a. review on the history of crystal growth978-1-4613-0549-1/1.pdf · a. review on the history of...

19
BIBLIOGRAPHY A. REVIEW ON THE HISTORY OF CRYSTAL GROWTH 1. Nassau, K., Dr A. V. L. Verneui1: The Man and the Method, J. Crystal Growth, 13/14, 12-18, 1972. 2. Brissot, J. J., A History of Crystals, Acta E1ectronica, 16, 285-290, 1973. 3. Bohm, J., Die Historiche Entwicklung der Kristal1zuchtung - Eine Bibliographie, Crystal Research and Technology, 16, 275-292, 1981. 4. Bohm, J., The History of Crystal Growth, Acta Physica Hungarica, 57, 161-178, 1985. B. PHASE DIAGRAMS AND THERMODYNAMICS OF SOLIDS, SOLUBILITY DATA, SOLVENT CHEMISTRY 1. Levin, E. M., Robbins, C. R. and McMurdie, H. F., Phase Diagrams for Ceramists, The American Ceramic Society, Vol. 1-5, 1964-1984. 2. Lagowski, J. J., ed. of series, The Chemistry of Non-Aqueous Solvents, Academic Press, 1966. 3. Gordon, P., Principles of Phase Diagrams in Materials Systems, McGraw-Hill, 1968. 4. Haase, R. and Schonert, H., Solid-Liquid Equilibrium, Pergamon Press, 1969. 5. Reisman, A., Phase Equilibria, Basic Principles, Applications, Experimental Techniques, Academic Press, 1970. 6. Swa1in, R. A., Thermodynamics of Solids, Wiley, 1972. 7. Alper, A. M., ed., Phase Diagrams, Materials Science and Technology, Vol. 1-5, Academic Press, 1970-1978. 8. Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams, Academic Press, 1970. 9. Franks, F., ed. of series, Water, a Comprehensive Treatise, Plenum Press, 1972. 10. Pelton, A. D. and Thompson, W. T., Phase Diagrams, Progress in Solid State Chemistry, Vol. 10, 119-155, Pergamon Press, 1976. 11. Freier, R. K., ed. of series, Aqueous Solutions, W. de Gruyter, 1976. 12. Linke, W. F., ed., Solubilities, Inorganic and Metal-Organic Compounds, Vol. 1-2, American Chemical Society, 1958-1965. 13. Stephen, H. and Stephen, T., Solubilities of Inorganic and Organic Compounds, Vol. 1, Pergamon Press, 1979. 14. Broul, M., Nyvlt, J. and Sohne1, 0., Solubility in Inorganic Two- Component Systems, Elsevier Scientific Publishing Company, 1981. C. BASIC PRINCIPLES 1. Volmer, M., Kinetik der Phasenbildung, Steinkopff, 1939. 2. Honigmann, B., Gleichgewichts und Wachstumsformen von Kristallen, Steinkopff, 1958. 411

Upload: buidiep

Post on 05-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

BIBLIOGRAPHY

A. REVIEW ON THE HISTORY OF CRYSTAL GROWTH

1. Nassau, K., Dr A. V. L. Verneui1: The Man and the Method, J. Crystal Growth, 13/14, 12-18, 1972.

2. Brissot, J. J., A History of Crystals, Acta E1ectronica, 16, 285-290, 1973.

3. Bohm, J., Die Historiche Entwicklung der Kristal1zuchtung - Eine Bibliographie, Crystal Research and Technology, 16, 275-292, 1981.

4. Bohm, J., The History of Crystal Growth, Acta Physica Hungarica, 57, 161-178, 1985.

B. PHASE DIAGRAMS AND THERMODYNAMICS OF SOLIDS, SOLUBILITY DATA, SOLVENT CHEMISTRY

1. Levin, E. M., Robbins, C. R. and McMurdie, H. F., Phase Diagrams for Ceramists, The American Ceramic Society, Vol. 1-5, 1964-1984.

2. Lagowski, J. J., ed. of series, The Chemistry of Non-Aqueous Solvents, Academic Press, 1966.

3. Gordon, P., Principles of Phase Diagrams in Materials Systems, McGraw-Hill, 1968.

4. Haase, R. and Schonert, H., Solid-Liquid Equilibrium, Pergamon Press, 1969.

5. Reisman, A., Phase Equilibria, Basic Principles, Applications, Experimental Techniques, Academic Press, 1970.

6. Swa1in, R. A., Thermodynamics of Solids, Wiley, 1972. 7. Alper, A. M., ed., Phase Diagrams, Materials Science and Technology,

Vol. 1-5, Academic Press, 1970-1978. 8. Kaufman, L. and Bernstein, H., Computer Calculation of Phase

Diagrams, Academic Press, 1970. 9. Franks, F., ed. of series, Water, a Comprehensive Treatise, Plenum

Press, 1972. 10. Pelton, A. D. and Thompson, W. T., Phase Diagrams, Progress in Solid

State Chemistry, Vol. 10, 119-155, Pergamon Press, 1976. 11. Freier, R. K., ed. of series, Aqueous Solutions, W. de Gruyter, 1976. 12. Linke, W. F., ed., Solubilities, Inorganic and Metal-Organic

Compounds, Vol. 1-2, American Chemical Society, 1958-1965. 13. Stephen, H. and Stephen, T., Solubilities of Inorganic and Organic

Compounds, Vol. 1, Pergamon Press, 1979. 14. Broul, M., Nyvlt, J. and Sohne1, 0., Solubility in Inorganic Two­

Component Systems, Elsevier Scientific Publishing Company, 1981.

C. BASIC PRINCIPLES

1. Volmer, M., Kinetik der Phasenbildung, Steinkopff, 1939. 2. Honigmann, B., Gleichgewichts und Wachstumsformen von Kristallen,

Steinkopff, 1958.

411

3. 4.

5.

6. 7.

8.

9.

10. 11.

12.

13. 14. 15.

16. 17.

18.

D.

1. 2. 3. 4. 5. 6.

7. 8.

9.

10.

11. 12.

13.

14. 15.

16.

17.

Van Hook, A., Crystallization, Theory and Practice, Reinhold, 1961. Hirth, J. P. and Pound, G. M., Condensation and Evaporation,

MacMillan, 1963. Rutter, E., Goldfinger, P. and Hirth, J. P., eds., Condensation and

Evaporation of Solids, Gordon and Breach, 1964. Ubbelohde, A. R., Melting and Crystal Structure, OUP., 1965. Powell, C. P., Oxley, J. H. and Blocher, J. M. jr., eds., Vapor

Deposition, Wiley and Sons, 1966. Jackson, K. A., Current Concepts of Crystal Growth from the Melt, in:

Progress in Solid State Chemistry, Vol. 4, Pergamon Press, 1967. Strickland-Constable, R. F., Kinetics and Mechanism of

Crystallization, Academic Press, 1968. Zettlemoyer, A. C., Nucleation, Dekker, 1969. Parker, R. L., Crystal Growth Mechanisms - Energetics, Kinetics and

Transport, in: Solid State Physics - Advances in Research and Applications, Vol. 25, Academic Press, 1970.

Ohara, M. and Reid, R. D., Modelling Crystal Growth Rates from Solutions, Prentice Hall, 1973.

Heimann, R. B., Auflosen von Kristallen, Springer, 1975. Hannay, N. B., Changes of State, Plenum Press, 1975. Rosenberger, F., Fundamentals of Crystal Growth (I), Springer, 1979,

Vo1s. II and III to follow. Brice, J. C., Crystal Growth Processes, Blackie Halsted Press, 1986. Kurz, W. and Fisher, D. J., a) Fundamentals of Solidification; b)

Solutions Manual, Trans Tech Publications, 1986. Vere, A. W., Crystal Growth, Principles and Progress, Plenum, 1988.

GENERAL TREATISES

Buckley, H. E., Crystal Growth, Wiley and Sons, 1951. Smakula, A., Einkrista11e, Springer, 1962. Gilman, J. J., The Art and Science of Growing Crystals, Wiley, 1963. Chalmers, B., Principles of Solidification, Wiley, 1964. ColI. Int. CNRS, Adsorbtion et Croissance Cristalline, Paris, 1965. Knight, Ch. A., The Freezing of Supercooled Liquids, Van Nostrand,

1967. Laudise, R. A., The Growth of Single Crystals, Prentice Hall, 1970. Tarjan, I. and Matrai, M., Laboratory Manual on Crystal Growth,

Akadecuiai Kiado Budapest, 1972. Wilke, K. Th. and J. Bohm, Kristal1zuchtung, Verlag Harri Deutch,

Franfurt/Main, 1988. Goodman, C. H. L., Crystal Growth - Theory and Techniques, Vol. 1-2,

Plenum Press, 1976-1978. Bond, W. L., Crystal Technology, Wiley and Sons, 1976. Wilcox, W. R., Preparation and Properties of Solid State Materials,

Vol. 1-4, in: Chemical Vapor Transport, Secondary Nucleation and Mass Transfer in Crystal Growth, Dekker, 1971-1979.

Bardsley, W., Hurle, D. T. J. and Mullin, J. B., Crystal Growth: A Tutorial Approach, North Holland Series in Crystal Growth, Vol. 2, Amsterdam, 1979.

Pamplin, B., Crystal Growth, Pergamon Press, 1980. Holden, A. and Morrison, P., Crystals and Crystal Growing, MIT Press,

1982. Chernov, A. A., Modern Crystallography III, Springer Series Solid­

State Science 36, 1984. Current Topics in Materials Science, North Holland, ca. 15 Volumes up

to 1987. 18. Crystals, Springer, ca. 12 Volumes up to 1987. 19. Growth of Crystals, Plenum Press, ca. 12 Volumes up to 1987. 20. Preparation and Properties of Solid State Materials, Dekker, ca. 12

Volumes up to 1987.

412

21. Important Titles in Solid State Technology: a) Semiconductors and Metals, ca. 20 Volumes up to 1985; b) VLSI - Electronics, ca. 8 Volumes up to 1985; c) Physics of Thin Films, ca. 12 Volumes up to 1985, Academic Press.

E. SPECIAL METHODS OF CRYSTAL GROWTH

1. Pfann, W. G., Zone Melting, Wiley and Sons, 1958, 1966. 2. Park, N. L., Zone Refining and Allied Techniques, G. Newness, 1960. 3. Schafer, H., Chemical Transport Reactions, Academic Press, 1964. 4. Schildknecht, H., Zonenschmelzen, Verlag Chemie, 1964. 5. Bockris, J. and O'M. Razummey, G. A., Fundamental Aspects of

Electrocrystallization, Plenum Press, 1967. 6. Ovsienko, D. E., Growth and Imperfections of Metallic Crystals,

Consultants Bureau, 1969. 7. Petrov, T. G., Treivus, E. C. and Kasatkin, A. P., Growing Crystals

from Solutions, Consultants Bureau, 1969. 8. Henisch, H. K., Crystal Growth in Gels, Penn State University Press,

1970. 9. Lobachev, A. N., Hydrothermal Synthesis of Crystals, Consultants

Bureau, 1971. 10. Brice, J. C., The Growth of Crystals from Liquids, North Holland,

1973. 11. Lobachev, A. N., Crystallization Processes under Hydrothermal

Conditions, Consultants Bureau, 1974. 12. Faktor, M. M. and Garrett, I., Growth of Crystals from the Vapor,

Chapman and Hall, 1974. 13. Elwell, D. J. and Scheel, H. J., Crystal Growth from High Temperature

Solutions, Academic Press, 1975. 14. Matthews, J. W., Epitaxial Growth (Parts I and II), Academic Press,

1975. 15. Schneider, H. G., Ruth, V. and Kormany, T., Advances in Epitaxy and

Endotaxy, Elsevier Scientific Publishing Company, 1976. 16. Eyer, A. and Zimmermann, H., Flussig und Gaszonen Kristallization

unter Schwerlosigkeit, Bundesministerium fur Forschung und Technologie, Forschungsbericht W 77-12, Munchen, 1977.

17. Lewis, B. and Anderson, J. C., Nucleation and Growth of Thin Films, Academic Press, 1978.

18. Rudolph, P., Profilzuchtung von Einkristal1en, Akademie Verlag, 1982. 19. Ploog, K. and Graf, K., Molecular Beam Epitaxy of III-V Compounds,

Springer, 1983. 20. Henisch, H. K., Crystals in Gels and Liesegang Rings, Cambridge

University Press, 1988.

F. SPECIAL MATERIALS

1. Runyau, W. R., Silicon Semiconductor Technology, McGraw Hill, 1965. 2. Sittig, M., Semiconductor Crystal Manufacture, Noyes Development,

1969. 3. Kosalopova, T. Ya., Carbides: Properties, Production and

Applications, Plenum Press, 1971. 4. Connolly, T. F., ed., Semiconductors: Preparation, Crystal Growth and

Properties, Plenum Press, 1972. 5. Standley, K. J., Oxide Magnetic Materials, Clarendon Press, 1972. 6. Craik, D. J., Magnetic Oxides, Parts 1/2, Wiley and Sons, 1975. 7. Shay, J. L. and Wernick, J. H., Ternary Chalcopyrite Semiconductors -

Growth, Electronic Properties and Applications, Pergamon Press, 1975.

8. Wunderlich, B., Macromolecular Physics - Macromolecular Crystals, Vol. 2, in: Crystal Nucleation, Growth, Annealing, Academic Press, 1976.

413

9. Lieth, R. M. A., Preparation and Crystal Growth of Materials with Layered Structures, Reidel Publ. Co., 1977.

10. Matkovich, V. I., ed., Boron and Refractory Borides, Springer Verlag, 1977.

11. Cullen, G. W. and Wang, C. C., eds., Heterostructure Semiconductors of Electron Devices, Springer Verlag, 1978.

12. Rooijmans, C. J. M., Crystals, Vol. 1, in: Crystals for Magnetic Applications, Springer Verlag, 1978.

13. Wunderlich, B., Selected Papers on Polymer Crystallization, North Holland, 1979.

14. Arizumi et al., Crystals, Vol. 4, in: Organic Crystals, Germanates, Semiconductors, Springer Verlag, 1980.

15. Belyaev, L. M., ed., Ruby and Sapphire, NBS, Washington DC., 1980. 16. Nassau, K., Gems Made by Man, Chilton Book Co., 1980. 17. Moss, T. S., ed., Handbook on Semiconductors, Vol. 3, S. P. Keller,

ed., Materials and Preparation, North Holland, 1980-1981. 18. Nishizawa, J., ed., Semiconductor Technologies, Vol. I, North Holland

Publ. Co., 1982. . 19. Suematsu, Y., ed., Optical Devices and Fibers, Vol. 3, North Holland

Publ. Co., 1982. 20. Kitagawa, T., ed., Computer Science and Technologies, North Holland

Publ. Co., 1982. 21. McPherson, A., Preparation and Analysis of Protein Crystals, Wiley,

1982. 22. Nassau, K., Gemstone Enhancement, Butterworth, 1984.

G. INDUSTRIAL CRYSTALLIZATION

1. Bamworth, A. W., Industrial Crystallization, Leonard Hill, 1965. 2. Walton, A. G., The Formation and Growth of Precipitates,

Interscience, 1967. 3. Matz, C., Die Kristallisation: Grundlagen und Technik, Springer,

1968. 4. Matz, C., Die Kristallisation in der Verfahrenstechnik, Springer,

1968. 5. Nyvlt, J., Industrial Crystallization from Solutions, Butterworth,

1971. 6. Randolpf, A. D. and Larson, M. A., Theory of Particular Processes,

Academic Press, 1971. 7. Mullin, J. W., Crystallization, Butterworth, 1972. 8. De Jong, E. J. and Jancic, S. J., Industrial Crystallization, North

Holland, 1979. 9. Nyvlt, J., Industrial Crystallization: The Present State of the Art,

Verlag Chemie, 1982.

H. PROCEEDINGS OF INTERNATIONAL MEETINGS AND SUMMER SCHOOLS

1. Int. Meetings on Crystal Growth (ICCG), Published as separate Volumes of J. Crystal Growth, since 1968 every three years.

2. International Special Conference on Vapor Growth and Epitaxy, Published as separate Volumes of J. Crystal Growth, since 1970 every 2 to 3 years.

3. Reports of Summer schools organized by Int. Org. on Crystal Growth, since 1973 every 3 years, North Holland.

4. Reports on Multinational Meetings in Russia, since 1958 about 20 Volumes, Growth of Crystals, Consultants Bureau, in English.

I. PERIODICALS

1. Journal of Crystal Growth. 2. Materials Research Bulletin.

414

3. Crystal Research and Technology. 4. Progress in Crystal Growth and Characterization. 5. Soviet Physics: Crystallography. 6. Journal of Synthetic Crystals, Chinese edition with English abstracts

and legends, quarterly.

J. NEWSLETTERS (NATIONAL)

1. British Association for Crystal Growth, Newsletter Secretary: J. G. Wilkes, Mullard Ltd., Southampton, Hampshire S09 7BP, UK.

2. Group Francais de Croissance Cristalline, GFCC, Secretary: J. J. Metois, CNRS, CRMC2, Campus de Luminy, Case 913, F-13288 Marseille Cedex 9, France.

3. Deutsche Gesellschaft fur Kristallzlichtung und Kristallwachstum, DGKK, Ed.: G. Muller, Institut fur Werkstoffwissenschaften VI, Universitat Erlangen, Nlirnberg, Martensstr. 7, D-8S20 Erlangen, Germany.

4. Schweizerische Gesellschaft fur Kristallographie, Sektion fur Kristallwachstum und Materialforschung, Secretary: J. Hulliger, Institute of Quantum Electronics, Swiss Federal Institute of Technology, CH-8093, Zurich, Switzerland.

K. ABSTRACTS AND BIBLIOGRAPHY

1. Chemical Abstracts Selects: Crystal Growth, since 1980. 2. Bulletin Signaletique, Centre National de la Recherche Scientifique,

France, 26 Rue Boyer, F-7S97l Paris Cedex 20, France. 3. Keesee, A. M., Connolly, T. F. and Battle, G. C., jr., Crystal

Growth Bibliography, Part A: Bibliography; Part B: Indexes, IPI/Plenum, 1979.

L. SURVEYS OF ACTIVITIES IN CRYSTAL GROWTH

1. International Directory of Solid State Materials - Production and Research, Research Materials Information Center (RMIC) by T. F. Connolly, Oak Ridge National Laboratory, PO Box X, Oak Ridge, Tennessee 37830, USA.

2. Sources of Single Crystals in the UK and Scandinavia, B. M. R. Wanklyn, Clarendon Laboratory, University of Oxford, UK.

3. Reports of Electronic Materials Unit, Royal Signals and Radar Establishment, St. Andrews Road, Malvern, Worcestershire WRl4 3PS, UK.

4. Report by the Centre de Documentation sur les Syntheses Cristalline, Laboratoire de Physique Moleculaire et Cristalline, Faculte des Sciences, Place Eugene Bataillon, F-34000 Montpellier, France.

5. Information on Crystal Growth, Germany, Netherlands, Switzerland, Report of DKGG, A. Rauber and R. Nitsche, Universitat und Fraunhofer Intitut, Freiburg i.Br., BRD.

415

INDEX

Abstracts and bibliography. 415 Accelerated crucible rotation

technique (ACRT). 140 Acetone-succinonitrile alloys.

181-182 Activation energy. nucleation.

formula. 263 Adatoms. occupying Kessel crystal.

113 Adhesive-type growth (illus.).

260-261 Adsorption isotherm.

Henry's Law. 154-155 kinked face (illus.). 56 see also Langmuir adsorption

isotherm Akermanite. metastable nucleation.

264 Alizarine crystals. halides. 147 Alloys.

acetone-succinonitrile. 181-182 aluminium-copper. 90-91 aluminium-manganese. 101 aluminium-silver. 101 growth. molecular beam epitaxy.

368 indium-containing. 303-304 indium-germanium. 318 nickel-based. grain boundaries.

288 silver-copper. 101-102 solidification.

combined transport model. 178-181

Ivantsov's basic model. 178 Aluminium oxide. grown by LHPG

method. 293 Aluminium-copper alloy. stability

function (illus.). 90-91 Aluminium-manganese alloy.

restabilization rates. 101 Aluminium-silver. stability in G-V

plane (illus.). 101 Ampoules.

cadmium 'soft ampoule' (illus.). 338

for sublimation growth (illus.). 342

Andesite. dynamic crystallization processes. 261

ANNNI models. polytypes. 198

Anorthite. metastable nucleation. 264

Antiphase boundary. mechanism of formation (illus.). 389·391

APOMVPE see AtmospheriC pressure organometallic vapor phase epitaxy

Apparatus. Bridgman. for CdTe (illus.). 338 cadmium 'soft ampoule' method

(illus.). 338 crucibles. 138-139 crystal growth in flight. 207 Czochralski pulling of silicon

(illus.). 325-327 diffusionless' technique of

crystal growth from vapors. 112

EFG dies. interface shapes. 280 floating orifice (illus.). 278 flux growth. 139 furnaces. 138-139 heat balance in Czochralski

growth. 326 holographic interferometry. 206 horizontal ribbon growth (illus.).

287-288 III - V compounds. automated

puller. 353 liquid encapsulated Czochralski

(LEC). 351 liquid phase epitaxy. 400 molecular beam epitaxy growth

chamber. 361 multidirectional holographic

interferometry. 213 open-tube/closed-tube techniques.

339-344 ribbon against drop method. 286 ribbon to ribbon growth. 287 self-filling tube. 278-279 seven hole tube die. 281 silicon on ceramic process. 286 silicon deposition. 319 Stepanov's method. shaped

crystals. 277 thermocouples. 138 thermostic cell. 207 vapor diffusion crystal growth.

245 vapor growth.

417

Apparatus (continued) vapor growth (continued)

ampoule and deposition methods. 108

diffusionless. 112 physical vs chemical

deposition. 108 physical vs chemical transport.

108 Aragonite. nucleation. 262 Array dendrites. and solute layers

in eutectic growth. 77 Arsine. safety considerations.

311-312 Atmospheric pressure organometallic

vapor phase epitaxy. abrupt interfaces. 311

Atomic roughness. 'constant-bond' approach. 115 Kessel crystal. 113 model. 113-117 'variable-bond' approach. 116

Auger electron spectroscopy (AES). 370-371

Axial next nearest neighbour Ising (ANNNI). 198

Bacteriorhodopsin. isolation. 243 Basalt.

dynamic crystallization processes. 259-262

phenocrysts. 259 textures. dynamic crystallization

processes (illus.). 261 BCF theory (Burton. Cabrera and

Frank). 60-62 Berg effect. 255 Beryllium. p-type dopant. 376-377.

379 Binary semiconductors. 335-344.

347-356 Binary systems. phase diagrams.

applications. 12-17 Borates. flux systems. 134 Born-Stern approximation. defined.

54 Boron nitride. pyrolitic crucibles.

352 Boundary layers.

Burton. Prim and Slichter's basic state. 93

convective transport. 79 deformable. 93. 98 diffusion/convection.

layer thickness. 403 and supersaturation. 402

diffusive transport. 79 double thermosolutal diffusion. 98 general behaviour of scaling laws.

82-83 Hurle's rigid. 93 interface.

melt quenching. 98-99 tension. 101

phenomena. 78-80 Bragg-Williams approximation. 113

418

Bridgman apparatus for CdTe (tllus.). 338

Bridgman methods of GaAs growth. 349-350

Bridgman-type solidification (illus.). 82. 85

Bubbles. in inclusions. 128 Bulk convection.

Coriell's model. 98 Hennenberg's model. 98

Bulk melting. 117 Bulk vaporization. and creation of

bulk vacancies. 115 Burgers vector. 159. 201

Cadmium. in binary II - VI semiconductor

compounds. 335-344 Cd:Te system (illus.). 336-337 'soft ampoule' method (illus.).

338 Calcite structure type. epitaxy. 146 Capillarity approximation.

crystalline clusters. 39-40 defined. 29 precision of calculations. 41-42 very small clusters (footnote). 30

Capillarity effects. dendritic growth. 170

Capillary action shaping technique (CAST). 284

Capillary drawing (illus.). fiber growth techniques. 291

Capillary growth. 298 Casting. turbine blades. 288-289 CBE see Chemical beam epitaxy Cerium. solid solution range. phase

relationships (illus.). 235 Cerium-hydrogen. phase diagram

(tllus.).234 Cesium. on gallium arsenide.

epitaxial growth mode I. 164 Cesium iodide. fiber crystal arrays.

light-guiding applications. 298

Chalcogenides. in binary II - VI semiconductor compounds. 335-344

Characterizations. crystallization in geological

processes. 254-256 kaolin microtopographic. 258-259 mixed suspension mixed product

removal crystallizer. 218-219 product characteristics. 223-224 quartz. 257-259 solution growth. 254-256

Chemical beam epitaxy. techniques. 304

Chemical potential. size dependent. 30-31 size independent. 29-30

Chemical vapor deposition. (illus.). 107-108. 112-113 preparation of pure silicon. 319 semiconductors. 327-332

Chemical vapor transport. closed-tube arrangement (illus.).

344 growth parameters. 344 (illus.). 107-108. 111 for single crystals. 342-343

Chloride vapor phase epitaxy. 310 Chlorite. microtopographic

characterizations. 258-259 Closed-tube techniques.

II - VI compounds. 339-344 sublimation (illus.). 341

Clusters. crystalline. capillarity

approximation. 39-40 edges and corners. effects. 39 equilibrium distribution. 35-39

size function neil. (illus.). 36

heterophase equilibrium with vapor. 35

i-molecular tetrahedral. excess vibrational energy (illus.). 40

large. excess vibrational energy (tllus.). 40

liquid. excess free energy (tllus.). 41

surface free energy. 39-40 see also Nucleation

Coincidence lattice. epitaxial growth mode I. 163 (tllus.). 149 twinning. 186

Coincidence nodes. Vernier-Nonius (tllus.). 148

Columnar dendritic growth. 86 Continuous process crystallization.

218-220 Convection.

effects. inclusion in transport equations. 75-76

influence on diffusion layer. scaling law analysis. 78-81 segregation of impurity or

dopant. 81-86 Copper. Gibbs free energy vs

fraction of surface sites occupied. 116

Copper sulphide. polytypes. 199 Coriell's model. bulk convection. 98 Crucibles.

accelerated crucible rotation technique. 140

platin. for LPE (illus.). 402 Crystal chemistry.

applications. 225-226 gel growth. 228-229 solution growth based on

temperature difference procedures. 226-228

zone fusion. 228 Crystal defects.

striations. 141 see also Dislocations; IncluSions

Crystal face. growth kinetics of kinked K-faces.

54-55 kink-sites. 53. 54-55 maximum growth rate. 57 structure (illus.). 51 surface sites. 53 three types (illus.). 51

Crystal growth. basic principles. bibliography.

411-412 bulk methods. 227 cracks. 127 and crystal chemistry. 225-229 dendritic see Dendritic growth dislocations see Dislocations equilibrium shape. 54 eutectic growth. 76-77 face growth vs face area (illus.).

124 factors depending on crystal

structure. 49 factors depending on mother phase.

49 flux growth. 133-141 from solutions.

constitutional supercooling (illus.). 125-126

impurity effects and incorporation. 128-129

inclusions. 124-128 kinetics and morphology.

119-124 morphological instability.

124-128 producing supersaturated

solutions. 130 seeding. 129-130 stirring. 130-131 technology. 129-131

from vapors. 107-117 advantages. 107 diffusionless' technique

(illus.). 111-112 drawbacks. 108 interface structure and atomic

roughness. 113-117 macroscopic transport. 109-113 Soret diffusion (illus.).

113-114 general treatises. bibliography.

412 growth kinetics of flat F-faces.

55-56 growth kinetics of K-faces. 54-55 growth mechanism of defective F­

faces. 58-65 growth mechanism of perfect F­

faces. 56-58 growth rate.

flux evaporation. equation. 137 gradient transport. equation.

137 maximum. hypothesis. 171-172 maximum stable. 136 slow cooling. equation. 137

hydrodynamics. 205-214

419

Crystal growth (continued) impurities. 128-129 inclusions. 124-128 inorganic crystals and polytypism.

197-202 mass transfer. 120-122 mechanisms.

from growth isotherms. 65-66 summarized (illus.). 50

microscopic aspects. Jackson's model. 70-72 kinetic growth. 72-74 Mutaftschiev's model. 70-72 planar front solidification.

74-78 structural approach. 70-72

morphology. face growth vs face area (illus.). 124

polymers. 267-273 relative growth rate. formula. 52 review of history. bibliography.

411 ripening. 77-78 in solid state physics. 231-237 special materials. bibliography.

412-413 special methods. bibliography. 412 spiral. 58-65 step train (illus.). 123 surface integration rate. 119.

121-122 surveys of activities.

bibliography. 415 transparent solutions. 205-214 volume diffusion as rate­

determining step. 64-65 widely spaced steps. 123 see also Dendritic growth; Melt

growth; Shaped crystals; Solution

growth Crystal twinning see Twinning Crystal-vapour equilibrium.

atomistic treatment. 52-53 phenomenological treatment. 53-54

Crystallization. biological molecules. 239-248 industrial. 217-224

bibliography. 414 lamellar (illus.). 268 proteins. 239-248

Crystals. cubic. isotropic. 160 homodesmic/heterodesmic. 160 infinite. phase equilibrium. 28

Curie-Wolff condition. equation. 34 CVD see Chemical vapor deposition CZ see Czochralski Czochralski growth.

heat balance (illus.). 326 potassium chloride. 296 silicon crystal. 296

Czochralski method.

420

gallium arsenide. 350-352 liquid encapsulated Czochralski

(LEC). 351-352 solidification. 83

Czochralski pulling. silicon. 325-327

Dacite. banded. dynamic crystallization processes. 261

Darcy's Law of viscous flow. 86 Dauphin~ twinning (illus.). 257 Dendritic growth.

dynamic theory. 172-174 influence of solid-liquid

interface. 170-172 isothermal (Ivantsov). 171 Ivantsov's transport solution

(illus.). 168-170 marginal perturbation. wavelength

and dendrite tip radius. 172-173

maximum growth rate hypothesis. 171-172

morphological stability and time dependence. 172-174

non-isothermal. 170-171 scaling laws and observations.

174-178 solute dendrites. 178-182 steady-state. 167-168

Dendritic structures. 86 Dendritic web process.

schematic depiction. 284-285 silicon ribbon growth. 284-285

Diads. defined. 190 Diamond. characterization. 256-257 Diffusion.

Fickian. 113 thermal. 113

Diffusion equation. steady-state solutions. 110

'Diffusion haloes'. nucleation. 42 Diffusion layer.

and convection. scaling law analysis. 78-81 segregation of impurity or

dopant. 81-86 Dimethylarsine. 312 Diodes. high performance. 327-328 Diopside. metastable nucleation. 264 Dislocations.

edge. 391 flux grown crystals. 141 means to reduce density. 355 misfit. and thermal expansion.

molecular beam epitaxy. 391-392

reduction processes. III - V compounds. 354-355

removal in silicon. 325 Disorder theory. polytypes. 197 Dispersion relation.

defined. 90 Mullins and Sekerka model. 90

Domain walls vs permissible walls. 190

Dopants. concentration control. 380 detwinning. 193

Dopants (continued) incorporation into GaAs compounds.

375-380 modulation doping.

(illus.). 384 maximum mobilities attained.

(illus.). 385 superlattices. 383-386

n-type. 377-378 one beam interferometry. 208 p-type. 376-377 segregation. 81-86 transient doping profiles. 378-380 and vapor growth processes. 109

Drowning out. 220 Dupr~'srelation. 152

Edge-defined film growth process. growth. sapphire. 278 shaped crystals. 278-282 and Stepanov processes (illus.).

silicon ribbon growth. 279-282

Edge-defined film growth process dies.

influence of design on liquid flow (illus.). 282

interface shapes (illus.). 280 EFG see Edge-defined film growth

process Einstein's formula. 60 Electron diffraction. reflection

high energy see RHEED Elliptical mirror cavity. lamp

heated. 228 Encapsulated methods. 351-352 Enstatite. metastable nucleation.

264 Entropy. thermodynamic equilibria.

4-7 Epitaxy.

defined. 147 extreme growth modes.

I (Frank-van der Merwe mode). 161. 163-164

II (Stranski-Krastanov mode), 162. 164-165

III (Volmer-Weber mode). 162-163

geometrical laws. 143-151 historical background. 143-151 organometallic vapor phase.

303-314 thermodynamics. 151-164

Eutectic growth. plot of interface undercooling

(illus.). 76 regular/irregular structures.

76-77 Eutectic solidification. 86 Evaporation. industrial

crystallization. 220-221 Ewald sphere (illus.). 371-372

Ferrobielastic switching. 192 Ferroelastoelectrics. 192 Ferroelectric transitions. 193

Ferroelectrics. 191 Ferroic phases. table. 189 Fiber crystals.

conservation of energy. equation. 292

conservation of mass. equation. 292

grown by LHPG method. 293 line defects. 297 meniscus-controlled process.

steady-state growth requirements. 292

shape stability. equation. 293 single. 289-298 whiskers. 296

vapor-liquid-solid growth. 298-300

Fiber growth techniques. capillary drawing (illus.). 291 pedestal growth method. 290-291.

292 pressurized capillary-fed growth

(illus.). 291 Film stoichemistry. molecular beam

epitaxy. 365-368 Float-zone method. fiber growth

techniques. 290. 292 Floating orifice. technique

(illus.). 278 Fluorides. grown by LHPG method. 293 Flux growth.

choice of flux. 134-135 crystal defects. 140-141 defined. 133 experimental techniques. 137-140 mechanisms. 135-137

Forsterite. metastable nucleation. 264

Frank-van der Merwe mode. epitaxial growth. 161. 163-164

Frenkel disorder. 336

Gadolinium gallium garnet. melt composition. 399-400 substrate for YIG. 398

Gallium. GalnPAs system. lattice constant vs bandgap (illus.). 369

Gallium arsenide. 2T-HB. 3T-HB and GF methods

(illus.). 350 applications. 348 arsenic on. desorbed pulse shapes

(illus.). 366 comparison of LEC and HB. 352 CVD growth (illus.). 114 Czochralski method. 350-352 deuterium tracer experiments. 307 evolution of surface coverage.

monolayer growth (illus.). 376

growth of solid (illus.). 22-23 homoepitaxial growth. 303 lattice-matched heterojunctions.

382 mobilities. 310

421

Gallium arsenide (continued) model for growth from Ga and As

(ill us. ). 367 modulation doping. maximum

mobilities attained. (ill us. ). 385

molecular beam epitaxy. 359-370 properties. LEC method. 351 semiconductors. grown by various

techniques. 310 solar cells. 303 strained layer epitaxy. 386-392 surface ordering. 373-374 two-phase equilibria (illus.).

13-14 typical specifications. 349 whiskers (illus.). 299-300

Gallium indium arsenide. mobilities. 310

Gallium nitride. applications. 348 Gallium phosphide.

applications. 348 properties. LEC method. 351

Gallium-antimony. applications. 348 properties. LEC method. 351

Garnets. Arrhenius plot (illus.). weight vs

temperature. 20 crystal chemistry (illus.). 398 epitaxy conditions and misfit

(illus.). 399 general formula. 19 growth kinetics. 403-407 growth procedure. 400-403 liquid phase epitaxy. 397-407

summary. 407 magneto-optical switching layers.

407 melt composition. 399-400 thermal expansion coefficients.

398 Gas. ideal. phase equilibrium. 27-28 Gas bubbles. in inclusions. 128 Gel growth of crystals. techniques.

228-229 Geological processes. nucleation.

262 Geosciences.

applications in crystal growth (illus.). 253-254

crystallization. 254-256 Germanium.

bond configurations. single height atomic steps (illus.). 390

Ge/Ga. segregation parameter values. 85

GelSi epitaxial layers. maintenance on Si and Ge substrates

(illus.).388 GelSi strained layer superlattice

(illus.). 388 n-type dopant. 377-378. 379 zone melting. 317-318

GGC theory (Gilmer. Ghez and Cabrera). 63-64

422

GGG see Gadolinium gallium garnet Gibbs.

minimum principle. 7 thermodynamics. 2-4

Gibbs free energy. dW. 30 i-sized clusters (illus.). 33 variation dG. 29 vs fraction of surface sites

occupied. copper and lead (illus.). 116

Gibbs free energy density. 8 Gibbs function.

classical secondary nucleus. 271 polymer nucleation. 269

Gibbs-Duhem relation. equations. 2. 8 and phase rules. 9-·12

Gibbs-Thomson effects. Ostwald's formula. 16

Gibbs-Thomson formula. anisotropic clusters. 34 defining critical nucleus. 37 non-isothermal dendritic growth.

170 . Gibbs-Wulff theorem. 2-D crystals.

54 Gold-silicon alloy. fiber crystal

whiskers (illus.). 298 Grashof numbers Gr. 111 Gravity. unit. in space experiments.

244-248 Growth and dissolution processes.

simulation. 22

Halides. alizarine crystals. 147 epitaxy. 145-146 flux systems. 134

Hall effect. 383 HB (Horizontal Bridgman) see

Bridgman methods Heat and solute transport. 75-76 Helmholtz free energy. variation. 30 Hematite. formation. 20 Hennenberg's model. bulk convection.

98 Henry's Law. adsorption isotherm.

154-155 High electron mobility transistor

(HEMT). 383 Holographic interferometry.

apparatus. 206 defined. 205 multidirectional. 209-214 one beam. 206-209

Holography. applications in crystals from transparent solutions. 205

Hydrides. light rare-earth. metal semi­

conductor transitions. 233. 235-237

vapor phase epitaxy. 310 Hydrodynamics. crystal growth.

205-214

Hydrogen. pressure vs coverage with monatomic H. 332

Ice/water. dendritic growth. 174-178 II - VI compounds.

electrical properties. 335-336 growth technology. 337-344 lattice structure. 335 melting points. 337 open-tube/closed-tube techniques.

339-344 phase relationships. 336-337 technology of growth. 335-344

II - VI elements. ternary systems. 21-23

III - V compounds. application of magnetic fields.

355 automated puller. LEe growth

(illus.). 353 Bridgman methods of GaAs growth.

349-350 crystal preparation. 347-352 dislocation reduction processes.

354-355 preparation of semi-insulating

gallium arsenide. 353-354 purification of raw materials.

352-353 III - V elements. ternary systems.

21-23 III - V semiconductor growth see

Organometallic vapor phase epitaxy

Images. reconstruction from project10ns. 209

Impurities. effects. 223 Inclusions.

characteristics. 127-128 conditions for formation. 124-125 mechanisms. 126-127 movements. 128

Indium arsenide. applications. 348 properties. LEe method. 351

Indium nitride. applications. 348 Indium phosphide.

applications. 348 mobilities. 310 OMVPE growth. supersaturation. 306 OMVPE growth (illus.). 305 properties. LEe method. 351

Indium-antimony. applications. 348 Indium-containing III/V alloys.

303-304 Indium-germanium alloy. in p-n

junctions (illus.). 318 Induced striation method (ISM).

136-137 Industrial crystallization.

batch crystallizers. 220-221 bibliography. 414 continuous process. 218-220 objectives. 217 physical chemistry. 221-223 product characteristics. 223-224 secondary nucleation. 221-222

Integrated circuit (illus.). 320 Interface.

and boundary layer. OMVPE. 304 exchange energy. in epitaxy. 158 melt-solid.

effect of convective flow (illus.). 322

silicon. 321 solid-liquid. dendritic growth.

170-172 see also Solidification front

Interface abruptness. OMVPE. 311 organometallic vapor phase

epitaxy. 311 Interface shapes. EFG dies. 280 International meetings. proceedings.

414 Iron. epitaxial growth on gold. 150 Isobutylphosphine. 312 Ivantsov's transport solution.

dendritic growth (illus.). 168-170 log-log plot (illus.). 170 velocity vs tip radius (illus.).

169. 171

Jackson's model. free energy of liquid/interface/solid system (illus.). 71

J(n*) formulation. 57

Kaolin. microtopographic characterizations. 258-259

Kossel • constant-bond' approach. 115 Kossel crystal.

adatoms occupying lattice. 113 atomic roughness. 113 substrate. epitaxy. 154

Lagrange multipliers. 5 Lamellar crystallization (illus.).

268 Langmuir adsorption isotherm. in

epitaxy. 155. 159 Lanthanum-hydrogen. phase diagram

(illus.). 234 Laplace's capillary equations. 276 Laplace's Law. 11-12 Laser heating.

and crystal growth. 292-293 pedestal fiber growth.

miniature molten zone. 295 representative list of

crystals. 293 Lasers.

GaAs/A1GaAs. 304 quantum well. 304

Lattice constant. rare earth iron garnets. 398 vs bandgap. GaInPAs system

(illus.). 369 Lattice mismatched epitaxy (illus.).

387 Lattices.

angular misfit and screw coincidence (illus.). 150

423

Lattices (continued) coincidence see. Coincidence

lattice superlattices.

compositional. 381-382 defined. 380 doping. defined. 382 modulation doping. 383-386 modulation doping (illus.). 384 TEM (illus.). 384

Lavas. dynamic crystallization processes. 259-262

Lead. compounds. flux systems. 134 on germanium. epitaxial growth

mode II. 164 Gibbs free energy vs fraction of

surface sites occupied. 116 on silicon. epitaxial growth mode

II. 164 Lead-tellurium. properties. LEC

method. 351 Lead-tin alloy.

gradient rate product. 100 interface. 99 interface structures sequence

(illus.). 100 morphological instability

(illus.). 97 Legendre transformations. 8 Lepidolites. polytypes. 200 Liquid clusters. excess free energy.

Monte Carlo simulation (illus.).4l

Liquid drops. capillarity approximation. 40-42

Liquid encapsulated Czochralski (LEC).

examples. 351 principle (illus.). 351 semiconductor crystal growth.

351-352 Liquid phase epitaxy.

apparatus (illus.). 400 garnets. 397-407

substrates. 397-398 growth rate dependence of

supersaturation (illus.). 406 III - V semiconductors. 310

Lithionites. polytypes. 200 Lithium-containing crystals.

grown by LHPG method. 293 growth stability vs diameter

requction ratio (illus.). 295 Low energy electron diffraction

, (LEED). 371 LPE see Liquid phase epitaxy

Mach-Zehnder interferometry. 261 Magmatic crystallization. 263 Magnetic fields. applications. III -

V compounds. 355 Magneto-plumbite. formation. 20 Manganese. p-type dopant. 377 Marangoni flow. 323 MBE see Molecular beam epitaxy Melt column. Stepanov's method. 277

424

Melt composition. induced striation method (ISM). 136-137

Melt growth. diffusion layer. influence of

convection. 78-86 II - VI compounds. 337-339 microscopic aspects. 70-78 shaped crystals. 282 solidification. 69-70 solidification front.

morphological stability. 86-103

techniques. 290-291 see also Crystal growth

Melt-solid interface. effect of convective flow (illus.). 322-323

Melting. bulk melting. 117 Meniscus-controlled processes.

equations. 283-284 shaped crystals. 283

Metal semi-conductor transitions. 235-237

solid solutions of rare earth hydrides. 233-235

Methods and technology see Apparatus; Techniques

Micas. polytypes. 200 Mirror cavity. elliptical. 228 Mixed suspension mixed product

removal crystallizer (MSMPR). 218-219

Moire patterns. new dislocations. 161

Molecular beam epitaxy. . alloy .growth. 368 antiphase disorder. 389-391 conversion to OMVPE. 304 defined. 359 dopant incorporation.

dopant concentration control. 380

shallow acceptors. 376-377 shallow donors. 377-378 transient doping profiles.

378-380 unintentional impurities.

375-376 film stoichemistry. 365-368 GaAs on Si heteroepitaxy. 389 gas source. defined. 360 growth process. 362-365 misfit dislocations and thermal

expansion. 391-392 principles of crystal growth.

359-370 silicon epitaxy. 368-370 solid source (conventional).

defined. 360 (illus.).36l

strained layer epitaxy. 384-389 summary of prinCipal features.

392-394 superlattices and quantum wells.

380-384 surface studies.

overview. 370-371

Molecular beam epitaxy (continued) surface studies (continued)

RHEED pattern formation. 371-373

RHEED pattern intensity oscillations. 374-375

surface ordering. 373-374 typical pressures during growth.

362 Molten salts and oxides see Flux

growth Molybdates. flux systems. 134 Molybdenum. growth of sapphire. 279 Monte Carlo simulation. excess free

energy of liquid clusters (i11us.). 41

Mossbauer spectroscopy. 236 MSMPR crystallizer see Mixed

suspension mixed product removal crystallizer

Muscovite. nucleation. 262 polytypes. 199

Mutaftschiev's model. free energy of liquid/interface/solid system (i11us.). 71

N-type dopants. 377-378 Neodymium YAG. grown by LHPG method.

293 Newsletters (national). 414-415 Nickel. cubic isotropic crystals.

160 meta-Nitroaniline. capillary growth.

298 No-slip condition. vs 'stagnant

film' concept (i11us.). 120 Nucleation.

2-D 'polymers'. 56-58 activation energy.

and equilibrium shape. 34 formula. 263

chemical concept. capillarity approximation. 29.

39-42 equilibrium distribution of

clusters. 34-39 defined. 27 'diffusion haloes'. 42 geological processes. 262 growth. 2-D (i11us.). 260-261 homogeneous nucleation kinetics.

steady state. 42-45 time lag in nucleation. 45-47

metastable. 263-264 phase concept.

equilibrium shape. 33-34 saturated state. 27-28 supersaturated state. 28-33

scaled steady state nucleation rate (i11us.). 47

steady state. 42-45 time lag. 45-47 work. 31-33

Numbers see Grashof; Peclet; Schmidt

OMVPE see Organometallic vapor phase epitaxy

Onsager solution. 113 Open-tube techniques. II - VI

compounds. 339-340 Organic crystals. see also Protein Organic nonlinear optic crystals. in

capillaries. 298 Organometallic vapor phase epitaxy.

applications. 313 chemical potential vs reaction

coordinate. 306 hydrodynamics and mass transport.

303-309 interface abruptness. 311 purity of product. 309-310 safety. 311-312 summary. 313-314 versatility. 310

Orientational domain states. 188-189 Orthoferrite. formation. 20 Ostwald ripening. in geological

processes. 259 Ostwald's formula. Gibbs-Thomson

effects. 16 Overgrowth. regular (i11us.).

143-144

p-n junctions. alloying technique (i11us.). 318

P-type dopants. 376-377 Palladium. on tungsten. epitaxial

growth mode II. 164 Paraffins. chainfolding. 272 Peclet number Pe. 92. 169

equation. 170 and Ivantsov model. 171 low. alloys. 180-181 and supercooling. 173

Pedestal growth method. fiber growth techniques. 290-291. 292. 294

Periodicals. bibliography. 414 Perovskite. metastable nucleation.

264 PET (Polyethylene terephthalate).

268 Phase. defined. 4 Phase boundary. defined. 4 Phase concept of nucleation. 27-34 Phase diagrams.

bibliography. 411 binary systems. applications.

12-17 cerium-hydrogen. 234 lanthanum-hydrogen. 234 yttrium iron garnet (YIG). 19

Phase dissociation. suppression. 233 Phase equilibria. a theoretical

view. 1-23 Phase transitions.

polymorphic. industrial crystallization. 222

see also Structural phase transitions

Phosphine. pyrolysis in deuterium. 307-308 safety considerations. 311-312

425

Physical Vapor Deposition (PVD) (illus.). 107-108. 112-113

Physical Vapor Transport (PVT) (illus.). 107-108. 110. 110-111

temperature profiles (illus.). 111 Piezoelectric coefficients. 189 Pivalic acid. dendritic growth.

174-178 Poisson ratio. 158 Poling process. 192 Polyethylene.

lamella growth from melt (illus.). 272

spherulite growth (illus.). 271 Polyethylene terephthalate. 268 Polymers.

crystal growth. 267-273 defined. 267 electroactive properties. 273 fringed micelle model. 268 regular chainfolding (illus.). 268 thickness of lamellae. 269

Polytypes. axial next nearest neighbour Ising

(ANNNI). 198 basic structures. 198-200

growth mechanisms. 200-201 complex polytypes. 198-200

disloc,ation- guided solid- state transformations. 202

growth mechanisms. 201-202 controlled production. 202 disorder theory. 197 perfect matrix model. 201 rate of crystallization. 200 screw dislocation theory. 201 short-period/long-period. 198 stoichemistry. 199-200

Polytypism. defined. 197 Porin. isolation. 243 Potassium chloride.

Czochralski growth. 296 dislocation density vs diameter

(i11us.). 297 Proceedings. international meetings.

414 Products.

characteristics. 223-224 common. number of polymorphs or

hydrates. 222 Projection measurement geometry

(illus.). 212 Protein crystal growth.

recent advances. 243-244 space experiments. 244-248

Protein crystallography. current techniques. 241-242 major problems. 242-243 recent advances. 240-241

PVA see Pivalic acid

Q. equations. 3-4 Qrep' replacement partition function.

38. 41

426

Quantum wells. 380-383 single. layer deposition sequence

(illus.). 385 Quartz. characterization. 257-259

Rare earth iron garnets. lattice constants. 398 liquid phase epitaxy. 397-407

Rare-earth hydrides. metal semi-conductor transitions.

233. 235-237 phase relationships (illus.).

235-236 Reactive sintering in closed

ampoule. techniques. 229 Reflection high energy electron

diffraction see RHEED Replacement partition function. Qrep'

38. 41 RHEED pattern intenSity

oscillations. 374-375 during growth (illus.). 374-375 GaAs surface (illus.). 373

Rhodopseudomonas. photoreaction center. 243

Royer's misfit laws. 162. 163 Rutile see Titanium dioxide

Salting out. 220 Sapphire.

EFG growth. 278 growth stability vs diameter

reduction ratio (illus.). 295 Saturation pressure. Pe. 52 Scaling law analysis. 78-81 Schlieren photograph. triglycin

sulfate. 244 Schmidt number Sc. 94 Schottky surface barrier. 384 Schottky-Wagner disorder. 337 Screw dislocation theory. polytypes.

201 Secondary ion mass spectroscopy. 404 Seeding.

in flux growth. 138-139 growth from solutions. 129-130

Semi-conductor/metal transitions. 235-237

Semi-metals. interface. 99 Semiconductor epitaxial growth

techniques see Organometallic vapor phase epitaxy

Semiconductors. binary. 335-344. 347-356 elementary. 317-332 grown by various techniques. 310 II - VI compounds. 335-344 III - V compounds., 347- 356 silicon. 317-332 single crystals. 342-344 ternary alloys.

separated source' method (illus.). 342

source-temperature increasing method (illus.). 343

Sericite. microtopographic characterizations. 258-259

Shaped crystals. applications. 275 commercial processes. 282-284 edge-defined film growth process.

278-282 melt growth. 282-283 organic nonlinear optic. in

capillaries. 298 silicon ribbon growth. 284-288 single.

fibers. 289-297 unidirectional casting. 288-289

Stepanov method. 276-278 vapor-liquid-solid mechanism.

298-300 Siemens process. silicon. 318 Silane.

equilibrium composition vs temperature (illus.). 329

growth of silica (illus.). 328 isoconcentration lines. numerical

results (illus.). 113-114 Silica glass. nucleation of

crystals. time lag (illus.). 47

Silicates. nucleation. 262-263 Silicon.

bond configurations. single height atomic steps (illus.). 390

crystal microdefects. 297 Czochralski growth. 296 dimer formation (illus.). 331 epitaxy. molecular beam epitaxy.

368-370 equilibrium composition vs

temperature (illus.). 329 growth from silane (illus.). 328.

329 impurity. solidus-liquidus

(illus.). 323 melt. diffusivities. 109 n-type dopant. 377-378 planar technology (illus.).

319-320 preparation of pure silicon by

CVD. 319 production. 317 ribbon growth.

dendritic web process. 284-285 EFG and Stepanov processes

(illus.). 279-282 ribbon against drop,method

(illus.). 286 shaped crystals. 284-288 silicon on ceramic process

(illus.). 286 semiconductors. 317-332 Siemens process. 318 surface coverage during crystal

growth (illus.). 331 whiskers. vapor-liquid-solid

growth. 299-300 Silicon carbide.

polytype crystals. 199 solid-state transformations. 201

Silicon dioxide. characterization. 257-259

Silver. on germanium. epitaxial growth

mode II. 164 on molybdenum. epitaxial growth

mode II. 164 on silicon. epitaxial growth mode

II. 164 Silver sulphide. polytypes. 199 Silver-copper alloy. restabilization

rates. 101-102 SIMS see Secondary ion mass

spectroscopy Single crystals.

fibers. shaped crystals. 289-297 semiconductors. 342-344

Sodium. on tungsten. epitaxial growth mode I. 163-164

Sodium chlorate. holographic experiments. 214 thermostic cell. 207

Solid state physics. controlling valence fluctuations.

235-237 metal semi-conductor transitions.

mixed-crystal series. 233-235 research and crystal growth.

231-232 Solid/liquid interface. Wilson and

Frenkel model (illus.). 73 Solidification.

absence of gravity. 74-78 analysis of main experimental

results. 98-99 Bridgman-type (illus.). 82. 85 Czochralski method. 83 dendritic front. 81 diffusion layer. 80-81 eutectic front. 81. 86 importance. 69-70 interval. 88 kinetic effects. 102 morphological destabilization.

99-100 planar front. 81

absence of convection. 74-78 rate. growth rate vs temperature

(illus.). 290 segregation models (illus.). 83.

84 Solidification front.

boundary layer assumptions (illus.). 93

chemical undercooling (illus.). 88 double diffusion ahead (illus.).

96 driving forces. 87-88 morphological stability. 86-103

absence of convective instabilities. 88-92

presence of convective instabilities. 92-98

mushy zone configurations (illus.). 87

perturbations. amplitude equation. 92 first stable (illus.). 95. 97 linear ana1ysi$. 89-90

427

Solidification front (continued) perturbations (continued)

nonlinear analysis. 90-92 sinusoidal (illus.). 89 three critical patterns

(illus.). 94-94 undercooling. 93

Solute dendrites see Dendritic growth. solute dendrites

Solute and heat flow. 75-76 Solution growth.

based on temperature difference procedures. 226-228

generalized features. (illus.). 255

impurity effects and incorporation. 128-129

kinetics and morphology. 119-124 morphological instability. 124-128 multicomponent growth. 122-123 solute concentration vs distance

into solution (illus.). 120 stirring and concentration

gradient. 121-122 surface integration and mass

transfer (illus.). 121-122 technology. 129-131 transparent solutions. 205-214 vs melt and vapor growth. 254-256

Solvent chemistry. bibliography. 411 Solvents. in flux growth. 133 Soret diffusion (illus.). 113-114 Space experiments. protein crystal

growth. 244-248 Sphalerite to wurtzite. polytypes.

199 Spiral crystalline growth. 58-65

activation energy. 58 diffusion paths (illus.). 61 (illus.). 260-261 pattern (illus.). 60 rate-determining step: Chernov's

model (illus.). 64-65 rate-determining step: GGC theory.

63-64 surface diffusion to the steps:

BCF theory. 60-62 SPT see Structural phase transitions 'Stagnant film' concept. vs no-slip

condition. 120 'Stefan problem'. 21 Stepanov processes.

shaped crystals. 276-278 silicon ribbon growth. 279-282.

284 Stirling's formula. 154 Stirring. 130-131

accelerated crucible rotation technique. 140

flux growth. 140 Strained layers.

epitaxy. 386-392 molecular 'beam epitaxy. 384-389

Strains. flux grown crystals. 141 Stranski-Krastanov mode. epitaxial

growth. 162. 164-165

428

Striations. crystal defects. 141 induced striation method (ISM).

136-137 Structural phase transitions.

equitranslational. 188-189 examples. 191 ferroelastic. planar phase

boundary. 191 single-domain. 192

Succinonitrile. dendritic growth. 174-178

Succinonitrile-acetone alloys. 181-182

Sucrose crystal. growth rate vs supersaturation

(illus.).210 multidirectional interferometry

(illus.).211 one beam interferometry. 207-209

Supercooling. classical model (illus.). 125-126

Supersaturated state. 'chemical work'. 28 free energy of small condensed

phase. 28-31 nucleation work. 31-33

Surface free energy. clusters. 39-40 Surface tension. very small clusters

(foot:not:e). 30 Surface thermodynamics. 10-12 Surveys of activities. bibliography.

415

Techniques. Bridgman methods of GaAs growth.

349-350 calorimetry. polymer nucleation.

270 casting turbine blades. 288-289 chemical beam epitaxy. 304 chemical vapor deposition.

semiconductors. 327-332 chemical vapor transport. II - VI

compounds. 342-344 crystal growth from solutions.

129-131 Czochralski method. gallium

arsenide. 350-352 Czochralski pulling of silicon

(illus.). 325-327 decoration. electron microscopy.

258-259 dopant incorporation into GaAs

compounds. 375-380 elliptical mirror cavity. lamp

heated. 228 float-zone method. 290. 292 flux growth. 138-139 gel growth of crystals. 228-229 generating supersaturation.

137-138 heat balance in Czochralski

growth. 326 horizontal ribbon growth (illus.).

287-288

Techniques (continued) II - VI semiconductor compounds.

335-344 in-situ observation. 262-264 laser-heated float-zone. 287 liquid encapsulated Czochralski

(LEC). 351 liquid phase epitaxy of garnets.

397-407 Mach-Zehnder interferometry. 261 melt growth. 290-291 molecular beam epitaxy. 359-370 open-tube. closed-tube. for II -

VI compounds. 339-344 organometallic vapor phase

epitaxy. 303-314 p-n junctions (illus.). 318 protein crystal growth. 241-244 protein crystallography. 241-242 reactive sintering in closed

ampoule. 229 removal of dislocations n silicon.

325 ribbon to ribbon growth. 287 Schlieren. 261 semiconductor epitaxial growth.

304 shaped crystals. 276-277 silicon deposition. 319 silicon planar technology

(illus.). 319-320 solution growth based on

temperature difference procedures. 226-228

space experiments in biological molecule growth. 244-248

synchrotron radiation surfaces. 240-241

thermogravimetry to measure supercooling. 136-137

transmission electron micrography for mode III epitaxy. 162-163

zone melting of germanium. 318 Temperature difference procedures.

226-228 Thermodynamics.

bibliography. 411 degrees of freedom. 10 equilibria.

consequences. 7-9 entropy. 4-7 minimum principle. 4

first principle. 5-6. 13 Gibbs. 2-4 Gibbs-Duhem relation.

equations. 2. 8 and phase rules. 9-12

supersaturation. defined. 52 surface. 10-12 systems. variables and phases. 3-4 ternary systems. 17-19

composition triangle (illus.). 18

garnets. 19-20 III-V elements. 21-23

two-phase system and boundary (illus.). 11

Thermogravimetry to measure supercooling. 136-137

Thermostatic cell (illus.). 207 Thomson-Gibbs formula see Gibbs­

Thomson formula Ti-peroxene. metastable nucleation.

264 Time lag. nucleation. 45-47 Tin/silver. segregation parameter

values. 85 Titanium:aluminium oxide. grown by

LHPG method. 293 TMln see Trimethylindium TmSe. crystal growth. 236-237 Transformation twinning. 185.

188-193 Transistors.

2-D electron gas effect transistor (HEMT). 383

high electron mobility transistor (HEMT). 383

Transparent solutions. crystal growth. 205-214

Travelling solvent method. ZnTe (illus.).339

Triethy1indium. adduct formation. 303

Triethy1phosphine. 312 Trig1ycin sulfate. Schlieren

photograph. 244 Trimethy1arsenic. 312 Trimethy1indium.

OMVPE growth (illus.). 305 organometallic vapor phase

epitaxy. 303-304 and phosphine. 308 purity. 309-310 pyrolysis in deuterium. 307-308

Trimethy1phosphine. 312 Turbine blades. casting. 288-289 Twinning.

classification. by merohedry. 186 by pseudomerohedry. 186 by reticular merohedry. 186 by reticular pseudomerohedry.

186 Dauphin~ (illus.). 257 defined. 185 detwinning. 192-193 growth. 185 growth conditions. 187 inversion. 186 lamellar. 186 mechanical. 185

plastic shear deformation. 188 mimetic. 186 natural/artificial. 191-192 orientationa1 domain states.

188-189 penetration. 186 po1ysynthetic. 186 refection or rotation. 186 186 and stacking faults. zinc

cha1cogenides. 339 transformation twinning.

defined. 185

429

Twinning (continued) transformation twinning

(continued) detwinning. 192-193 general laws. 188-191 production of. 191-192

twin plane. 186 twinning operation t. 186 twinning operations. orientation

of permissible walls ('table). 190

two or multi-component. 186

Valence fluctuations. control by varying non-stoichemistry of single crystals. 235-237

Van de Waall's bonds. weak. in heterodesmic.crystals. 160

Van de Waal1's crystals. epitaxial growth mode I. 163

Van de Waall's loop. 155 Vanadates. flux systems. 134 Vapor diffusion. protein crystal

growth. 242. 245 Vapor growth. open-tube techniques.

339-340 Vapor phase epitaxy. organometallic.

303-314 Vapor-liquid-solid mechanism. shaped

crystals. 298-300 Vapors.

crystal growth. interface structure and atomic

roughness. 113-117 introduction. 107-109 macroscopic transport. 109-113

equilibrium with crystal. finiTechniques. infinite size. 52

Vernier-Nonius. coincidence nodes (illus.). 148

VLS see Vapor-liquid-solid mechanism Volmer-Weber mode. epitaxial growth.

162-163

Wulf-Kaischew theorem. 153 Wulff theorem. surface tension and

face distances. 34. 152

Yttrium aluminium garnet (YAG). grown by LHPG method. 293 growth stability vs diameter

reduction ratio (illus.). 295 Yttrium iron garnet (YIG).

grown by LHPG method. 293 phase diagram. 19 SIMS profile (illus.). 404

Zinc. in binary II - VI semiconductor

compounds. 335-344 chalcogenides. twinning and

stacking faults. 339 ZnTe. travelling solvent method

(illus.). 339

430

Zinc sulphide. solid-state transformations. 201 sphalerite to wurtzite. 199

Zone melting. germanium. 317-318