8

beta-D

-Fructose

CDP-3,6

-dideoxy -D

-mannose

UDP-D

-xy lose

alpha-D

-Glucose 6

-phosphate

3-Keto

sucrose

D-Gluc

uronate

Sucrose

beta-D

-Fructose 6

-phosphate

alpha-D

-Glucose 6

-phosphate

alpha,alpha'

-Trehalose 6

-phosphate

beta-D

-Glucose

6-phosphate

D-Glucose

alpha

-D-Glucose

GDP-g

lucose

ADP-g

lucose

Amy lose

Sucrose

D-Glu

coside

alpha,alpha

-Trehalose

3.2.1.21

(2,6-beta

D-Fructosy l)

Cellot

etraose

3.2.1.21

3.2.1.122

3.2.1.93

2.4.1.13

3.2.1.37

1.17.1.1

2.7.1.69

PTS-Mal

2.4.1.1

3.2.1.10

5.4.99.16

2-Aceto

lactate

2-(alpha

Hy droxy ethy

l)thiamine

(S)-3

-Hy droxy but

anoy l-CoA

(S)-Acetoin

Butanoic

acid

2-Oxogl

utarate

2-Hy droxy

glutarate

2-Hy droxy g

lutary l-CoA

(R)-3-((R)-3

-Hy droxy

butanoy lox

4-Hy droxy bu

tanoic acid

L-Glu

tamate

Viny lac

ety l-CoA

2.3.1.19 Succinate

semialdehy de

4-Aminob

utanoate

6.2.1.2

D-Gly cera

ldehy de

3-phosphate

Mannitol

beta-D

-Fructose 2

-phosphate

beta-D

Fructose 2,6

bisphosphate

D-Mannose

Sorbitol

6-phosphate

GDP-L

-f ucose

L-Rha

mnose

L-Rhamno

f uranose

Gly cerone

phosphate

GDP-m

annose

L-Rham

nonate

GDP-D

mannuronate

L-Fucose

1-phosphate

GDP-4

-dehy dro-6

-deoxy -D

ADP-m

annose

beta-D

Fructose 1,6

bisphosphate

gouronide wit

deoxy -alpha-

ery thro-hex-4

GDP-6

-deoxy -D

-mannose

D-Sorbitol

D-Fructose

Lev an

D-Fuconate

L-Fucul

ose 1

-phosphate

L-Fuculose

1.1.99.21

L-Sorbose

3.1.3.54

1.1.1.138

2.7.1.11

3.1.3.46

(R)-Methy l

malony l-CoA

1.1.1.132

5.3.1.8

1.1.2.2

Propanoate

2-Oxobu

tanoate

L-Valine

beta

-Alanine

Malon

y l-CoA

3-Oxoprop

iony l-CoA

2-Propy n

-1-al

6.2.1.1

6.2.1.17

(S)-Methy l

malonate

semialdehy de

4.2.1.79

2.3.1.86.2.1.13

2.8.3.3

UDP-a

piose

Pectin

1-Phospho

-alpha-D

galacturonate

dTDP-6

-deoxy

-L-mannose

UDP-D

-galactose

1,4-beta-D

-Xy lan

dTDP-ga

lactose

dTDP-4

-dehy dro

-6-deoxy

UDP-D

-xy lose

dTDP-4

acetamido-4,

-dideoxy

D-Xy lose

UDP-L

-arabinose

GDP-6

-deoxy -L

-mannose

D-Galac

turonate

GDP-4

-dehy dro-6

-deoxy -L

2.7.7.32

D-Gly cera

ldehy de

3-phosphate

alpha-D

-Glucose 6

-phosphate

up:O69208

2.6.1.33

2-Amino

-2-deoxy -D

-gluconate

D-Glucose

2-Dehy dro-3

-deoxy -D

-gluconate

2-Dehy dro-3

-deoxy -6

-phospho-D

D-Ribose

5-Phospho

-alpha-D

-ribose 1

D-Sedohep

tulose 7

-phosphate

D-Gly cera

ldehy de

3-phosphate

beta-D

Fructose 1,6

bisphosphate

D-Ery th

rose 4

-phosphate

6-Phospho-2

-dehy dro-D

-gluconate

Deoxy

ribose 2.7.1.15

D-Gly

cerate

D-Glucono-1,

-lactone 6

-phosphate

2-Deoxy

-D-ribose

1-phosphate

beta-D

-Fructose 6

-phosphate

D-Gly cer

aldehy de

D-Xy lulose 5

-phosphate

D-Xy lulose 5

-phosphate

2.7.4.23

5.3.1.9

4.1.2.-

Succiny l

-CoA

Thiamin

diphosphate

S-succiny l

dihy droli

poy lly sine

2-(a-Hy dr

oxy ethy l)

thiamine

S-acety ld

ihy drolip

oy lly sine

N6-(lipo

y l)ly sine

Enzy me N6

-(lipoy

l)ly sine

1.3.99.1

-(dihy drolipo

ly sine

Acety lenedi

carboxy late

Lactal

dehy de

y drolipoy lly s

-residue

ty ltransf eras

D-Man

nonate

2-Hy droxy e

thy lenedic

arboxy late

Phosphoen

olpy ruv ate

Acety l

adeny late

(3S)-Citr

amaly l-CoA

2-Propy

lmalate

(2S)-2-Isop

ropy lmalate

(R)-2

-Ethy lmalate

(R)-Lact

aldehy de

(S)-Lact

aldehy de

Methy l

gly oxal

2.3.1.9

4.1.1.32

1.2.4.14.1.1.78

D-Fruct

ose 6

-phosphate

D-arabino-3

-Hexulose 6

-phosphate

D-Galac

turonate

D-Gluc

uronate

CDP-ribitol

D-Xy lonate

(4S)-4,6

-Dihy droxy

-2,5-diox

Xy litol

D-Xy lulose

D-Ly xose

L-Ly xose

L-Ara

binose

Pectin

Mesaco

ny l-CoA

Pectate

Gly cola

ldehy de

3.2.1.15

5.1.3.1

4.1.1.34

2.4.1.17

(3S)-Citr

amaly l-CoA

Itacony l

-CoA

Acetate

Propan

oy l-CoA

D-threo-3

Methy lmalate

Methy loxa

loacetate

2-Oxogl

utarate

2-Oxobu

tanoate

D-ery thro

-3-Meth

y lmalate

4-Methy

lene-L

-glutamate

2-Methy

lmaleate

4-Methy

lene-L

-glutamine

my o-Inositol

4-Methy l

-L-glutamate

2.8.3.11

4.1.3.22

2.3.3.112.8.3.7

alpha

-D-Glucose

D-Gal

actose

UDP-g

lucose

2-Dehy dro-3

-deoxy -D

-galactonate

Gly cerol

D-Galac

tose 6

-phosphate

alpha-D

Galactosy l-(

->3)-1D-my o

D-Tagat

ose 6

-phosphate

D-Glucose

Gly cerone

phosphate

D-Tagatose

1,6-bis

phosphate

D-Galac

tosamine

N-Acety l-D

-galacto

samine 6

Galactitol

3.2.1.22

1.1.1.21

4.1.2.403.2.1.22

UDP-glu

curonate

1.1.3.9

D-Glu

carate

L-Gal

actose

L-Gulose

GDP-L

-gulose

L-Ribulose 5

-phosphate

L-Xy lulose 5

-phosphate

L-Gulonate

D-Gluc

uronate

3-Dehy dro-L

-gulonate 6

-phosphate

D-Galac

turonate

D-Gala

ctarate

4R,5S)-4,5,6

-Trihy droxy

-2,3

2-Oxogl

utarate

Monodehy dr

oascorbate

5-Hy droxy

-2,4-diox

opentanoate

L-Xy lonate

L-Arab

inonate

Gly cosami

nogly can

degradation

L-Arabi

nono-1,4

-lactone

L-Galac

tono-1,4

-lactone

5.1.3.-

5.1.3.18

2.7.1.69 PTS

-Ula-EIIC,

3-Dehy dro-L

-gulonate

5.1.3.-

5.1.3.18

1.13.99.1

Peptidogly can

biosy nthesis

D-Glutamine

and D-glutamate

metabolism

1.1.1.2

map01051

1.2.1.5

Purine

metabolism

Nitrogen

metabolism

Vitamin

B6 metabolism

Glutamate

metabolism

Gly cine, serine

and threonine

metabolism

Histidine

metabolism

Urea cy cle and

metabolism

of amino groups

Alanine and

aspartate

metabolism

Py rimidine

metabolism

Fatty acid

biosy nthesis

Fatty acid

elongation

n mitochondria

Nicotinate and

nicotinamide

metabolism

1.2.4.1

4.1.1.1

Acetate

-Phosphatidy

-D-my o

-inositol

UDP-D-gal

acturonate

Undecapreny

phosp

hate alpha

3.1.3.11

3.1.3.37

4.2.1.11 2.7.1.403.1.3.9

5.3.1.9

2.7.1.1

2.7.1.2

5.1.3.15

5.3.1.9

3.1.3.10

2.7.1.412.7.1.63

1.3.13 5.4.2

5.4.2.4

3.5.99.6

2.3.1.157

2.7.7.23

5.1.3.7

1.14.18.2

5.4.2.10

2.3.1.3 3.2.1.-

3.5.1.41

2.7.1.64

3.1.3.26

2.7.1.69

PTS-Mur

2.7.1.134

2.2.1.5

(R,R)-Tar

taric acid

4.2.1.44

3.5.1.49

trans-2,3

-Epoxy s

uccinate

3.5.4.9

6.3.4.3

3.5.1.31

3.5.1.8

3.5.1.15

2.7.2.6

1.1.99.14

3.1.2.10

1.12.1.2

1.2.1.2

1.2.2.1

1.2.1.21

4.1.1.40

3.2.1.21

4.1.1.54

4.1.3.24

6.2.1.9

1.1.1.37 4.2.1.32 1.1.1.93

2.7.1.31

5.1.3.10

4.1.1.39

3.2.1.39

2.4.1.12 2.4.1.35

2.7.7.34 3.2.1.31

2.4.1.172.4.1.15

3.2.1.58

3.1.3.9

2.7.1.1

2.7.1.2

5.3.1.9

2.4.1.5

3.2.1.54

3.2.1.28

2.4.1.64

3.2.1.122

3.2.1.2

3.2.1.3

3.2.1.15

3.2.1.67

2.4.1.25

2.7.1.69

PTS-Tre 2.4.1.21

3.6.1.21

2.4.1.20

4.2.1.55

Thiamin

diphosphate

1.1.1.30

2.8.3.12 1.2.7.1

2.7.2.7

2.3.1.54

2.8.3.8

5.2.1.1

1.1.1.83

1.2.4.1

2.2.1.6 1.3.99.1

2.7.1.69 PTS

-Man-EIIC,

4.1.1.5

1.1.1.4

1.1.1.14

2.7.1.3

3.2.1.80

1.1.1.172.4.1.-

1.1.1.135

4.2.1.47

3.2.1.77

3.2.1.137

2.7.1.90

2.7.1.5

5.3.1.1

5.3.1.25

4.1.2.-

1.1.1.173

4.1.2.18

3.6.1.21

6.2.1.4

6.2.1.5

2.3.3.5

1.3.99.3 4.2.1.54

3.1.2.4

6.2.1.-

2.3.1.9

4.3.1.6

1.1.1.-

1.1.1.

- 2.1.2.-

1.3.1.-

2.7.7.12

5.4.2.7

4.1.2.4

1.1.1.44

3.1.3.11

3.1.3.37

2.2.1.1

5.3.1.6

4.1.2.13

3.1.1.17

1.2.7.5

1.1.5.2 1.1.99.3

Ribose 1

-phosp

1.2.7.3

1.8.1.4

1.2.1.22

4.2.3.3

1.3.5.1

4.2.1.3

4.1.3.6

4.2.1.3

2.3.3.1

1.1.1.376.4.1.1

1.2.4.1

4.1.1.49

3.1.2.1

2.7.1.40

1.1.1.38

1.1.39 1.1.1.

1.1.1.82

1.1.1.21

1.1.1.77

1.2.1.49

4.1.1.78

1.1.2.4

1.1.1.37

1.1.99.7

1.1.2.3 1.2.1.3

2.8.3.1

6.4.1.2

ACCB, bccP

2.3.3.14

1.1.1.13

1.2.4.1

5.-.-.-

4.1.1.85

4.1.2.36

3.6.1.7

1.13.12.4

3.2.1.315.3.1.4

1.1.1.56

5.3.1.17

2.7.1.16

2.7.1.47

5.3.1.15

2.7.1.53

5.3.1.5

5.3.1.-

1.1.1.12

3.1.1.681.1.1.21 1.1.1.121

1.1.1.175

1.1.1.22

1.1.1.57

4.3.1.2

4.2.1.84.2.1.7

5.3.1.12

1.1.1.58

1.1.2.2

4.2.2.2

4.2.2.6

4.1.2.19

4.1.1.5

2.7.1.11

2.7.1.144

3.2.1.26

3.2.1.108

3.2.1.22

2.4.1.67

3.2.1.26 3.2.1.22

2.7.1.69

PTS-Lac

5.4.2.2

3.2.1.223.2.1.22

3.2.1.22

2.7.1.1

2.7.1.2

2.7.1.58

2.7.7.9

3.1.1.25

5.1.3.2

5.3.1.26

1.1.1.16

3.1.3.9

1.1.1.122

2.7.1.433.1.1.17

1.1.1.130 1.6.5.4

4.1.2.20

1.2.1.3

4.2.1.41

1.10.3.3

CO2

3.2.1.33

(R)-3-Hy dro

xy butanoate

1.2.- 4.1.2.1

4.1.3.16

C00687

Carbon f ixation

n photosy ntheti

organisms

Lipopoly sa

ccharide

biosy nthesis

Gly ceropho

spholipid

metabolism

Retinol

metabolism

Sy nthesis and

degradation

f ketone bodie

Valine, leucine

and isoleucine

degradation

map01056

3-Chloroac

ry lic acid

degradation

Pantothenate

and CoA

biosy nthesis

map00523

beta-Alanine

metabolism

Methane

metabolism

Fatty acid

metabolism

Ty rosine

metabolism

Valine, leucine

and isoleucine

biosy nthesis

Ribof lav in

metabolism

Ly sine

biosy nthesis

D-Glucose

D-Glucose 1

-phosphate

Gly cerone

phosphate

beta-D

-Glucose

Enzy me N6

-(lipoy

l)ly sine

2-(alpha

Hy droxy ethy

l)thiamine

y drolipoy lly s

-residue

ty ltransf eras

Thiamin

diphosphate

Acetal

dehy de

Enzy me N6

-(dihy droli

poy l)ly sine

Arbutin

6-phosphate

Arbutin

2.7.2.3

Oxaloa

cetate

2,3-Bisp

hospho

-D-gly cerate

4.1.1.1

1.8.1.4

6.2.1.1

1.1.1.1

EUTG

1.2.4.1

4.1.2.132.7.1.11

5.3.1.9 2.3.1.121.1.1.27

1.3.13 5.4.2

5.4.2.4

5.4.2.2

2.7.1.1

2.7.1.2

1D-my o

nositol 1,3,4

-tetrak

2.7.1.63

2.7.1.69 PTS

-Arb-EIIC,

2.7.1.69

PTS-Asc

4.1.1.32

3.2.1.86

1.1.99.8

4.1.1.49

1.2.7.5

1.2.7.6

1.2.1.9

1.2.7.1

3.1.3.57

Ferricy to

chrome b5

N-Acety l

-D-glu

cosamine

Chitin

D-Gluc

osamine

Chitobiose

D-Glucos

amine 6

-phosphate

UDP-N

-acety l-D

-glucosamine

N-Acety lne

uraminate 9

-phosphate

UDP-N

-acety l-D

mannosamin

Mucopoly s

accharide

2-Amino

-2-deoxy -D

-gluconate

D-Gluco

saminide

Gly colipid

UDP-N-acety

-2-amino-2

-deoxy

ominic acid(

-reducing N

- or O-acy lne

Gly cop

rotein

3.2.1.52

D-Fruct

ose 6

-phosphate

1.6.2.2

N-Acety l

muramate

1.1.1.158

2.5.1.71.1.1.136

2.4.1.165.1.3.14

1.1.1.-

3.1.4.-

5.1.3.144.1.3.32.7.7.43

1.14.18.2

3.1.3.29

2.7.7.43

2.5.1.56

2.5.1.57

3.1.3.-

2.7.1.60

5.1.3.9

3.5.1.25

2.3.1.4

5.1.3.8

2.7.1.59

3.2.1.14

2.7.1.69

PTS-Dgl

3.2.1.14

2.3.1.96

3.2.1.132

2.7.1.69

PTS-Nag

2.3.1.157

2.7.7.23

3.5.1.33

1.1.3.-

1D-my o

nositol 1,4,5

-tetrak

4-Hy droxy

-2-oxog

lutarate

D-my o-Inosit

1,3,4

trisphosphate

my o-Inositol

hexak

isphosphate

1D-my o

nositol 3,4,5

-tetrak

D-my o-Inosito

1,2,4,5,6

-penta

1D-my o

-Inositol 1,3,

4,5,6-pent

1D-my o

nositol 1,3,4

-tetrak

Inositol

,2,3,5,6-pent

kisphosphate

D-my o-Inosito

3,4

bisphosphate

D-Glucose 6

-phosphate

1-Phospha

tidy l-D-my o

-inositol

Phosphatid

y linositol

-3,4,5

Inositol

1-phosphate

D-Gluc

uronate

-Phosphatidy

-1D-my o

-inositol 4

1-O-Met

hy l-my o

-inositol

3.1.3.36

2.7.1.149

2.7.1.153

3D-(3,5/4)

-Trihy drox

cy clohexane

2.7.1.151

3.1.3.67

2.7.1.151

3.1.3.56

3.1.3.62

2.4.1.11

2.7.1.127

2.7.1.134

3.1.3.8

2.7.1.140

2.7.1.134

3.1.3.56

3.1.3.57

3.1.3.64

3.1.3.66

3.1.3.25

5.5.1.4

1.13.99.1

3.1.3.25

3.1.4.3

4.6.1.13

2.7.1.67

2.7.1.137

3.1.4.11

PLCE PLCZ

3.1.3.64

3.1.3.25

2.1.1.39

2.7.1.158

1.1.1.18

D-2,3-Diketo

4-deoxy -epi

-inositol

3-Oxopr

opanoate

D-Gly cera

ldehy de

3-phosphate

2-Deoxy -5

-keto-D

gluconic acid

Gly cerone

phosphate

5-Deoxy

glucur

onic acid

2,4,6/3,5

-Pentah

y droxy cy

2.7.1.92

1.2.1.18

1.2.1.27

4.1.2.29

1.-.-.-

Citrate

(3S)-3

-Carboxy -3

-hy droxy pro

iolE1.1.1.18

(S)-Malate

Acety l-CoA

3-Phospho-D

-gly cerate Gly colate

Gly cola

ldehy de

Ethy lene

gly col

Gly oxy late

Formate

Oxalate

H+

Hy drogen

Formy l

phosphateOxaly l-CoA

cis-Ac

onitate

Isocitrate

Succinate

3-Oxal

omalate

3-Ethy

lmalate

2-Hy droxy

3-oxoadipate

Butanoy l

-CoA

Pentan

oy l-CoA

3-Propy

lmalate

4.2.1.3

Oxaloa

cetate

5.3.1.22

2.3.3.12

2.3.3.7

3.5.1.56

4.1.3.134.1.3.1

4.1.3.16

3.5.1.68

3.5.1.27

3.5.1.9

3.5.1.10

4.2.1.3

1.2.1.17

4.1.1.8

1.1.3.15

glcE glcF

2.8.3.2

1.1.1.26

1.1.1.29

1.2.3.5

4.1.1.2

1.12.7.2

1.2.3.4

1.1.1.77

2.3.3.1

1.1.1.26

1.1.1.29

1.1.1.60

4.1.1.47

2.3.3.9

5.1.2.5 3.3.2.41.3.1.7

1.1.1.92

3.1.3.18

1.1.1.93

D-Glucose 6

-phosphate Pectin

D-Xy lose

1,4-beta-D

-Xy lan

Pectate

D-Galac

turonate

Sucrose

6-phosphate

Cellulose UDP-glu

curonate

beta-D

Glucuronosid

beta-D

-Glucose

D-Glucose

UDP-g

lucose

alpha

-D-Glucose

CDP-3,6

-dideoxy -D

-glucose

alpha-D

-Glucose 1,6

bisphosphate

D-Glucose 1

-phosphate

CDP-g

lucose

1,3-beta-D

-Glucan

Maltose

Maltod

extrin

Dextrin

Cy clomal

todextrin

alpha,alpha

-Trehalose

beta-D

-Glucose

1-phosphate

Maltose

6'-phosphate

CDP-4

-dehy dro-3,6

-dideoxy

DP-4-dehy d

-6-deoxy

-D-glucose

SucroseCellobiose

Starch

alpha

-D-Glucose

D-Fructose

D-Fructose

Cellobiose

Cellulose

(2,6-beta

D-Fructosy l)

Cellotriose

Cellop

entaose

Celloh

exaose

Celloh

eptaose

Sucrose

-6-phosphate

Maltose

Isomaltose

.7.1.1 2.7.1.

2.7.1.4

3.2.1.26

1.1.99.13

3.2.1.20

3.2.1.26

3.2.1.4

3.2.1.91

2.4.2.24

3.1.3.24

2.4.1.29

4.1.1.35

2.7.1.69

PTS-Scr

4.2.1.45

2.7.1.41

3.6.1.9

2.4.1.342.4.1.14

1.1.1.22

5.1.3.6

2.7.7.33

2.7.1.106

2.7.1.10

2.4.1.432.7.7.9

3.1.1.11Thiamin

diphosphate

2.7.7.27

5.4.2.2

2.3.1.61

2.4.1.18

3.1.3.12

5.4.2.6

3.2.1.1

3.2.1.20 2.4.1.8

2.4.1.4 2.4.1.10

2.4.1.10

3.2.1.74

3.2.1.65

3.2.1.74

3.2.1.74

3.2.1.74

3.2.1.74

3.2.1.74

2.4.1.7

3.6.1.21

3.2.1.10

3.2.1.3

Maleic acid

(S,S)-Butane

-2,3-diol

Succinate

(R)-Acetoin

Fumarate

(R,R)-Butane

-2,3-diol

(R)-Malate

Butanoy l

phosphate

Poly -beta

-hy drox

y buty rate

Butanal

Butanoy l

-CoA

Acetoac

ety l-CoA

Croton

oy l-CoA

Glutacony l

-1-CoA

Acety l-CoA

(S)-3

-Hy droxy -3

-methy lgl

Acetoa

cetate

(R)-3

-Hy droxy but

anoy l-CoA

1-Butanol

3-Buty noate

3-Buty n

-1-al

Diacety l

3-Buty n

-1-ol

1.2.99.3

1.1.99.8

1.2.1.3

4.2.1.27

3.1.1.22

2.8.3.5

6.2.1.16

1.1.1.157

1.1.1.61

1.1.1.36 4.1.3.4

4.2.1.17

2.3.3.10

1.1.1.35

2.3.1.9

5.1.2.3

3.1.1.75

2.3.1.-

5.3.3.3

2.6.1.194.1.1.15

1.3.1.44

1.3.99.2

1.2.1.10 1.2.1.16

1.2.1.24

1.1.1.-

4.2.1.31

2.2.1.6

5.1.2.4

1.1.99.2

4.1.1.70

3.1.2.11

1.1.1.76

4.2.1.-

1.1.1.5

D-Mannose

6-ph

osphate

L-Sorbose

alpha

-D-Glucose

D-Fruct

ose 1

-phosphate

D-Manni

tol 1

-phosphate

1,4-beta-D

-Mannan

Manno

gly can

D-Sorbitol

D-Gly cer

aldehy de

(Alginate)n

L-Rham

nulose

L-Rhamnu

lose 1

-phosphate

2-Dehy dro-3

-deoxy -L

-rhamnonate

(S)-Lact

aldehy de

beta-D

-Fructose 6

-phosphate

GDP-6-deoxy

-D-talose

D-Mannose

1-ph

osphate

L-Rhamn

ono-1,4

-lactone

6-Deoxy

-L-galactose

2-Dehy dro-3

-deoxy -D

-f uconate

(R)-Lact

aldehy de

Sorbose

1-phosphate

1.1.1.21

2.7.1.69

PTS-Fru

1.1.1.187

5.3.1.5

1.1.1.11

1.1.1.67 3.1.3.22

3.1.3.-

5.3.1.7

2.7.1.69

PTS-Mtl

3.2.1.78

2.7.1.1

2.7.1.2

Propy noate

.7.1.1 2.7.1.

2.7.1.4

2.7.1.1052.7.7.22

1.1.1.271

5.4.2.8

2.7.7.132.7.7.30

1.1.1.140

2.7.1.69

PTS-Gut

4.2.2.3

2.4.1.33

2.7.1.56

5.3.1.14

4.1.2.13 2.7.1.28

4.1.2.19

4.1.2.13

3.1.1.654.2.1.90

3.1.3.11

3.1.3.37

2.4.1.-

4.1.2.17

2.7.1.51 4.2.1.67

3.6.1.21

1.1.1.- 2.7.1.69 PTS

-Sor-EIIC,2.7.1.52

(S)-2-Met

hy lmalate

(Z)-But-2-ene

-1,2,3

tricarboxy lat

Propanoy l

phosphate

1-Aminocy cl

opropane-1

-carboxy late

Propan

oy l-CoA

Propen

oy l-CoA

(S)-Lactate

Lacto

y l-CoA

(S)-Methy l

malony l-CoA

Methy lm

alonate

Succinate

Succiny l

-CoA

(2S,3R)-3

y droxy butan

-1,2,3

Propan-2-ol

beta-Al

any l-CoA

2-Methy

lcitrate

3-Hy dro

xy propi

ony l-CoA

Acetone

Acetoa

cetate

3-Hy droxy

propanoate

Acetoac

ety l-CoA

Acety l-CoA

2-Hy droxy bu

tanoic acid

3-Oxopr

opanoate

4.1.1.41

2-Propy n

-1-ol

Propinol

adeny late

2.3.1.54

2.7.2.1

2.7.2.15

1.2.1.27

5.1.99.1

4.2.1.99

1.2.1.18

6.4.1.3

3.1.2.17

2.1.3.1

6.2.1.1

6.2.1.17

2.8.3.1

6.2.1.4

6.2.1.5

5.4.99.2

4.1.3.30

2.8.3.1

1.2.7.1

2.6.1.192.6.1.18

1.2.1.3 1.2.99.3

1.1.1.59

1.1.99.8 1.2.1.18

2.1.3.1

4.2.1.27

1.1.1.80

2.8.3.8

4.1.1.4

4.1.1.9 6.4.1.2

ACCB, bccP

3.5.99.7

1.1.1.27

1.2.1.18

4.2.1.17

UDP-L

-Ara4FN

UDP-L

-Ara4N

UDP-L

-Ara4O

UDP-D

-galactose

UDP-g

lucose

UDP-glu

curonate

UDP-D-gal

acturonate

UDP-6-sulf

oquinov ose

UDP-L

-iduronate

D-Glucose 1

-phosphate

alpha-D

-Galactose 1

-phosphate

TDP-6-deoxy

-L-talose

dTDP

-glucose

UDP-L

-rhamnose

alpha-D

-Xy lose

1-phosphate

dTDP-D

galacturonate

DP-4-dehy d

-6-deoxy

-D-glucose

L-Ara

binose

beta-L

-Arabinose

1-phosphate

alpha-L

-ArabinanPentosan

dTDP-D

-glucuronate

1.1.1.

- 2.1.2.-

up:Q7VUF1

2.6.1.-2.7.8.-

1.1.1.186

3.13.1.1

5.1.3.2 4.2.1.46

1.1.1.134

1.1.1.133

5.1.3.13

5.1.3.2

1.1.1.22

4.1.1.35

2.7.7.24

2.7.7.33

5.1.3.12 2.7.7.9

4.2.1.76

1.1.1.-

5.1.3.6

2.7.7.11

4.1.1.67

5.1.3.5

2.7.7.10

2.7.1.44

3.2.1.-

D-Ribose

1,5-bis

phosphate

2.7.7.373.2.1.37

2.4.1.43

3.2.1.-

1.1.1.1335.1.3.13

2.7.1.46

2.4.2.24

D-Glucono

-1,5-lactone

3.2.1.55

D-Gluco

nic acid

D-Ribose

5-phosphate

6-Phospho

-D-gl

uconate

beta-D

-Glucose

alpha-D

-Ribose

1-phosphate

D-Ribul

ose 5

-phosphate

2-Deoxy

-D-ribose

5-phosphate

beta-D

-Glucose

6-phosphate

2-Dehy dro-D

-gluconate

2-Phospho-D

-gly cerate5.3.1.9 1.1.1.49

1.1.1.435.1.3.1

2.7.6.15.4.2.2

5.4.2.7

2.7.1.11

2.7.1.15

2.2.1.1

2.7.1.134.3.1.9

2.7.1.45

4.2.1.12

3.1.1.31

2.7.1.12

4.2.1.39

1.1.3.4

1.1.3.5

1.1.99.10

2.2.1.2

1.1.1.472.7.1.-

1.1.1.215

4.1.2.9

Oxalosu

ccinate

Fumarate (S)-Malate

Oxaloa

cetate

Acety l-

CoA

Isocitrate

cis-Ac

onitate

Citrate

Succinate

N6-(lipo

y l)ly sine

4.1.1.-

N6-(dihy drol

ipoy l)ly sine

2-Oxogl

utarate

3-Carboxy -1

-hy droxy p

ropy l-ThPP

1.2.4.2

Phosphoen

olpy ruv ate

1.2.4.2

6.2.1.4

6.2.1.5

6.2.1.4

6.2.1.5

2.3.3.8

1.1.1.42

1.1.1.41

1.1.1.42

4.2.1.2

1.2.4.1

1.8.1.4

2.3.1.12

1.2.7.1

4.1.1.32

Enzy me N6

-(dihy droli

poy l)ly sine

2-(alpha

Hy droxy ethy

l)thiamine

Propane

-1,2-diol

Gly cerone

phosphate

Formate

Oxaloa

cetate (S)-Malate

Acety l

phosphate

Malon

y l-CoA

(R)-2-Hy dr

oxy butane

-1,2,4-tric

Acetoac

ety l-CoA

Acety l-CoA

Acetal

dehy deAcetate

(R)-S

-Lactoy lglu

tathione

(S)-Lactate

(R)-Lactate

1.2.7.1

Thiamin

diphosphate

4.1.1.31

4.1.1.38

4.1.1.49

2.7.9.1

2.7.9.21.2.1.23

3.1.2.6

1.1.1.21

6.4.1.1

4.4.1.5

1.2.1.22

1.1.1.28

1.1.1.79

5.1.2.1

4.1.1.3

1.2.3.6

2.3.1.54

1.1.99.16

2.3.3.9

1.2.2.21.1.1.27

1.2.3.3

2.3.1.8

6.2.1.1

6.2.1.16.2.1.13 2.7.2.12

1.2.99.3

1.2.99.6

4.1.3.22

4.1.3.25

1.2.1.10

EUTE

2.3.3.6

2.3.3.13 4.1.3.-

2.3.1.12

1.8.1.4

3-Dehy dro-L

-gulonate 6

-phosphate

1.2.1.49

1.1.2.5

beta-D

Glucuronosid

1.1.3.3

2.7.2.1

2-Dehy dro-3

-deoxy -D

-gluconate

D-Fruct

uronate

D-Altronate

D-Glucose 1

-phosphate

D-Tagat

uronate

D-Glucur

onate 1

-phosphate

2-Dehy dro-3

-deoxy -6

-phospho-D

L-Gulonate

UDP-g

lucose

UDP-glu

curonate

L-Xy lulose

D-Xy lon

olactone

D-Gly cera

ldehy de

3-phosphate

D-Xy lose

2-Dehy dro-3

-deoxy -D

-xy lonate

D-Ribitol 5

-phosphate

2.7.1.16

D-Ribulose

Ribitol

D-Xy lulose 5

-phosphate

D-Ribul

ose 5

-phosphate

L-Xy lulose 5

-phosphate

L-Ribulose

L-Arabitol

D-Arabitol

3-Dehy dro-L

-gulonate

L-Ribulose 5

-phosphate

4-Deoxy -alp

-D-gluc-4

-enuronosy l)

Digalac

turonate

5-Dehy dro-4

-deoxy -D

-glucuronate

4R,5S)-4,5,6

-Trihy droxy

-2,3

L-Xy lonate

Gly cerone

phosphate

L-Ly xonate

L-Xy lulose 1

-phosphate

4.1.2.-

2.7.1.53

5.1.3.4

5.-.-.-

1.1.1.137

2.7.7.40

1.1.1.11

2.7.1.17

4.1.2.284.2.1.82

1.1.1.10 1.1.1.21

1.1.1.9

2.7.7.9

1.1.1.45

4.1.2.14

4.1.3.16

2.7.1.43

1.1.1.19

2.7.1.45

2.7.7.44

5.3.1.12

1.1.1.15

3.2.1.67

1.1.1.130

3.2.1.15

3.1.1.11

(R)-Acetoin

1.1.1.125

2.7.1.5

(S)-2-Ace

tolactate

Itaconate

cis-Ac

onitate

(S)-2-Met

hy lmalate

Gly oxy late

Mesac

onate

2-Hy droxy

glutarate

L-ery thro-3

-Methy l

maly l-CoA

L-threo-3

Methy lmalate

L-Glu

tamate

L-threo-3

-Methy l

aspartate

Parapy

ruv ate

(R)-2-Met

hy lmalate

4-Hy droxy -4

-methy l

glutamate

Propanoy l

phosphate

4-Methy lene

-2

-oxoglutarate

6.3.1.73.5.1.67

4.2.1.35

4.1.3.22

4.1.3.25

4.1.3.17

4.2.1.34

4.1.1.6

5.4.99.1

6.2.1.5 2.8.3.7

2.2.1.6

4.2.1.56

4.2.1.-

Galactitol 1

-phosphate

D-Galac

tono-1,4

-lactone

D-Fructose

D-Glucose 1

-phosphate

UDP-D

-galactose

2-Dehy dro-3

-deoxy -D

-galactonate

D-Gala

ctonate

alpha-D

-Galactose 1

-phosphate

Sucrose

Raf f inose

alpha-D

-Glucose 6

-phosphate

alpha-D

Galactosy l-(

->3)-1D-my o

Melibiitol

Epimel

ibiose

3-beta-D

-Galactosy l

-sn-gly cerol

D-Mannose

D-Sorbitol

Lactose

6-phosphate

D-Gly cera

ldehy de

3-phosphate

Melibiose

Galactan

D-Gal

actose

N-Acety l-D

-galac

tosamine

D-Gal alpha

1->6D-Gal

alpha 1

D-Tagatose

Stachy ose

Lactose

D-Galacto

samine 6

-phosphate

1.1.1.251

2.7.1.69

PTS-Gat

3.2.1.20

3.2.1.22

4.1.2.21

3.2.1.85

3.2.1.20

3.2.1.23

2.4.1.222.7.7.12

2.7.7.10

2.7.1.6 2.7.1.101

4.2.1.6

3.2.1.23 1.1.1.48

1.1.1.48

1.1.1.120

2.4.1.82

2.7.1.69 PTS

-Aga-EIIC,3.5.1.25

2.4.1.123

5.3.1.-

2.7.1.69 PTS

-Gam-EIIC,

my o-Inositol

L-Ascor

bate 6

-phosphate

UDP-g

lucose

D-Glucur

onate 1

-phosphate

L-Gala

ctonate

L-Galac

tose 1

-phosphate

GDP-L

-galactose

L-Gulose

1-phosphate

GDP-m

annose

D-Xy lulose 5

-phosphate

D-Glucuro

nolactone

2-Dehy dro-3

-deoxy -D

-glucarate

L-Gulono-1,4

-lactone

L-xy lo-Hexu

lonolactone

2-Hy droxy

-3-oxop

ropanoate

Ascorbate

5-Dehy dro-4

-deoxy -D

-glucarate

2,5-Dioxo

pentanoate

Dehy droa

scorbate

L-Ara

binose

2-Dehy dro-3

-deoxy -L

-arabinonate

2-Dehy dro-3

-deoxy -D

-xy lonate

L-Ly xonate

Threonate

3-Dehy dro-L

-threonate

2.7.-.-

3.1.1.-

5.1.3.-

5.1.3.18

1.1.3.8

3.1.1.- 1.1.1.-

3.1.3.-

2.7.7.44

1.1.1.22

5.1.3.4

4.1.1.-

2.7.1.53

4.1.1.85

5.1.3.22

1.1.1.20

1.1.1.19

1.3.2.3 4.1.2.20

4.2.1.40 4.2.1.42

1.1.3.8

1.8.5.1

1.11.1.11

4.2.1.25

1.1.1.-3.7.1.-

4.2.1.40

3.1.1.19

1.2.1.26

4.2.1.43

4.1.1.- 1.14.-.-

1.13.11.13

1.1.1.129

1.1.1.46

1.3.3.12

3.1.1.15

1.3.2.3

3.1.1.17

Py ruv ate

Py ruv ate

Py ruv ate

Py ruv ate

Py ruv ate

Py ruv ate

Py ruv ate

Py ruv ate

Py ruv ate

Fig. 5. Bottom-level graph. Reactionnetwork of pathways associated with thecarbohydrate metabolism. The search re-sult for ”Pyruvate” is highlighted includ-ing its incident edges.

nodes, 50 pathway nodes, 814 reaction hyperedges and 149 regular inter-pathwayedges was created. The portion of the graph containing the hyperedges andnodes was converted into a bipartite graph, where the previous hyperedges aredisplayed as rectangular nodes (yellow) labeled with the EC numbers of the cat-alyzing enzymes and the nodes as ellipses (green) labeled with the compound’schemical name, resulting in a total number of 1,513 nodes and 1,861 edges.This graph could easily be handled by the visualization software. On an Intel R©

Xeon R© (2 GHz, 32 GB RAM) machine, response times of the graphical userinterface were less than 0.2 sec for any operation discussed previously enablinga smooth interaction with the displayed graph. A second example was morecomplex. After converting the hypergraph portion into a bipartite subgraph, thegraph describing the complete metabolism of a generalized eucaryotic cell had atotal number of 10,067 nodes and 11,706 edges. Depending on the visible portionin the scrollable graph view area, any collapse/expand operation took up to 4sec if the complete graph was visible, and up to 2 sec if one pathway was locatedin the visible area. The response times for scrolling, zooming, and highlightingelements for the worst-case scenario (all pathways expanded) were less than 0.75sec if up to 1/4 of the graph’s elements were visible, and less than 0.25 sec if thevisible portion was 1/10 of the completely laid out graph.The runtime of the grid layout algorithm heavily depends on the choice of pa-rameters. For large graphs, the brute-force method testing all grid positionsnaturally takes longer compared to the simulated annealing method. The choiceof the area ratio a = 4 · |V | generally produced more aesthetic layouts for cyclic

Page 10: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

10 M. Rohrschneider et al.

Fig. 6. GUI of the Visualization and Editing Tool. The top-level graph consisting of 154pathway vertices with 4 expanded pathways. The node ”Glycolysis/Gluconeogenesis”was selected in the Data Browser (right, top) resulting in highlighting all its compoundand reaction nodes including connections to adjacent pathways.

and chain-like structures because of the larger space available to unfold thosesubstructures, but resulted in increased runtime for the brute-force method.

7 Conclusion

The proposed software is able to layout and display complex graphs with a highnumber of elements. The development process was intensively accompanied bydomain experts from biology and biochemistry. For metabolic pathway networks,not only the graph topology is relevant, a high number of additional attributes—textual annotations in our case—need to be visualized. Semantic zooming andfocus&context methods are applied to accomplish this goal, instant highlightingof graph elements fitting the pattern of a string based search operation is anintuitive way to extract specific information on the dataset. The main benefit ofthe adapted Table Lens method is the preservation of the mental map. Many ofthe visualization tools lack this key feature. Even though node expansion andcollapse produce very discrete and rather abrupt changes in the graph appear-ance, only the row and the column of the grid position are affected while theremaining elements keep their relative position. In combination with continuouszooming, it is a straightforward task to explore even large graphs. Highlight-ing individual or groups of edges greatly facilitates the tracking of routes. Inthe presented grid layout algorithm, vertex placement and edge routing are per-formed in two separate steps. This offers the opportunity to develop alternativenode placement routines fitting the specific needs of pathway visualization in thefuture.

Page 11: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

Visualizing Metabolic Networks using Advanced Focus&Context Techniques 11

Fig. 7. A more detailed view of the bottom level graph. This portion of the graph dis-plays the pathway Starch and Sucrose metabolism. The Algorithm Info Area (bottom,right) gives feedback on invoked algorithms and displays search results. In this scenario,a search for the term alpha-D-Glucose was performed and resulted in 13 matches beinghighlighted in the Graph View and in the hierarchical Data Browser view.

Acknowledgments. This work has been funded by the Volkswagen Stiftungunder grant I/82 719.

References

1. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout Adjustment and the MentalMap. Journal of Visual Languages and Computing 6 (2), 183–210 (1995)

2. Rao, R., Card, S.K.: The table lens: merging graphical and symbolic representa-tions in an interactive focus + context visualization for tabular information. In:Proceedings of the SIGCHI conference on Human factors in computing systems,pp. 318–322. ACM, New York (1994)

3. Karp, P.D., Paley, S.M., Romero, P.: The Pathway Tools software. Bioinformatics18, 225–232 (2002)

4. Hu, Z., Mellor, J., Wu, J., DeLisi, C.: VisANT: an online visualization and analysistool for biological interaction data. BMC Bioinformatics 5 (1), e17 (2004)

5. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin,N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integratedmodels of biomolecular interaction networks. Gen. Res. 13 (11), 2498–2504 (2003)

6. Schreiber, F.: High Quality Visualization of Biochemical Pathways in BioPath. InSilico Biology 2 (2), 59–73 (2002)

7. Karp, P.D., Ouzounis, C.A., Moore-Kochlacs, C., Goldovsky, L., Kaipa, P., Ahren,D., Tsoka, S., Darzentas, N., Kunin, V., Lopez-Bigas, N.: Expansion of the BioCyccollection of pathway/genome databases to 160 genomes. Nucleic Acids Research33 (19), 6083–6089 (2005)

Page 12: A Novel Grid-based Visualization Approach for Metabolic …homepage.lnu.se/staff/akemsi/pubs/kerren-gd09b-postprint.pdf · A Novel Grid-based Visualization Approach for Metabolic

12 M. Rohrschneider et al.

8. DiBattista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithmsfor the Visualization of Graphs. Prentice Hall, New Jersey (1999)

9. Nicholson, D.E.: Metabolic Pathways Map (Poster). Sigma Chemical Co., St. Louis(1997)

10. Lungu, M., Xu, K.: Biomedical Information Visualization. In: Human-CenteredVisualization Environments, pp. 311–342., Springer (2006)

11. Kerren, A., Ebert, A., Meyer, J.: Human-Centered Visualization Environments,GI-Dagstuhl Research Seminar. In: LNCS, vol. 4417, Springer (2007)

12. Kerren, A.: Interactive Visualization and Automatic Analysis of Metabolic Net-works – A Project Idea. Technical Report, Institute of Computer Graphics andAlgorithms, Vienna University of Technology, Austria (2003)

13. Albrecht, M., Kerren, A., Klein, K., Kohlbacher, O., Mutzel, P., Paul, W.,Schreiber, F., Wybrow, M.: On Open Problems in Biological Network Visualiza-tion. In: Proc. of the 17th International Symposium on Graph Drawing (to appear),Chicago, USA, Springer (2009)

14. Albrecht, M., Kerren, A., Klein, K., Kohlbacher, O., Mutzel, P., Paul, W.,Schreiber, F., Wybrow, M.: A Graph-drawing Perspective to Some Open Problemsin Molecular Biology. Technical report TR08-01-003, Lehrstuhl XI fur AlgorithmEngineering, Fakultat fur Informatik, TU Dortmund, Germany (2008)

15. Brandes, U., Dwyer, T., Schreiber, F.: Visualizing Related Metabolic Pathways inTwo and a Half Dimensions. In: Proc. International Symposium on Graph Drawing(GD’03), pp. 111–122, LNCS, vol. 2912 (2003)

16. Kyoto Encyclopedia of Genes and Genomes, http://www.kegg.jp/kegg/17. Klukas, C., Schreiber, F.: Dynamic exploration and editing of KEGG pathway

diagrams. Bioinformatics 23 (3), 344–350 (2007)18. Michal, G.: Biochemical Pathways: Biochemie-Atlas. Spektrum Akademischer Ver-

lag, Heidelberg (1999)19. Saraiya, P., North, C., Duca, K.: Visualizing biological pathways: requirements

analysis, systems evaluation and research agenda. Information Visualization 4 (3),191–205 (2005)

20. Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Infor-mation Visualizations. In: VL, pp. 336–343 (1996)

21. Streit, M., Kalkusch, M., Kashofer, K., Schmalstieg, D.: Navigation and Explo-ration of Interconnected Pathways. Eurographics / IEEE-VGTC Symposium onVisualization 27 (3) (2008)

22. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.Process. Lett. 31 (1), 7–15 (1989)

23. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P.: Optimization by simulated annealing.Science 220, 671–680 (1983)

24. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Deter-mination of Minimum Cost Paths. IEEE Transactions on Systems Science andCybernetics 4 (2), 100–107 (1968)

25. Batini, c., Nardelli, E., Tamassia, R.: A Layout Algorithm for Data Flow Diagrams.IEEE Trans. Software Eng. 12 (4), 538–546 (1986)

26. Kaufmann, M., Wagner, D.: Drawing Graphs, Methods and Models. In: DrawingGraphs, LNCS, vol. 2025, Springer (2001)