a study of the dynamics of the 3d kelvin-helmholtz...

14
A study of the dynamics of the 3D Kelvin-Helmholtz instability in a partially ionised plasma Andrew Hillier, Naoki Nakamura , Shinsuke Takasao, Harufumi Tamazawa & Akito Davis Kawamura Kwasan Observatory, Kyoto University In collaboration with the (PI P) coding team, Kwasan Observatory

Upload: others

Post on 24-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

A study of the dynamics of the 3D Kelvin-Helmholtz instability

in a partially ionised plasmaAndrew Hillier, Naoki Nakamura, Shinsuke Takasao,

Harufumi Tamazawa & Akito Davis Kawamura

Kwasan Observatory, Kyoto University

In collaboration with the (PIP) coding team, KwasanObservatory

Page 2: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

Partially (Weakly) ionized plasma in solar physics

The solar photosphere (turbulence & convection). Ionisation fraction

๐œ‰๐‘~10โˆ’4 โˆ’ 10โˆ’6

The solar chromosphere and prominences (waves, reconnection, instabilities and turbulence).

Ionisation fraction ๐œ‰๐‘~10โˆ’1 โˆ’ 10โˆ’3

Page 3: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

How are neutrals coupled to magnetic fields

Perfect coupling๐œ๐‘–๐‘›/๐‘›๐‘– = โˆž

no coupling๐œ๐‘–๐‘›/๐‘›๐‘– =0

n

+

- โ‘ 

+

โ‘ก

โ‘  Movement of magnetic fieldโ‘ก together with charged particles

โ‘ข Charged particles collide with neutrals

โ‘ฃ Neutrals move in the same direction as the charged particlesCollision

โ‘ข โ‘ฃ

weak coupling๐œ๐‘–๐‘›/๐‘›๐‘– โ‰ช ๐œˆ๐ท๐‘Œ๐‘

marginal coupling๐œ๐‘–๐‘›/๐‘›๐‘–~๐œˆ๐ท๐‘Œ๐‘

strong coupling๐œ๐‘–๐‘›/๐‘›๐‘– โ‰ซ ๐œˆ๐ท๐‘Œ๐‘

Page 4: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

โ€˜Dynamic timeโ€™ vs โ€˜Collision timeโ€™

Alfven waves

๐‘‰๐ด,๐‘–๐ฟ

VS ๐œˆ๐‘–๐‘›/๐‘›๐‘–

TurbulenceDimensional arguments give:

๐œ–

๐ฟ2

1/3

VS ๐œˆ๐‘–๐‘›/๐‘›๐‘–

(Like a partially ionized plasma Kolmogorov lengthscale)

Instabilities

๐œ” = ๐‘“(๐‘‰,๐ถ๐‘†, ๐‘‰๐ด, ๐ฟ,...) VS ๐œˆ๐‘–๐‘›/๐‘›๐‘–

L

Reconnection

๐œ๐‘…๐ธ๐ถ~ ๐‘‰๐ด๐ฟ VS ๐œˆ๐‘–๐‘›/๐‘›๐‘–

Page 5: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

โ€œAnd the mountains flowed before the Lordโ€

Judge 5.5

In solar physics (and astrophysics in general), we are interested in a huge range of temporal and spatial scales. We cannot only think of our โ€œmountainsโ€ as โ€œsolidโ€ or โ€œfluidโ€

c.f. Deborah number associated with polymeric fluids

๐ท๐‘’ = ๐‘ก๐‘…๐ธ๐ฟ๐ด๐‘‹

๐‘ก๐‘‚๐ต๐‘†

Page 6: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

The (PIP) codeNew code to study partially ionized plasma developed at Kyoto University

3D HD and 3D MHD conservative equations solved coupled by collisons (both fluids taken as ideal gases)

Schemes: Fourth-order central difference (eg Vogler et al 2005) and HLL type (e.g. Miyoshi & Kusano 2005)

MPI parallelized (no complications from collision terms)

๐œ•๐œŒ๐‘›๐œ•๐‘ก

+ ๐›ป โˆ™ ๐œŒ๐‘›๐ฏ๐‘› = 0

๐œ•

๐œ•๐‘ก๐œŒ๐‘›๐ฏ๐‘› + ๐›ป โˆ™ ๐œŒ๐‘›๐ฏ๐‘›๐ฏ๐‘› + ๐‘ƒ๐‘›๐ˆ

= โˆ’๐‘Ž๐‘๐œŒ๐‘›๐œŒ๐‘ ๐ฏ๐‘› โˆ’ ๐ฏ๐‘๐œ•๐‘’๐‘›๐œ•๐‘ก

+ ๐›ป โˆ™ ๐ฏ๐‘› ๐‘’๐‘› + ๐‘ƒ๐‘› =

๐‘Ž๐‘๐œŒ๐‘›๐œŒ๐‘1

2(๐‘ฃ๐‘

2 โˆ’ ๐‘ฃ๐‘›2) + 3๐‘…๐‘”(๐‘‡๐‘ โˆ’ ๐‘‡๐‘›)

๐œ•๐œŒ๐‘๐œ•๐‘ก

+ ๐›ป โˆ™ ๐œŒ๐‘๐ฏ๐‘ = 0

๐œ•

๐œ•๐‘ก๐œŒ๐‘๐ฏ๐‘ + ๐›ป โˆ™ ๐œŒ๐‘๐ฏ๐‘๐ฏ๐‘ + ๐‘ƒ๐‘ +

๐2

8๐œ‹๐ˆ โˆ’

๐๐

4๐œ‹

= ๐‘Ž๐‘๐œŒ๐‘›๐œŒ๐‘ ๐ฏ๐‘› โˆ’ ๐ฏ๐‘๐œ•๐‘’๐‘๐œ•๐‘ก

+ ๐›ป โˆ™ ๐ฏ๐‘ ๐‘’๐‘ + ๐‘ƒ๐‘ +๐ธ ร— ๐ต

4๐œ‹

= ๐‘Ž๐‘๐œŒ๐‘›๐œŒ๐‘1

2(๐ฏ๐‘

2 โˆ’ ๐ฏ๐‘›2) + 3๐‘…๐‘”(๐‘‡๐‘ โˆ’ ๐‘‡๐‘›)

๐œ•๐

๐œ•๐‘ก+ ๐›ป ร— โˆ’๐ฏ๐‘ ร— ๐ + ฮท๐›ป ร— ๐ = 0

Page 7: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

Solving for the collision terms๐œ•๐œŒ๐ฏ

๐œ•๐‘ก~ โˆ’ ๐œ๐œŒ๐•๐ท

Two problems are associated with solving this equation:1) This equation is very stiff, meaning that the safety factor for the

CFL condition has to be annoyingly small2) When simulating a whole stellar atmosphere, where densities

can vary by many orders of magnitude, there will be regions with very high collision frequency that we need to make simulatable

But for strong coupling it is easy to show that ๐‘‰๐ท(๐‘ก) = ๐‘‰๐ท ๐‘ก0 exp(โˆ’๐›ผ๐œŒ๐‘‡๐‘‚๐‘‡๐‘ก)

Which allows for an analytic solution to be give for the integration at timescales below the dynamic timescale

Page 8: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

The Magnetic Kelvin-Helmholtz instability in partially ionised plasma

Fundamental instability of astrophysical plasma.

Partially ionized effects have been investigated in molecular clouds (Jones & Downes 2012) and solar prominences (Diaz et al 2012)

๐œŒ๐‘‡๐‘‚๐‘‡ = 2

๐œŒ๐‘‡๐‘‚๐‘‡ = 1

๐›ฝ = 0.3Magnetic field along line of sightX

๐‘‰๐ท๐ผ๐น๐น = 0.9๐ถ๐‘†,๐‘

Ionisation fraction ๐œ‰๐‘– = 0.5

Most cases ๐œ๐‘–๐‘› = 100

The simulation setup

All simulations on a 500x500 grid

Page 9: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

Linear Regime

For strong coupling, the instability grows in the two fluids together. As coupling gets weaker a lag develops, and the fluids eventually develop their own growth rates (consistent with linear theory of Soler et al. 2012)

๐œ๐‘–๐‘›/๐‘›๐‘– โ‰ซ ๐‘‰๐ท๐ผ๐น๐น๐œ† ๐œ๐‘–๐‘›/๐‘›๐‘– โ‰ช ๐‘‰๐ท๐ผ๐น๐น

๐œ†

Page 10: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

The nonlinear PIP KH

Movie shows ๐œŒ๐‘› and ๐œŒ๐‘ with the arrows showing velocity vectors

for each fluid. Though the similar dynamics develop, the density distributions show stark differences in the centre of the vortex

๐œŒ๐‘› ๐œŒ๐‘๐œ๐‘–๐‘›/๐‘›๐‘– = 100

Page 11: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

Neutral depletion at vortex centre

Movie shows ๐œŒ๐‘

๐œŒ๐‘› with the arrows showing drift velocity ๐•๐ท =๐ฏ๐‘– โˆ’ ๐ฏ๐‘›. Strong regions of neutral depletion form in the vortex centre

Page 12: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

Neutral depletion at vortex centre

๐œŒ๐‘

๐œŒ๐‘› (left) and vorticity (right). This highlights that though there are many vortices, only the long-lived vortex shows significant depletion

Page 13: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

Ion-neutral centrifuge

Hydrodynamic Vortex MHD Vortex

However, coupling requires them to have the same temperature

Gas pressure gradientMagnetic pressure gradient

Neutral fluid can no longer be contained!

Page 14: A study of the dynamics of the 3D Kelvin-Helmholtz instabilityeanam6.khu.ac.kr/presentations/4-2.pdfThe Magnetic Kelvin-Helmholtz instability in partially ionised plasma Fundamental

Summary

โ€ข The (PIP) code is progressing well and ready for use in scientific research. Work is still in progress to improve its usage on supercomputers

โ€ข Application to the Kelvin-Helmholtz instability shows that ion-neutral centrifuges are formed in the KH vortex (neutral dust can undergo a similar process c.f. Hendrix and Keppens 2014)

โ€ข Inverse cascade (mainly a 2D effect?) can transport the non-ideal effects to be important at โ€˜idealโ€™ length/timescales (as suggest by Jones and Downes 2012)