a primer on simulation, modeling, and design of the...

60
A Primer on Simulation, Modeling, and Design of the Control Loops of Switching Regulators Bob Erickson and Dragan Maksimovic Colorado Power Electronics Center University of Colorado, Boulder IEEE APEC ‘03 Tutorial seminar Introduction + + v(t) v g (t) Switching converter Power input Load + R compensator G c (s) v ref voltage reference v feedback connection pulse-width modulator v c transistor gate driver δ(t) δ(t) T s dT s t t v c (t) Controller A simple dc-dc regulator system, employing a buck converter Objective: maintain v(t) equal to an accurate, constant value V. There are disturbances: • in v g (t) • in R There are uncertainties: in element values • in V g • in R

Upload: trinhquynh

Post on 28-Apr-2018

243 views

Category:

Documents


2 download

TRANSCRIPT

A Primer on Simulation,Modeling, and Designof the Control Loops

of Switching Regulators

Bob Erickson and Dragan MaksimovicColorado Power Electronics Center

University of Colorado, Boulder

IEEE APEC ‘03 Tutorial seminar

Introduction

+–

+

v(t)

vg(t)

Switching converterPowerinput

Load

–+

R

compensator

Gc(s)

vrefvoltage

reference

v

feedbackconnection

pulse-widthmodulator

vc

transistorgate driver

δ(t)

δ(t)

TsdTs t t

vc(t)

Controller

A simple dc-dc regulator system, employing a buck converter

Objective: maintain v(t)equal to an accurate, constant value V.

There are disturbances:

• in vg(t)

• in R

There are uncertainties:

• in element values

• in Vg

• in R

Objective of Seminar

Develop tools for modeling, analysis, and design of converter control systems

Need dynamic models of converters:

How do ac variations in vg(t), R, or d(t) affect the output voltage v(t)?

What are the small-signal transfer functions of the converter?

• Averaged switch modeling approach for ac modelingand simulation

• Construction of converter small-signal transfer functions

• Design of converter control systems

• Design of input EMI filters that don't disrupt control loops

• Current-programmed control of converters

Averaged switch modeling

+–

Switching converter circuit

Switchingnetwork +

–+–

Large-signal averaged circuit model

Averagedswitchmodel

d

+–

+–

DC and small-signal averaged circuit model

D+d

2)/(/)/1(1

/1)(

oo

scoc wswsQ

wsGsG

++−=

1D

2S

3K

4A

5

duty

ccm-dcm1+

-

DC, AC and Transient simulation

Model implementation for simulation

simulationmodel

linearization

Analytical results:steady-state characteristicsand small-signal dynamics

averaging

+

v1(t)

+–

D1

L1

C2

Q1

C1

L2 R

iL1(t)

vg(t)

Switch network

iL2(t)

+ vC1(t) –+

vC2(t)

v2(t)

+

i1(t) i2(t)

Dutycycle

d(t)

• Define a switchnetwork,containing all ofthe converterswitchingelements.

• The remainder ofthe converter islinear and time-invariant.

• The terminalvoltages andcurrents of theswitch networkcan be arbitrarilydefined.

+

v1(t)

+–

D1

L1

C2

Q1

C1

L2 R

iL1(t)

vg(t)

Switch network

iL2(t)

+ vC1(t) –+

vC2(t)

v2(t)

+

i1(t) i2(t)

Dutycycle

d(t)

t

v2(t)

dTs Ts

00

v2(t) T2

0

vC1 + vC2

t

i1(t)

dTs Ts

00

i1(t) T2

0

iL1 + iL2

t

v1(t)

dTs Ts

00

v1(t) Ts

0

vC1 + vC2

t

i2(t)

dTs Ts

00

i2(t) Ts

0

iL1 + iL2

The basic assumption is made that the natural time constants of theconverter are much longer than the switching period, so that theconverter contains low-pass filtering of the switching harmonics:

One may average the waveforms over an interval that is shortcompared to the system natural time constants, withoutsignificantly altering the system response.

In particular, averaging over the switching period Ts removes theswitching harmonics, while preserving the low-frequencycomponents of the waveforms.

This step removes the small but mathematically-complicatedswitching harmonics, leading to a relatively simple and tractableconverter model.

In practice, the only work needed for this step is to average the switchdependent waveforms.

v1(t) Ts= d'(t) vC1(t) Ts

+ vC2(t) Ts

i1(t) Ts= d(t) iL1(t) Ts

+ iL2(t) Ts

v2(t) Ts= d(t) vC1(t) Ts

+ vC2(t) Ts

i2(t) Ts= d'(t) iL1(t) Ts

+ iL2(t) Ts

(small switching ripple is neglected)

t

v1(t)

dTs Ts

00

v1(t) Ts

0

vC1 + vC2

t

v2(t)

dTs Ts

00

v2(t) T2

0

vC1 + vC2

t

i1(t)

dTs Ts

00

i1(t) T2

0

iL1 + iL2

t

i2(t)

dTs Ts

00

i2(t) Ts

0

iL1 + iL2

iL1(t) Ts+ iL2(t) Ts

=i1(t) Ts

d(t)

vC1(t) Ts+ vC2(t) Ts

=v2(t) Ts

d(t)

We can write

Hence

v1(t) Ts=

d'(t)d(t)

v2(t) Ts

i2(t) Ts=

d'(t)d(t)

i1(t) Ts

+–

⟨v2(t)⟩Ts

+

⟨i1(t)⟩Ts

Averaged switch network

+

⟨v1(t)⟩Ts

– ⟨i2(t)⟩Ts

d'(t)d(t)

v2(t) Ts

d'(t)d(t)

i1(t) Ts

Result

Modeling the switch network viaaveraged dependent sources

D' : DI1

I2

+

V1

V2

+

+

v1(t)

– D1Q1

Switch network

v2(t)

+

i1(t) i2(t)

Dutycycle

d(t)

Original switch network

Averaged steady-state model:“DC transformer”

• Correctly represents therelationships between the dcand low-frequencycomponents of the terminalwaveforms of the switchnetwork

Replace switch network with dc transformer model

+–

L1

C2

C1

L2 R

IL1

Vg

IL2

+ VC1 –+

VC2

D' : DI1

I2

+

V1

V2

+

• Can now let inductorsbecome short circuits,capacitors become opencircuits, and solve for dcconditions.

• Can simulate this modelusing PSPICE, to findtransient waveforms

+– D' : DI1 + i1

I2 + i2

I2

DD'dV1 + v1

V1

DD'd

V2 + v2

+

+

When duty cycle varies, the transformer becomes a nonlinear element.Linearization of the model about a quiescent operating point yields:

A general small-signal ac model for the PWM switch networkoperating in CCM.

Transistor port Diode port

+–

L1

C2

C1

L2 R

+– D' : D

I2

DD'd

V1

DD'd

Vg + vg

IL1 + i L1

IL2 + i L2

VC1 + vC1

VC2 + vC2

+

Replace switch network with small-signal ac model:

Can now solve thismodel to determine actransfer functions

+

v2(t)

i1(t) i2(t)

+

v1(t)

+–1 : DI1 + i1 I2 + i2

I2 dV1 + v1

V1 d

V2 + v2

+

+

+– D' : 1I1 + i1 I2 + i2

I1 dV1 + v1

V2 d

V2 + v2

+

+

+

v2(t)

i1(t) i2(t)

+

v1(t)

+

v2(t)

i1(t) i2(t)

+

v1(t)

+– D' : DI1 + i1 I2 + i2

I2

DD'dV1 + v1

V1

DD'd

V2 + v2

+

+

Converter Gg0 Gd0 ω 0 Q ω z

buck DVD

1LC R C

L ∞

boost1D'

VD'

D'LC D'R C

LD' 2R

L

buck-boost – DD'

VD D' 2

D'LC D'R C

LD' 2 RD L

where the transfer functions are written in the standard forms

Gvd(s) = Gd0

1 – sωz

1 + sQω0

+ sω0

2

Gvg(s) = Gg01

1 + sQω0

+ sω0

2

Control-to-output and line-to-output transfer functions Gvd(s) and Gvg(s)

ccm1

averagingswitch

network1

2

3

4

D

S

K

A

+

_

v1(t)

+

_

v2(t)

i1(t) i2(t)

+–

1

2

3

4

D

S

K

A

Et Gd

5

duty

averaged-switchmodel

(sub-circuit)

d

1-dd

v21-dd

i1

+

_

v2

+

_

v1

i2i1

• Controlled voltage source Et replaces the transistor, controlledcurrent source Gd replaces the diode

• Duty ratio d is input to the subcircuit

• Large-signal, nonlinear model suitable for DC, AC or Transientsimulation

• The same model can be applied in any two-switch PWM converter(the transistor and the diode need not have a common node)

• Limitations: ideal switches, CCM only, valid for two-switchconverters without isolation transformer

CCM Averaged-Switch ModelPSpice Implementation: ccm1

*********************************************************** MODEL: ccm1* Application: two-switch PWM converters* Limitations: ideal switches, CCM only, no transformer*********************************************************** Parameters: none*********************************************************** Nodes:* 1: transistor+ (D)* 2: transistor- (S)* 3: diode cathode (K)* 4: diode anode (A)* 5: duty ratio (duty)**********************************************************.subckt ccm1 1 2 3 4 5Et 1 2 value=(1-v(5))*v(3,4)/v(5)Gd 4 3 value=(1-v(5))*i(Et)/v(5).ends**********************************************************

+–

1

2

3

4

D

S

K

A

Et Gd

5

duty

averaged-switchnetwork

(sub-circuit)

1D

2S

3K

4A

5

duty

ccm1

U1

Comments

• Subcircuit ccm1 is implementation of a large-signal, nonlinearaveraged model of the switch network

• Averaged circuit model of the converter is obtained simply by replacingswitching devices with the averaged-switch subcircuit model

• Linearization and AC small-signal analysis are performed by thesimulator

• Small-signal dynamic responses can be easily generated for differentoperating points or different sets of parameter values

1T

he buck converter illustrated in Fig. 1 operates in the continuous conduction mode, and supplies 5 V

at10 A

to load R. T

he element values are L =

6 µH, C

= 200 µF. A

ll elements are ideal.

(a)U

se averaged switch m

odeling and computer sim

ulation to plot the magnitude and phase of the

control-to-output transfer function Gvd (s). Y

ou should turn in: the plots of

||Gvd

|| and

∠G

vd , andyour netlist or schem

atic.

(b)A

n input filter is now added, as illustrated in Fig. 2. R

epeat Part (a): use averaged switch m

odel-ing and com

puter simulation to plot the m

agnitude and phase of the control-to-output transferfunction

Gvd (s). Y

ou should again turn in the plots of

||Gvd

|| and

∠G

vd , and your netlist or sche-m

atic. Does the input filter substantially change the m

agnitude of Gvd ? the phase? H

ow m

anypoles and zeroes does G

vd (s) now contain?

(c)In the circuit of Fig. 2, the load takes a step change from

10 A to 2 A

(i.e., the value of Rchanges). U

se computer sim

ulation to plot the output voltage response to this change in loadcurrent. H

ow long is the settling tim

e (i.e., the time from

the step until the output voltagerem

ains within 1%

of 5 V)?

+–R

+v–

C

L

D1

Q1

Vg

H200µ

F12 V

Fig. 1

CC

M buck converter.

R

+v–

+–C

LL

f

Cf

D1

Q1

Vg

H200µ

F100

µF

300µ

H

Fig. 2

Addition of an input filter to the C

CM

buck converter of Fig. 1.

Basic CCM Buck Example (Part a)Netlist

CCM Simulation Problem, part (a)Vg 1 0 dc 12Rg 1 1a 1uXswitch 1a 2 2 0 4 CCM1.lib switch.libL1 2 2a 6uRL1 2a 3 1uC 3 0 200uR 3 0 0.5vd 4 0 dc 0.4166667 ac 1.probe.ac DEC 201 10 100k.end

+– R

+

v

C

L

Vg

1

2

3

45

CCM1

Rg RL1

Xswitch

+–Vd

1

0

1a

2

4

2a3

Probe output: part (a)Control-to-output transfer function

Buck with input filter: Part (b)Netlist

CCM Simulation Problem, part (b)

Vg 1 0 dc 12Rg 1 1a 1u

Lf 1a 1b 300uCf 1b 0 100u

Xswitch 1b 2 2 0 4 CCM1.lib switch.lib

L1 2 2a 6u

RL1 2a 3 1uC 3 0 200u

R 3 0 0.5vd 4 0 dc 0.4166667 ac 1

.probe

.ac DEC 201 10 100k

.end

+– R

+

v

C

L

Vg

1

2

3

45

CCM1

Rg RL1

Xswitch

+–Vd

1

0

1a

2

4

2a3

Lf

Cf

1b

Buck with input filter: Part (b)Probe output, control-to-output transfer function

Buck with input filter: Part (c)Transient response: netlist

CCM Simulation Problem, part (c)Vg 1 0 dc 12Rg 1 1a 1uLf 1a 1b 300u IC=4.167Cf 1b 0 100u IC=12Xswitch 1b 2 2 0 4 CCM1.lib switch.libL1 2 2a 6u IC=10RL1 2a 3 1uC 3 0 200u IC=5Sload 3 0 5 0 load.model load VSWITCH Ron=0.5 Roff=2.5VLC 5 0 PULSE(-2 2 0 0 0 50M 101M)RLC 5 0 1Megvd 4 0 dc 0.4166667Rd 4 0 1Meg.probe.tran 5u 100m uic.end

+– C

L

Vg

1

2

3

45

CCM1

Rg RL1

Xswitch

+–Vd

1

0

1a

2

4

2a3

Lf

Cf

1b

Rd

SloadRon = 0.5Roff = 2.5

+–VLC

5

RLCPulse

Part (c): Probe outputOutput voltage transient response to step change in load

Discontinuous Conduction Mode (DCM)

Occurs at light load, when inductor current ripple causesdiode current to reach zero before end of switchingperiod

Leads to major change in switch networkcharacteristics:–Steady-state output voltage becomes load dependent–Dynamics become simpler: one pole (and possibly right half-

plane zero) are moved to very high frequency, and cannormally be ignored

We need to incorporate DCM into our averaged switchmodel

d1Ts

Ts

t

i1(t)ipkArea q1

i1(t) Ts

v1(t)

0

vg – v

v1(t) Tsvg

i2(t)ipk Area q2

v2(t)

0

vg – v

– v

i2(t) Ts

v2(t) Ts

d2Ts d3Ts

DCM waveformsBuck-Boost example

t

iL(t)

0

ipk

vg

L

vL

vL(t)vg

v

0

+–

L

C R

+

v

vg

iL

+vL–

Switch network

+

v1

v2

+

i1 i2

i1(t) Ts=

d 12(t) Ts

2Lv1(t) Ts

i1(t) Ts=

v1(t) Ts

Re(d1)

Re(d1) = 2Ld 1

2 Ts

v1(t) Ts

i1(t) Ts

Re(d1)

+

Low-frequency components of input port waveformsobey Ohm’s law

i2(t) Ts=

d 12(t) Ts

2L

v1(t) Ts

2

v2(t) Ts

i2(t) Tsv2(t) Ts

=v1(t) Ts

2

Re(d1)= p(t)

Ts

p(t)

+

v(t)

i(t)

• Output port is a source of power p(t)

• Power p(t) is independent of load characteristics

• Power p(t) is dependent on (equal to) the power apparentlyconsumed by the switch network input port

+–

L

C R

+

v

vg

iL

+vL–

Switch network

+

v1

v2

+

i1 i2

i2(t) Ts

v2(t) Tsv1(t) Ts

i1(t) Ts

Re(d)

+–

L

C R

+

+

+ v(t)Ts

vg(t) Ts

p(t)Ts

Original circuit

Averaged model

• Determine averaged terminal waveforms of switch network

• In each case, averaged transistor waveforms obey Ohm’s law, whileaveraged diode waveforms behave as dependent power source

• Can simply replace transistor and diode with the averagedmodel as follows:

i2(t) Ts

+

v2(t) Tsv1(t) Ts

i1(t) Ts

Re(d1)

+

+

v2(t)

+

v1(t)

i1(t) i2(t)p(t)

Ts

Re(d)

+–

L

C R

+

v(t)Ts

vg(t) Ts

Re(d)+–

L

C R

+

v(t)Ts

vg(t) Ts

Buck

Boost

p(t)Ts

p(t)Ts

Re = 2Ld 2Ts

+

v2(t)

i1(t) i2(t)

+

v1(t)

+

v2(t)

i1(t) i2(t)

+

v1(t)

+

+

v1 r1 j1d g1v2

i1

g2v1 j2d r2

i2

v2

In any event, a small-signal two-port model is used, of the form

Small-signal DCM switch model parameters

+

+–v1 r1 j1d g1v2

i1

g2v1 j2d r2

i2

v2

Small-signal DCM switch model parameters

Switch network g1 j1 r1 g2 j2 r2

Generaltwo-switch

0

Buck

Boost

2V1

DRe

Re2

MRe

2V1

DMRe

M 2Re

1Re

2(1 – M)V1

DRe

Re2 – MMRe

2(1 – M)V1

DMRe

M 2Re

1(M – 1)2 Re

2MV1

D(M – 1)Re

(M – 1)2

M 2 Re2M – 1

(M – 1)2 Re

2V1

D(M – 1)Re(M – 1)2Re

Buck, boost, and buck-boost converter models all reduce to

+

+– r1 j1d g1v2 g2v1 j2d r2 C R

DCM switch network small-signal ac model

vg v

Transfer functions

Gvd(s) =v

dvg = 0

=Gd0

1 + sωp

Gd0 = j2 R || r2

ωp = 1R || r2 C

Gvg(s) =v

vg d = 0

=Gg0

1 + sωp

Gg0 = g2 R || r2 = M

withcontrol-to-output

line-to-output

Converter Gd0 Gg0 ω p

Buck 2VD

1 – M2 – M M

2 – M(1 – M)RC

Boost 2VD

M – 12M – 1 M

2M – 1(M– 1)RC

Buck-boost VD M

2RC

v1(t)

d

+

v1

1

2

3

45

dutyd

+

_

v2

_

i2i1

Re(d)p(t)

switchnetwork

1

2

3

4

+

_

+

_

v2(t)

i1(t) i2(t)

1

2

3

45

dutyd

+

_

v2

_

i2i1

averaged-switchmodel

CCM

+–

1

2

3

4

Et Gd

5

duty

1-dd

v21-dd

i1

+

_

v2

+

_

v1

i2i1

?

averaged-switchmodel

DCM

averaged-switchmodel

CCM/DCM

Combined CCM/DCMAveraged Switch Model

3

4

K

A

Et Gd

5

duty

averaged-switchmodel

CCM/DCM

d

1-uu

i1

+

_

v2

i2

+–

1

2

D

S

1-uu

v2

+

_

v1

i1

+

=DCM

v

iLfd

d

CCMd

u

s

,2

,

2

12

2

CCM/DCM boundary:

+=

2

12

2

2,

vi

Lfd

ddMAXu

s

u = equivalent switch duty ratio

CCM/DCM Averaged-Switch ModelPSpice Implementation: ccm-dcm1

*************************************************************************************** MODEL: ccm-dcm1* Application: two-switch PWM converters, CCM or DCM* Limitations: ideal switches, no transformer*************************************************************************************** Parameters:* L=equivalent inductance (relevant for DCM)* fs=switching frequency*************************************************************************************** Nodes: (same as in ccm1)**************************************************************************************.subckt ccm-dcm1 1 2 3 4 5 params: L=1 fs=1E6Et 1 2 value=(1-v(u))*v(3,4)/v(u)Gd 4 3 value=(1-v(u))*i(Et)/v(u)Ga 0 a value=MAX(i(Et),0)Va a bRdummy b 0 10Eu u 0 table MAX(v(5), v(5)*v(5)/(v(5)*v(5)+2*L*fs*i(Va)/v(3,4))) (0 0) (1 1).ends**************************************************************************************

1T

he flyback converter illustrated in Fig. 1 can operate open-loop with the follow

ing conditions:

In all three cases, the terminal voltages are V

g = 48 V

and V =

5 V. T

he switching frequency is 150 kH

z. T

he transformer has negligible leakage inductance, and its m

agnetizing inductance is 200 µH referred to

the primary. A

ll elements are ideal.

(a)D

etermine the operating m

ode (CC

M or D

CM

) and duty cycle for each operating point listed inTable 1.

For parts (b) to (d), use the switch.lib m

odel “CC

M-D

CM

2.” You m

ay also find the switch.lib subcircuit

“transformer” to be useful. It is suggested that you plot the operating point A

, B, and C

data on the same

chart. For each of these parts, you should turn in: (i) your netlist or schematic, and (ii) your plots.

(b)U

se computer sim

ulation to plot the magnitude and phase of the control-to-output transfer func-

tionG

vd , at operating points A, B

, and C. C

ompare.

(c)U

se computer sim

ulation to plot the magnitude and phase of the line-to-output transfer function

Gvg , at operating points A

, B, and C

. Com

pare.

(d)U

se computer sim

ulation to plot the magnitude and phase of the output im

pedance Zout (as

defined in Fig. 1) at operating points A, B

, and C. C

ompare.

Table 1C

onverter operating points

Operating point

Load resistance R

A1

ΩB

2

ΩC

3

Ω

+–

C680

µF

R

+v(t)

10 :1

vg (t)

L200

µH

Zout

fs = 150 kH

z

Fig. 1

Flyback converter.

Solution to DCM/CCM simulation problemCalculations

Part (a)

Operating Point Load Resistance Mode Duty Cycle

A 1 Ohm CCM 0.510

B 2 Ohms CCM 0.510

C 3 Ohms DCM 0.466

Part (b): Gvd

Green: A, Red: B (higher Q-factor), Blue: C (DCM)

Part (c): Gvg

Comments similar to Gvd above, but no RHP zero.

Part (d): Zout

Note low-frequency asymptote is inductive in CCM and resistive in DCM.

Simulation of control-output transfer functionNetlist

DCM-CCM Gvd Simulation Problem, point A. Change R for points B and CVg 1 0 dc 48Rg 1 1a 1uXfmr 1a 2 0 3 transformer+PARAMS: Lm=200u n=0.1Rdum 3 0 1MegXswitch 2 0 4 3 5 CCM-DCM2+PARAMS: L=200u fs=150k n=0.1.lib switch.libC 4 0 680uR 4 0 1vd 5 0 dc 0.51 ac 1.probe.ac DEC 201 10 100k.end

+–

C R

Vg

1

2

3

45

CCM-DCM2

Rg

0

1 1aXfmr

02

3

Rdum

4

+–Vd

5

1

2 3

4

Uses Xfmr model: dependentsources plus magnetizinginductance. Must account for turnsratio in averaged switch model aswell as transformer model.

Part (b): Probe outputControl-to-output transfer function

Simulation of line-output transfer functionNetlist

DCM-CCM Gvg Simulation Problem, point AVg 1 0 dc 48 ac 1Rg 1 1a 1uXfmr 1a 2 0 3 transformer+PARAMS: Lm=200u n=0.1Rdum 3 0 1MegXswitch 2 0 4 3 5 CCM-DCM2+PARAMS: L=200u fs=150k n=0.1.lib switch.libC 4 0 680uR 4 0 1vd 5 0 dc 0.51.probe.ac DEC 201 10 100k.end

+–

C R

Vg

1

2

3

45

CCM-DCM2

Rg

0

1 1aXfmr

02

3

Rdum

4

+–Vd

5

1

2 3

4

Similar to Gvd simulation, butmove ac component out ofindependent source vd and intoindependent source Vg.

Part (c): Probe outputLine-to-output transfer function

Simulation of output impedanceNetlist

DCM-CCM Zout Simulation Problem, point AVg 1 0 dc 48Rg 1 1a 1uXfmr 1a 2 0 3 transformer+PARAMS: Lm=200u n=0.1Rdum 3 0 1MegXswitch 2 0 4 3 5 CCM-DCM2+PARAMS: L=200u fs=150k n=0.1.lib switch.libC 4 0 680uR 4 0 1Iload 0 4 ac 1vd 5 0 dc 0.51.probe.ac DEC 201 10 100k.end

Remove ac components from vd and Vg.Introduce ac current source Iload atoutput. Zout = V(4)/Iload.

+–

C R

Vg

1

2

3

45

CCM-DCM2

Rg

0

1 1aXfmr

02

3

Rdum

4

+–Vd

5

1

2 3

4 Iload

Part (d ): Probe outputOutput impedance

vg(s)

v(s)

i load(s)

referenceinput

errorsignal

+–

pulse-widthmodulatorcompensator

d(s)ve(s) vc(s)vref(s)

sensorgain

H(s)

1VM

H(s) v(s)

duty cyclevariation

Gc(s) Gvd(s)

Gvg(s)Zout(s)

ac linevariation

load currentvariation

+

–+

output voltagevariation

converter power stage

v = vref

GcGvd / VM

1 + HGcGvd / VM

+ vg

Gvg

1 + HGcGvd / VM

– i load

Zout

1 + HGcGvd / VM

Manipulate block diagram to solve for . Result isv(s)

which is of the form

v = vref1H

T1 + T

+ vg

Gvg

1 + T– i load

Zout

1 + T

with T(s) = H(s) Gc(s) Gvd(s) / VM = "loop gain"

Loop gain T(s) = products of the gains around the negativefeedback loop.

Closed-loop transfer function from to is:

which is independent of the gains in the forward path of the loop.

This result applies equally well to dc values:

v(s)vref

v(s)vref(s) vg = 0

i load = 0

= 1H(s)

T(s)1 + T(s)

If the loop gain is large in magnitude, i.e., || T || >> 1, then (1+T) ≈ T andT/(1+T) ≈ T/T = 1. The transfer function then becomes

v(s)vref(s)

≈ 1H(s)

VVref

= 1H(0)

T(0)1 + T(0)

≈ 1H(0)

fp1

fzfc

fp2

– 20 dB/decade

– 40 dB/decade

Crossoverfrequency

f

|| T ||

0 dB

–20 dB

–40 dB

20 dB

40 dB

60 dB

80 dB

T1 + T

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

T1 + T

≈ 1 for || T || >> 1T for || T || << 1

Original (open-loop) line-to-output transfer function:

Gvg(s) =v(s)vg(s) d = 0

i load = 0

With addition of negative feedback, the line-to-output transfer functionbecomes:

v(s)vg(s) vref = 0

i load = 0

=Gvg(s)

1 + T(s)

Feedback reduces the line-to-output transfer function by a factor of1

1 + T(s)

If T(s) is large in magnitude, then the line-to-output transfer functionbecomes small.

Original (open-loop) output impedance:

With addition of negative feedback, the output impedance becomes:

Feedback reduces the output impedance by a factor of

11 + T(s)

If T(s) is large in magnitude, then the output impedance is greatlyreduced in magnitude.

Zout(s) = –v(s)

i load(s) d = 0vg = 0

v(s)– i load(s) vref = 0

vg = 0

=Zout(s)

1 + T(s)

fp1

QdB

– 40 dB/decade

| T0 |dB

fz

fc fp2Crossoverfrequency

|| T ||

0 dB

–20 dB

–40 dB

20 dB

40 dB

60 dB

80 dB

–60 dB

–80 dB

f

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

QdB

– | T0 |dBfp1

fz

11 + T

– 40 dB/decade+ 40 dB/decade

+ 20 dB/decade

– 20 dB/decade

11+T(s)

1T(s)

for || T || >> 1

1 for || T || << 1

fc

crossoverfrequency

0dB

–20dB

–40dB

20dB

40dB

60dB

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

fp1

fz

|| T ||

–90˚

–180˚

–270˚

ϕm

∠ T

∠ T|| T ||

∠T(j2πfc) = –112˚

ϕm = 180˚ – 112˚ = +68˚

Closed-loopsystem isstable if phasemargin ispositive

Phase marginaffects Q-factorof poles at fc inclosed-looptransferfunctions.

Closed-loop Q vs. ϕm

0 10 20 30 40 50 60 70 80 90

m

Q

Q = 1 0dB

Q = 0.5 –6dBm = 52˚

m = 76˚

-20dB

-15dB

-10dB

-5dB

0dB

5dB

10dB

15dB

20dB

Q-factorof closed-looppoles (inT/(1+T))

Phase margin

Closed-loop transient response vs. Q-factor

0

0.5

1

1.5

2

0 5 10 15

ct, radians

v(t)Q=10

Q=50

Q=4

Q=2

Q=1

Q=0.75

Q=0.5

Q=0.3

Q=0.2

Q=0.1

Q=0.05Q=0.01

+–

+

v(t)

vg(t)

28V

–+

compensator

Hvpulse-widthmodulator

vc

transistorgate driver

δ Gc(s)

H(s)

ve

errorsignal

sensorgain

iload

L50µH

C500µF

R3Ω

fs = 100kHz

VM = 4V vref

5V

0dB

–20dB

–40dB

20dB

40dB

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

|| Tu ||

–90˚

–180˚

–270˚

∠ Tu

|| Tu || ∠ Tu

Tu0 2.33 ⇒ 7.4dB

f01kHz

0˚ 10– 12Q f0 = 900Hz

101

2Q f0 = 1.1kHz

Q0 = 9.5 ⇒ 19.5dB

– 40 dB/decadeWith Gc = 1, theloop gain is

Tu(s) = Tu01

1 + sQ0ω0

+ sω0

2

Tu0 = H VD VM

= 2.33 ⇒ 7.4dB

fc = 1.8kHz, ϕm = 5˚

• Obtain a crossoverfrequency of 5kHz,with phase marginof 52˚

• Tu has phase ofapproximately -180˚at 5kHz, hence lead(PD) compensatoris needed toincrease phasemargin

• Lead compensator should have phase of +52˚ at 5kHz

• Tu has magnitude of -20.6dB at 5kHz

• Lead compensator gain should have magnitude of +20.6dB at 5kHz

fc= fz fp0dB

–20dB

–40dB

20dB

40dB

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

|| Gc ||

∠ Gc

|| Gc || ∠ Gc

Gc0

fz

fpGc0

fp

fz

90˚

–90˚

–180˚

fz/10fp/10 10fz

0dB

–20dB

–40dB

20dB

40dB

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

|| T ||

–90˚

–180˚

–270˚

∠ T

|| T || ∠ TT0 = 8.6 ⇒ 18.7dB

f01kHz

Q0 = 9.5 ⇒ 19.5dB

fz

fp

1.7kHz

14kHz

fc5kHz

170Hz

1.1kHz

1.4kHz

900Hz

17kHz

ϕm=52˚

T(s) = Tu0 Gc0

1 + sωz

1 + sωp

1 + sQ0ω0

+ sω0

2

• Good phasemargin

• Widebandwidth

• Low-frequencyloop gain islow — hencenot muchrejection ofdisturbances

0dB

–20dB

–40dB

20dB

40dB

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

|| T || T0 = 8.6 ⇒ 18.7dB

f0

Q0 = 9.5 ⇒ 19.5dB

fz

fp

fc

Q0

1 / T0 = 0.12 ⇒ – 18.7dB1

1 + T

• need morelow-frequencyloop gain

• hence, addinverted zero(PID controller)

0dB

–20dB

–40dB

20dB

40dB

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

|| Gc ||

∠ Gc

|| Gc || ∠ Gc

Gcmfz

– 90˚

fp

90˚

–90˚

–180˚

fz/10

fp/10

10fz

fL

fc

fL/10

10fL

90˚/dec

45˚/dec – 45˚/dec

Gc(s) = Gcm

1 + sωz

1 +ωLs

1 + sωp

• add invertedzero to PDcompensator,withoutchanging dcgain or cornerfrequencies

• choose fL to befc/10, so thatphase marginis unchanged

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

|| T ||

f0fz

fp

fc

Q011 + T

fL

Q0

0dB

–20dB

–40dB

20dB

40dB

60dB

–60dB

–80dB

DTu0Gcm

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

fzfc

fL

vvg

open-loop || Gvg ||

closed-loopGvg

1 + T

–40dB

–60dB

–80dB

–20dB

0dB

20dB

–100dB

f0

Q0Gvg(0) = D

– 40dB/dec

20dB/dec

G2(s) vx(s) = v(s)+–ve(s)vref(s)

H(s)

+–

Z1(s)

Z2(s)

A

+

vx(s)G1(s) ve(s)

T(s)

Block 1 Block 2

Objective: experimentally determine loop gain T(s), by makingmeasurements at point A

Correct result isT(s) = G1(s)

Z2(s)Z1(s) + Z2(s)

G2(s) H(s)

G2(s) vx(s) = v(s)+–ve(s)vref(s)

H(s)

+–

Z1(s)

Z2(s)

+

vx(s)G1(s) ve(s)

Block 1 Block 2

+

vy(s)

vz

dc bias

VCC

0

Tm(s)

Tm(s) =vy(s)vx(s) vref = 0

vg = 0

measured gain is

Tm(s) = G1(s) G2(s) H(s)

Tm(s) ≈ T(s) provided that Z2 >> Z1

+

G2(s) vx(s) = v(s)+–ve(s)vref(s)

H(s)

+–

Z2(s)G1(s) ve(s)

Block 1 Block 2

vy(s)

0

Tv(s)

Z1(s)+

vx(s)

i(s)Zs(s)

– +vz

Ac injection source vz is connectedbetween blocks 1 and 2

Dc bias is determined by biasingcircuits of the system itself

Injection source does modify loadingof block 2 on block 1

(i) Z1(s) << Z2(s) , and

(ii) T(s) >>Z1(s)Z2(s)

Tv(s) ≈ T(s) provided

G2(s) vx(s) = v(s)+–ve(s)vref(s)

H(s)

+–

Z2(s)G1(s) ve(s)

Block 1 Block 2

0

Ti(s)

Z1(s)i xi y

i z

Zs(s)

Ti(s) =i y(s)

i x(s) vref = 0

vg = 0

(i) Z2(s) << Z1(s) , and

(ii) T(s) >>Z2(s)Z1(s)

Now require:21

345

CC

M-D

CM

1

+–

+

+–

C2

50 µH

11 kΩ500 µF

Vg

28 V

L

CR

vref

5 V

+12 V

LM324

R1

R2

R3 C3

R4

85 kΩ

1.1 nF2.7 nF

47 kΩ

120 kΩ

vz

–vyvx

Epwm

VM = 4 V

value = LIMIT(0.25 vx, 0.1, 0.9)

+

v

iLOAD1 2 3

4

5678

.nodeset v(3)=15 v(5)=5 v(6)=4.144 v(8)=0.536

XswitchL = 50 µΗfs = 100 kΗz

Example: voltageinjection aftererror amplifier

PSPICE issues

Divergence!

1. Use.nodeset

to improveconvergence

2. Limit maximumand minimum dutycycles

Buck voltage regulator, closed-loop

.param R=10

.param L=50uH fs=100KHz

.step PARAM R LIST 3,10,25

.ac dec 101 5 50KHz

.nodeset v(3)=15 v(5)=5 v(6)=4.144 v(8)=0.536

.lib switch.lib

.lib nom.lib

Vg 1 0 28V

Xswitch 1 2 2 0 8 CCM-DCM1 PARAMS: L=L fs=fs

L1 2 3 L

C1 3 0 500uF

Rload 3 0 R

Vcc p 0 12V

Vref ref 0 5V

Xopamp ref 5 p 0 6 LM324

R1 3 4 11K

R2 4 5 85K

C2 4 5 1.1nF

R4 5 0 47K

R3 6 6x 120K

C3 6x 5 2.7nF

Vz 6 7 dc 2 ac 1

Epwm 8 0 value=LIMIT(V(7)*0.25,0.1,0.9)

.probe

.end

Plotting the loop gain viainjection vz

Use PROBE to plot vy/vx

Loop gain is plotted at threevalues of load resistance

File included on website alsoplots transient response

If .nodeset is omitted,PSPICE diverges

f

–90˚

–180˚

|| T || ∠ T

–20 dB

–40 dB

0 dB

20 dB

40 dB

5 Hz 50 Hz 5 kHz 50 kHz500 Hz

60 dB

R = 3 Ω

|| T ||

∠ T

R = 25 Ω

R = 3 ΩR = 25 Ω

ϕm = 55˚ ϕm = 47˚

fc = 5.3 kHzfc = 390 Hz

• Results at full load(nominal designpoint, R = 3 Ω) areclose to designgoals

• Very differentresults at light load(in DCM atR = 25 Ω)!

• As load current isreduced: Q at firstincreases becauseof reduceddamping. Then Qdecreases in DCM

f

|| Gvg ||

–60 dB

–80 dB

0 dB

20 dB

5 Hz 50 Hz 5 kHz 50 kHz500 Hz

R = 3 Ω

R = 25 Ω

–40 dB

–20 dB

Open loop, d(t) = constant

Closed loop

0 0.2 ms 0.4 ms 0.6 ms 0.8 ms 1.0 ms 1.2 ms 1.4 ms 1.6 ms 1.8 ms 2.0 ms

0 0.2 ms 0.4 ms 0.6 ms 0.8 ms 1.0 ms 1.2 ms 1.4 ms 1.6 ms 1.8 ms 2.0 ms

0

2 A

4 A

6 A

14 V

15 V

16 V

v

iLOAD

t

Closed loop

Open loopd(t) = constant

PSPICE-generated transient response, same closed-loop buck example

A typical design approach:

1. Engineer designs switching regulator that meets specifications(stability, transient response, output impedance, etc.). Inperforming this design, a basic converter model is employed, suchas the one below:

+–

L

C R

+–1 : D

+

Converter model

Vg

Ig

(no input filter)

(buckconverterexample)

2. Later, the problem of conducted EMI is addressed. An input filter isadded, that attenuates harmonics sufficiently to meet regulations.

3. A new problem arises: the controller no longer meets dynamicresponse specifications. The controller may even become unstable.

Reason: input filter changes converter transfer functions

+–

L

C R

+–1 : D

+

Converter model

Vg

Ig

Lf

Input filter

Cf

Converterac model ismodified byinput filter

f

|| Gvd || ∠ Gvd

– 360˚

– 540˚

0 dB

– 10 dB

20 dB

30 dB

100 Hz

40 dB

1 kHz 10 kHz

– 180˚

10 dB

|| Gvd ||

∠ Gvd

Effect of L-C inputfilter on control-to-output transferfunction Gvd (s),buck converterexample.

Dashed lines:original magnitudeand phase

Solid lines: withaddition of inputfilter

Gvd(s) = Gvd(s)Zo(s) = 0

1 +Zo(s)ZN(s)

1 +Zo(s)ZD(s)

Gvd(s)Zo(s) = 0 is the original transfer function, before addition of input filter

ZD(s) = Zi(s)(s) = 0

is the converter input impedance, with set to zero

ZN(s) = Zi(s)(s) 0 is the converter input impedance, with the output

nulled to zero

(Proof using Middlebrook's extra element theorem)

Input filter design criteria for basic converters

Converter ZN(s) ZD(s) Ze(s)

Buck

Boost

Buck–boost

– RD2 R

D2

1 + s LR + s2LC

1 + sRC

sLD2

– D′2R 1 – sLD′2R D′2R

1 + s LD′2R

+ s2 LCD′2

1 + sRC

sL

– D′2RD2 1 – sDL

D′2RD′2RD2

1 + s LD′2R

+ s2 LCD′2

1 + sRC

sLD2

Gvd(s) = Gvd(s)Zo(s) = 0

1 +Zo(s)ZN(s)

1 +Zo(s)ZD(s)

The correction factor

Zo ZN , and

Zo ZD

1 +Zo(s)ZN(s)

1 +Zo(s)ZD(s)

shows how the input filter modifies thetransfer function Gvd (s).

The correction factor has a magnitude of approximately unity providedthat the following inequalities are satisfied:

These provide design criteria, which are relatively easy to apply.

+–

C R

+

v

L i1

2Vg

Lf

Cf

Input filter Converter

30 V

330 µH

470 µF

100 µH

100 µF 3 Ω

D = 0.5

+–

L

C R

+–1 : D

+

Converter model

Vg

Ig

Lf

Input filter

Cf

Zo(s) Zi(s)

330 µH

470 µF

100 µH

100 µF 3 Ω

Buck converterwith input filter

Small-signal model

L

C R

1 : D

+

ZD(s)

ZD(s) = 1D2 sL + R || 1

sC

100 Hz 1 kHz 10 kHz

40 dBΩ

0 dBΩ

20 dBΩ || ZN ||

|| ZD ||

f

RD2 = 12 Ω

f1 = 12πRC

530 Hz

fo = 12π LC

1.59 kHz

Q = R CL =

fof1

= 3 → 9.5 dB

1ωD2C

ωLD2

10 dBΩ

30 dBΩ

R0/D2

L

C R

+–1 : D

+

Vg

I

0

0ZN(s)

+

s 0test test

+

ZN(s) = test(s)

test(s)0

test(s) = I (s)

test(s) = –Vg (s)

D

ZN(s) =–

Vg (s)D

I (s)= – R

D2

Solution: Hence,

Lf

Cf

Zo(s)

Zo(s) = sL f || 1sC f

100 Hz 1 kHz

40 dBΩ

0 dBΩ

– 20 dBΩ

20 dBΩ

f

|| Zo ||

– 10 dBΩ

10 dBΩ

30 dBΩ

1ωC f

ωL f

ff = 12π L fC f

= 400 Hz

Q f → ∞

R0 f =L f

C f= 0.84 Ω

No resistance, hence poles are undamped (infinite Q-factor).

In practice, losses limit Q-factor; nonetheless, Qf may be very large.

100 Hz 1 kHz 10 kHz

40 dBΩ

0 dBΩ

– 20 dBΩ

20 dBΩ || ZN ||

|| ZD ||

f

|| Zo ||

ωL f 1ωC f

12 Ω

Q f → ∞

1ωD2C

fo = 1.59 kHz

f1 = 530 Hz

Q = 3

ωLD2

R0f

10 dBΩ

30 dBΩ

– 10 dBΩ ff = 400 Hz

R0/D2

Zo ZN , and

Zo ZD

Can meetinequalitieseverywhereexcept atresonantfrequency ff.

Need to dampinput filter!

f

– 360˚

0 dB

– 10 dB

100 Hz 1 kHz 10 kHz

– 180˚

10 dB

∠1 +

Zo

ZN

1 +Zo

ZD

1 +Zo

ZN

1 +Zo

ZD

f

|| Gvd || ∠ Gvd

– 360˚

– 540˚

0 dB

– 10 dB

20 dB

30 dB

100 Hz

40 dB

1 kHz 10 kHz

– 180˚

10 dB

|| Gvd ||

∠ Gvd

Dashed lines: noinput filter

Solid lines:including effect ofinput filter

1ωC f

ωL fff

Rf

R0f

Cb

Lf

Cf

Rf

|| Zo ||, with large Cb

100 Hz 1 kHz 10 kHz

40 dBΩ

0 dBΩ

– 20 dBΩ

20 dBΩ || ZN ||

|| ZD ||

f

|| Zo ||

ωL f 1ωC f

12 Ω

1ωD2C

fo = 1.59 kHzf1 = 530 Hz

Q = 3

ωLD2

R0f

10 dBΩ

30 dBΩ

– 10 dBΩ ff = 400 Hz

Rf = 1 Ω

R0/D2

f

|| Gvd || ∠ Gvd

0˚0 dB

– 10 dB

20 dB

30 dB

100 Hz

40 dB

1 kHz 10 kHz– 180˚

10 dB

|| Gvd ||

∠ Gvd

– 90˚

Dashed lines: noinput filter

Solid lines:including effect ofinput filter

+–v1

+

v2

Cb

Rf

Cf

Lf

+–v1

+

v2

LbRf

Cf

Lf

+–v1

+

v2

Lb

Rf

Cf

Lf

Rf –Lb Parallel Damping

Rf –Lb Series DampingRf –Cb Parallel Damping

• Size of Cb or Lb can becomevery large

• Need to optimize design

Basic results

with

R0 = LC

• Does not degrade HF attenuation• No limit on || Z ||mm

• Cd is typically larger than C

+–

L

Cv1

+

v2

Cd

R

Qopt = RR0

=2 + n 4 + 3n

2n2 4 + n

Zmm

R0=

2 2 + nn

n =Cd

C

0.1

1

10

100

0.1 1 10

n =CdC

Zo mmRo

• Cascade connection of multiple L-C filter sections can achieve agiven high-frequency attenuation with much smaller volume andweight

• Need to damp each section of the filter

• One approach: add new filter section to an existing filter, using newdesign criteria

• Stagger-tuning of filter sections

+–

Existingfilter

Additionalfilter

sectionZoZa

testgZi1

+

test

How the additional filter section changes the output impedance of theexisting filter:

modified Zo(s) = Zo(s)Za(s) = 0

1 +Za(s)

ZN1(s)

1 +Za(s)ZD1(s)

ZN1(s) = Zi1(s)test(s) 0

ZD1(s) = Zi1(s)test(s) = 0

+–

Existingfilter

Additionalfilter

sectionZoZa

testgZi1

+

test

Za ZN1 and

Za ZD1

The presence of the additional filter section does not substantiallyalter the output impedance Zo of the existing filter provided that

ZN1(s) = Zi1(s)test(s) 0

ZD1(s) = Zi1(s)test(s) = 0

(with filter output port short-circuited)

(with filter output port open-circuited)

+–g

L1

n1L1R1

C1

L2

n2L2R2

C2

Section 2 Section 1

Zo

Requirements: For the samebuck converter example,achieve the following:

• 80 dB of attenuation at 250 kHz

• Section 1 to satisfy Zoimpedance inequalities asbefore:

100 Hz 1 kHz 10 kHz

40 dBΩ

0 dBΩ

20 dBΩ || ZN ||

|| ZD ||

f

RD2 = 12 Ω

f1 = 12πRC

530 Hz

fo = 12π LC

1.59 kHz

Q = R CL =

fof1

= 3 → 9.5 dB

1ωD2C

ωLD2

10 dBΩ

30 dBΩ

R0/D2

To avoid disrupting the output impedance Zo of section 1, section 2should satisfy the following inequalities:

+–g

L1

n1L1R1

C1

L2

n2L2R2

C2

Section 2 Section 1

Za testZi1

+

test

Za ZN1 = Zi1 output shorted= R1 + sn1L 1 ||sL 1

Za ZD1 = Zi1 output open-circuited= 1

sC1+ R1 + sn1L 1 ||sL 1

1 kHz 10 kHz 100 kHz 1 MHz

–20 dBΩ

0 dBΩ

20 dBΩ

–90˚

–45˚

45˚

90˚

|| ZN1 ||

|| ZD1 ||

∠ZN1

|| Za ||

∠Za

∠ZD1

-20 dBΩ

-10 dBΩ

0 dBΩ

10 dBΩ

20 dBΩ

1 kHz 10 kHz 100 kHz

Section 1alone

Cascadedsections 1 and 2

30 dBΩ

|| ZN |||| ZD ||

fo

1 kHz 10 kHz 100 kHz 1 MHz

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

0 dB

20 dB

|| H ||

– 80 dBat 250 kHz

f

+–g

Cb

Rf

Cf

Lf

330 µH

470 µF

1200 µF

0.67 Ω

+–g

L1

n1L1R1

C1

L2

n2L2R2

C2

6.9 µF

31.2 µH

15.6 µH1.9 Ω0.65 Ω 2.9 µH

5.8 µH

11.7 µF

+–

Buck converter

Current-programmed controller

Rvg(t)

is(t)

+

v(t)

iL(t)

Q1

L

CD1

+

Analogcomparator

Latch

Ts0

S

R

Q

Clock

is(t)

Rf

Measureswitch

current

is(t)Rf

Controlinput

ic(t)Rf

–+

vref

v(t)Compensator

Conventional output voltage controller

Switchcurrentis(t)

Control signalic(t)

m1

t0 dTs Ts

on offTransistor

status:

Clock turnstransistor on

Comparator turnstransistor off

The peak transistor currentreplaces the duty cycle as theconverter control input.

iL(t) Ts= ic(t)

• Neglects switching ripple and artificial ramp (slope compensation)

• Yields physical insight and simple first-order model

• Accurate when converter operates well into CCM (so that switchingripple is small) and when the magnitude of the artificial ramp is nottoo large

• Well-accepted by practicing engineers

• Resulting small-signal relation:

iL(s) ≈ ic(s)

+–

L

C R

+

v(t)

vg(t)

iL(t)

+

v2(t)

i1(t) i2(t)

Switch network

+

v1(t)

v2(t) Ts= d(t) v1(t) Ts

i1(t) Ts= d(t) i2(t) Ts

Averaged terminal waveforms,CCM:

The simple approximation:

i2(t) Ts≈ ic(t) Ts

Buck converter example

CPM averaged switch model

+–

L

C R

+

⟨v(t)⟩Ts

⟨vg(t)⟩Ts

⟨iL(t)⟩Ts

+

⟨v2(t)⟩Ts

⟨i1(t)⟩Ts⟨i2(t)⟩Ts

Averaged switch network

+

⟨v1(t)⟩Ts

⟨ic(t)⟩Ts

⟨ p(t)⟩Ts

Eliminate duty cycle:

i1(t) Ts= d(t) ic(t) Ts

=v2(t) Ts

v1(t) Ts

ic(t) Tsi1(t) Ts

v1(t) Ts= ic(t) Ts

v2(t) Ts= p(t)

Ts

• Output port is a current source

• Input port is a dependent power sink

+–

L

C R

+

+

Switch network small-signal ac model

+

vg –V1

I1

i1 i2

i cV2

V1i c

v1 v2Ic

V1

v2 v

i1(t) = ic(t)V2

V1

+ v2(t)Ic

V1

– v1(t)I1

V1

+–

L

C R

+

vg ic v– D2

RDR

vic D 1 + sLR

ig iL

Gvc(s) =v(s)ic(s)

vg = 0

= R || 1sC

Gvg(s) =v(s)vg(s)

i c = 0

= 0

+–

ig

vg RCr1f1(s) i c g1 v g2 vg f2(s) i c r2 v

+

Converter g1 f1 r1 g2 f2 r2

BuckDR D 1 + sL

R– R

D2 0 1 ∞

Boost 0 1 ∞1

D'R D' 1 – sLD' 2R R

Buck-boost – DR D 1 + sL

D'R– D'R

D2 – D2

D'R– D' 1 – sDL

D' 2RRD

Simulation of Current Mode Controllers

21

345

CC

M-D

CM

1

+–

+–

35 µH

100 µF

Vg

12 V

L

C R

vc

+

v

iLOAD

CPM

control current 1 2

d

+–

+–

+–

iL RL1 2 3 4

d

Rf iL v(1)–v(3) v(3)

0.05 Ω

10 Ω

Rf = 1 Ωfs = 200 kHzL = 35 µΗVa = 0.6 V

Xcpm

Xswitch

fs = 200 kHzL = 35 µΗ

EiE1 E2

• Develop a modelof the current-programmedcontroller, whichcan be combinedwith existing CCM-DCM averagedswitch models

• Controller modeloutputs a dutycycle, in responseto control input ic(or vc ) and thesensed convertervoltages andcurrents

Averaged controller waveforms

t

iL(t)

ipk

vL(t)

0

v1(t) Ts

ic– ma

– m2

m1

t

d2Ts=(1 – d)Ts

v2(t) Ts–

Ts

dTst

iL(t)

0

ipk

vL(t)

0

v1(t) Ts

v2(t) Ts

ic– ma

– m2m1

t–

Ts

dTs d2Ts

CCM DCM

Equations

i pk = ic – madTsm1 =v1(t) Ts

L m2 =v2(t) Ts

L

iL(t)Ts

= d i pk –m1dTs

2+ d2 i pk –

m2d2Ts

2

d =2ic(d + d2) – 2 iL(t)

Ts– m2d 2

2Ts

2ma(d + d2)Ts + m1dTs

d2 = 1 – d

d2 =i pk

m2Ts

Need to write large-signal equations of controller, in a form that leadsto convergence of simulator and that works for both CCM and DCM

Basic equations: (CCM)

(DCM)

Average inductor current: d2 = MIN 1 – d,i pk

m2Ts

(CCM and DCM)

Artificial ramp amplitude:Va = maTsR f

Substitute and solve (partially) for d:

CPM controller subcircuit model

.subckt CPM control current 1 2 d+params: L=100e-6 fs=1e5 Va=0.5 Rf=1* generate d2 for CCM or DCMEd2 d2 0 table+ MIN(L*fs*(v(control)-va*v(d))/Rf/(v(2)),1-v(d)) (0,0)(1,1)* generate inductor current slopes, see Eqs.(B.24) and (B.26)Em1 m1 0 value=Rf*v(1)/L/fsEm2 m2 0 value=Rf*v(2)/L/fs* compute duty cycle d, see Eq.(B.32)Eduty d 0 table+ 2*(v(control)*(v(d)+v(d2))-v(current)-v(m2)*v(d2)*v(d2)/2)+ /(v(m1)*v(d)+2*va*(v(d)+v(d2))) (0.01,0.01) (0.99,0.99).ends

CPM

control current 1 2

d

Rf iL(t)Ts

v1(t) Tsv2(t) Ts

vc(t) TsInputs:

Output: duty cycle d

CPM buck example

21

345

CC

M-D

CM

1

+–

+–

35 H

100 F

Vg

12 V

L

C R

vc

+

v

iLOAD

CPM

control current 1 2

d

+–

+–

+–

iL RL1 2 3 4

d

Rf iL v(1)–v(3) v(3)

0.05

10

Rf = 1fs = 200 kHzL = 35Va = 0.6 V

Xcpm

Xswitch

fs = 200 kHzL = 35

EiE1 E2

CPM buck converter.param Va=0.6.param fs=200KHz.param L=35uH.ac DEC 101 10 100KHziout 0 4 ac 0.lib switch.libVg 1 0 12V ac 0Xswitch 1 2 2 0 5 CCM-DCM1+PARAMS: L=L fs=fsL1 2 3 LRL1 3 4 0.05C1 4 0 100uFRload 4 0 10Xcpm ctr ni nm1 nm2 5 CPM+PARAMS: L=L fs=fs va=Va Rf=1Ei ni 0 value=i(L1)Em1 nm1 0 value=V(1)-V(3)Em2 nm2 0 value=V(3)Vic ctr 0 dc 1.4V ac 1.probe.end

Control-to-output frequency responseDuty cycle control vs current programmed control

Gvd

Gvd

f

–90˚

–180˚

G

–20 dB

–40 dB

0 dB

20 dB

40 dB

10 Hz 100 Hz 10 kHz 100 kHz1 kHz

G

–60 dB

Gvc

Gvc

In both cases:

V = 8.1 V

D = 0.676

For CPM:

Vc = 1.4 V

Va = 0.6 V

Line-to-output frequency responseDuty cycle control vs current programmed control

|| Gvg ||

f

–20 dB

–40 dB

0 dB

20 dB

10 Hz 100 Hz 10 kHz 100 kHz1 kHz

–60 dB

–80 dB

–100 dB

Duty cycle controld(t) = constant

Current programmed modevc(t) = constant

In both cases:

V = 8.1 V

D = 0.676

For CPM:

Vc = 1.4 V

Va = 0.6 V

Output impedanceDuty cycle control vs current programmed control

|| Zout ||

f

–20 dBΩ

–40 dBΩ

0 dBΩ

20 dBΩ

10 Hz 100 Hz 10 kHz 100 kHz1 kHz

Duty cycle controld(t) = constant

Current programmed modevc(t) = constant

In both cases:

V = 8.1 V

D = 0.676

For CPM:

Vc = 1.4 V

Va = 0.6 V

Example: comparison of current-mode controlled and duty-cycle controlled regulators

Design specs:

• Output voltage regulated at V = 5 V• Output power: 2.5 W (R = 10 Ω) to 50 W (R = 0.5 Ω)

• Both current-mode and duty-cycle controlled regulators have the voltage-loop compensator designed for the cross-over frequency of 25 kHz and the phase margin of 60o (at the load of R = 0.5 Ω)

!

!

µ Ω

µ

Open-loop responses and compensators

+

+

+=

p

z

I

mdcds

s

sGsG

ω

ωω

1

11

)(

kHz2=If

kHz6.5=zf

kHz118=pf

+=

sGsG Ic

mccc

ω1)(

Hz235=Icf

Duty-cycle controlled regulator Current-mode controlled regulator

PID compensator: PI compensator:

Open-loop control-to-output response

21

1

1)(

++

=

oo

odvcdss

Q

GsG

ωω

5.2kHz,8 == Qfo

+

+=

21

11

1)(

ωωss

GsG ocvcc

kHz51kHz,3.4 21 == ff

Duty-cycle controlled regulator Current-mode controlled regulator

Compensators

Summary of results obtained by simulation

kHz6.25=cfo69=mϕ o68=mϕ

kHz2.24=cf

Duty-cycle controlled regulator

Current-mode controlled regulator

Load

Ω= 5.0R

Full load, CCM

Ω= 2R

Reduced load, but still CCM

Ω=10R

Light load, DCM

kHz26=cfo63=mϕ

kHz8.1=cfo73=mϕ

o68=mϕkHz2.24=cf

o73=mϕkHz6.6=cf

• Both approaches maintain good phase margins at all loads and approximately the same bandwidth as long as the converter is in CCM

• Bandwidth is severely reduced at light loads when the converter operates in DCM. This effect is more severe for duty-cycle control than for current-mode control.

Resources

For further reading:Erickson and Maksimovic, Fundamentals of Power Electronics,

second edition, Kluwer Academic Publishers, 2001, ISBN 0-7923-7270-0.

Website:http://ece.colorado.edu/~pwrelect/book/Includes downloadable PSPICE libraries