a study on the characteristics of the heavy residual oil ... · *consulting division, ates ltd....

6
346 HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 346-351 (Journal of the Korean Institute of Chemical Engineers) * ** *ATES( ) ** ( ) (2000 4 10 , 2001 3 23 ) A Study on the Characteristics of the Heavy Residual Oil Gasification with Varying Swirl and Geometry Hye Ryung Na , Yongseung Yun, Jin Wook Lee* and Jin Yeol Yu** Plant Engineering Center, Institute for Advanced Engineering *Consulting Division, ATES Ltd. **Ship & Ocean R&D Institute, Daewoo Shipbuilding & Marine Engineering Co., Ltd. (Received 10 April 2000; accepted 23 March 2001) / . , ( ) (L/D) . , , . , L/D , . , L/D . Abstract - Numerical study of the turbulent reacting flow in a high-temperature and high-pressure gasifier has been carried out to analyze the characteristics of gasification reaction of heavy residual oil, which has high sulfur content. In this study, the effect of swirl strength of the secondary nozzle and reactor geometry(L/D), known to be the crucial design parameters of gas- ifier, has been extensively studied. Especially, we intended to find the effect of operating and design parameters by observing the reacting flow pattern as the key parameters have changed. It is shown that there is progressive increase in the length of cen- tral toroidal recirculation zone which plays an important role in flame stabilization and the increase in the reactivity of heavy residual oil as the swirl number increases. In addition, required time for the complete reaction increases and the swirl effect is relatively weakened as the L/D ratio decreases. Most of all, it is found that the optimal combination of L/D ratio and swirl strength is essential to maintain the flame stabilization and efficient mixing ratio of fuel and oxidizer, and to minimize the dam- age of wall refractory. Key words: Swirl Effect, L/D, Heavy Residual Oil, Gasification, Integrated Gasification Combined Cycle, Computational Fluid Dynamics E-mail: [email protected] 1. (Heavy Residual Oil) . , , . CO 2 15% , SO x 90% , NO x 60% . , (Integrated

Upload: others

Post on 24-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Study on the Characteristics of the Heavy Residual Oil ... · *Consulting Division, ATES Ltd. **Ship & Ocean R&D Institute, Daewoo Shipbuilding & Marine Engineering Co., Ltd. (Received

HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 346-351(Journal of the Korean Institute of Chemical Engineers)

�� � ���� � �� � ��� ��� �� �� ��

���†������*���**

������� ��� ����*ATES(�) ������

**������(�) ��� ����!(2000" 4# 10$ %&, 2001" 3# 23$ '()

A Study on the Characteristics of the Heavy Residual Oil Gasification with Varying Swirl and Geometry

Hye Ryung Na†, Yongseung Yun, Jin Wook Lee* and Jin Yeol Yu**

Plant Engineering Center, Institute for Advanced Engineering*Consulting Division, ATES Ltd.

**Ship & Ocean R&D Institute, Daewoo Shipbuilding & Marine Engineering Co., Ltd.(Received 10 April 2000; accepted 23 March 2001)

� �

� ����� �� � �� �� �� ��� ���� �� �������� !"# $/ % �&'()

��* �&' +, -.� /0" 1 "23. -4, �&'( 56* 78 �1� 9:7;<=��* >? @A(>?B)

C �DE +,F* EG(L/D)� �� HBF >"# +, �IJ* KL H'� M� NOFP ��� �&'(*

QR 56 S T� UV* 5� �8R WX� "� HBY* Z[� /0" 1 "23. ���� \], >?B� ^�B

_ '` a'� Ab� 7� �&'( �cd efgZW* h(� i�" , �jC �'* kl� [Gmn �&'(

) �I� op'mqOFP �r � +, sj mt9 uv�� w[� x�X B yz3. {| , L/D }� ~�B_ +

,F) �j* +, sj mt9 ��� , >?� *R Z[�9 G� OF �'�� x�X B yz3. �v�, ��� �

&'( 56m '`a' S �'C �j* QR kl� ��" )'e �G� ��'"( ���� L/D }C >?

@A* Ul� � '"� �9 �B 9v ���z3.

Abstract − Numerical study of the turbulent reacting flow in a high-temperature and high-pressure gasifier has been carried

out to analyze the characteristics of gasification reaction of heavy residual oil, which has high sulfur content. In this study, the

effect of swirl strength of the secondary nozzle and reactor geometry(L/D), known to be the crucial design parameters of gas-

ifier, has been extensively studied. Especially, we intended to find the effect of operating and design parameters by observing

the reacting flow pattern as the key parameters have changed. It is shown that there is progressive increase in the length of cen-

tral toroidal recirculation zone which plays an important role in flame stabilization and the increase in the reactivity of heavy

residual oil as the swirl number increases. In addition, required time for the complete reaction increases and the swirl effect isrelatively weakened as the L/D ratio decreases. Most of all, it is found that the optimal combination of L/D ratio and swirl

strength is essential to maintain the flame stabilization and efficient mixing ratio of fuel and oxidizer, and to minimize the dam-

age of wall refractory.

Key words: Swirl Effect, L/D, Heavy Residual Oil, Gasification, Integrated Gasification Combined Cycle, Computational

Fluid Dynamics

†E-mail: [email protected]

1. � �

���(Heavy Residual Oil)� ��� �� �� �� ���

�� ��� �� ����� ��. ���, ���� �� � � !"

# $% &' ( )�*� �+,-� ./01 23� �4% 5 6

�(�� 7*8 &' 9:;< =>� ��?� @8 +A?B, C

�� D:E FGHI9:;� J K ��. !" L M+ =>� 8�

?� #NO� PQ?� D:E FGHI9:;' R� ./ ST< U

VW# XY?M Z %[\]� =^ _H�� �� `a� Xb0

1 Mc� Md< e`" HI9:;# $% CO2� 15%8f, SOx�

90%8f, NOx� 60%8f< gh 7i� �+,� @]� j4k ��.

lm�, ��( )� �1 ���� D:E FGHI9:;(Integrated

346

Page 2: A Study on the Characteristics of the Heavy Residual Oil ... · *Consulting Division, ATES Ltd. **Ship & Ocean R&D Institute, Daewoo Shipbuilding & Marine Engineering Co., Ltd. (Received

�� � ���� � �� � ��� ��� �� �� �� 347

Gasification Combined Cycle, 8? IGCC)< HI =>�� n�?o

�3 Op0]� qE�� �� CO2, SOx, NOx r< XMST �< .

/ s�� tu9v K �]B, ���< n� wx]�y z{ �|

}� DOo ~�. ��, I� K�# <d?� �� ��< n�� �

XE%a ?� {|< ��#�� ./01 23 L /�01 23�

�4?� ���D HI �>�� 0GO� ��?� D:E ���

� I� PQ< +AW� �4% �� @' z{ ��?�� PV~

�. R�, 8�|#�� ���� ��?� 500 MW� HI� 2M�

250 MW� 2M� 1998��� 2000� �8< ��� �0]� ���

� ���# �]B, ��#�y 340-550 MW� 2M� 2001�i 2003

��O ��� Z% ��� ��8 � �� ��[1, 2].

� =^#�� ���� =>� ��?� D:EM� Xf]� ?�

IQ�¡¢£(Computational Fluid Dynamics, 8? CFD)w¤# <

K¥%!� K ?¦�. �§/�¨]� ©I�� D:EM� ,�< �

�� fª� «¬?�­ �08�, ®¯01 =^� Z °' �±

²/ ³ R®0]� ´4µ8 l��. ���, D:EM ,�#� �

´�� F¶ |·E£0 Rf# X ¸` 8%� ­8�< ¹

�� �%�t8 º0 »�< D:EM �±D D¼?-�, � =^#

0�~ CFD w¤½' ®¯01 =^< �W� �F?� ��� ,

�< F¶ ¾ �¿�< E£ �� �W� ÀÁ?�­ 0 Xx

8 à K �� @]� ��~�. � =^� 8� K¥%!� �% D

:EM ,�#� �´�� ���< E£ ��, �� D:E ��< �

W� ÀÁ?�, D:EM< Ä� �± ²KJ1 ��Å ���< Åf

i 8ÆÄ�ÇÈ< ÉIwÊ py²E, Ë, L/D $ L ÌÉK< ²ED

�� �¿�# e¥� ÍÊ� ÀÁ)]�Î D:EM< 0 �± L

©I »�� �9?�Ï ?¦�.

2. ��� � ��

2-1. �� �����

��� D:EM ,�#�� ¾ ���¿�8 ÅW�B, 8# l�

Mf OÐw�Ñ� 2Æ� ÒXÓ Ôb±#� �Õi Ö' ×e`w�Ñ

< Å�� �+Ø K ��[3, 4]. Ë,

Ù Ñ#� φ� %!?�Ï ?� �� Úp ²K�� V wÊ# X p

y W ,̀ Û8ÜÝ��, Þßà L VÚ E£Ú r� Xb?� �]B, x�

ÒwÊ �|, r' á/wÊ �|, ρ� M¡< ây, Γφ� Sφ� Úp

²K# X ¹Q ±K� PWã� VV �+ä�. �|�, =>< �

�# <% Mf]� Iå�� ��, Þßà, ©¿�< ²E r' OÐw

�Ñ< PW(�æ)ã# ç)� ́%!~�. ¾ èé' RSM(Reynolds

Stress Model)�, F�êIå èé' F�#NO< ëK� Qì� �

4 P-1 èé� ��?¦�. Mf< ¾ ���� %!?M Z Rf

£0 èé� Z%�� ‘fast chemistry model’� íG `*i ¹î ây

)K� 8� �d :ïm èé� ��?¦]B, �� PW < »W'

Ä´� � ́¡0,#� ‘Gibb’s free energy minimization’ w¤# <?

� ±Q�yð ?¦�[5, 6].

2-2. � � �����

¾ �¿�,# d�?� �f ³� ñf< �Ï �8 IJ< QE

�� ��?3 � L êIå8 fòó# �´�o �-� �¿�<

²E# ô�ì ÍÊ� e¥o ~�. lm� ¾ ���,#�< �Ï<

�  f�� %!?� @' z{ ��?B, � =^#�� ��� ñ0

< ���¿�,#�< �¿� %!?M Z% õM# ��~ ñ0< §

yD �� §y�O fö ÷H(vaporization) L $r(boiling)� �

% ME�´ Mf]� Iå~ ��?yð ?� ñ0��èé� �

�?� ±Q� K ?¦�[6, 7].

2-3. � �(Swirl Number, SN)

=�� L D:EM r#� |0]� øÄ �� ²K1 ÌÉK�

��� �ù# �ú. Í¢� ÅW9û]�Î ET x�E# yµ� Ä

B, �� =>� QE�< íG� ÷D9ü� �� ¢ý� �. ¾

�¿ã L ¨�ã� þ9?3 ÌÉK# X �<� øÿ� Ö�[8].

�M� Di� D0� �Æ L 8ÆÄ�ÇÈ< á/� VV <e�.

2-4. �� � �� ��

� =^< 0� Xf1 ��� D:EM� � 3M< D:EM� 8�

´� SARLUX ���[9]� ��� ?� 1,200 T/D ��< D:EM 1

M� M�� ��?¦�. %! Xf D:EM� Fig. 1# �+ä ��

Ö8 2Æ�E~ f���wÑ ��Å D:EM�, z{ �' ÇÈ �^

� �% QE�� =>D ���� �¿�< �Wf �´¡0< ��

²E� �M Z?� �^ IJ# â~ �ϱ� PW?� %!#

8�?¦�. D:EM< =>1 ���� �ÆÄ�ÇÈ Í¢#� `�

�B, 8ÆÄ�ÇÈ#�� QE�t8 ���yð ?¦�. QE� L :

i =>< $� Texaco��� M�]� VV 1.04, 0.31� ��?¦

]B, Xf =>< »W L ²K =^� Z b� »�' øÿ< Table

1i 2# ó�� �+,��. 8� =># e�]� ç)�´ �� K`

i �(ash)� D:E �� èé 9 ��?¦�, K¥%!< Ä� ²K

� 8ÆÄ�ÇÈ< ÉIwÊpy� L/D $� ²E9� �]�Î ÌÉ

K� L/D $D D:EM, �� �¿�# e¥� ÍÊ� ÀÁ?�Ï ?

¦�. IQ%!� Z% f� ê�¡ %! ����´1 Fluent V.4.5�

��?� HP9000/770 Workstation#� ±Q� K ?¦�.

∂∂x------ ρuφ( ) 1

r--- ∂

∂r----- rρvφ( ) ∂

∂x------ Γφ

∂φ∂r------

1r--- ∂

∂r----- rΓφ

∂φ∂r------

Sφ=––+

SN

ρuwrr rd∫Ro ρuur rd∫--------------------------=

SNnozzle

23---w

u----

D02 D0Di D i

2+ +( )

D02 D0Di+( )

----------------------------------------≈

SNre ac torSNnozzle

T in

Tout

---------Dnozzle

Dreactor

-----------------⋅ ⋅≈

Fig. 1. Schematic diagram of gasifier and computational domain.

HWAHAK KONGHAK Vol. 39, No. 3, June, 2001

Page 3: A Study on the Characteristics of the Heavy Residual Oil ... · *Consulting Division, ATES Ltd. **Ship & Ocean R&D Institute, Daewoo Shipbuilding & Marine Engineering Co., Ltd. (Received

348 ������ �!"#��"$

3. � ��

� =^#�� CFD w¤½� 0�?� Ä� �± ²K# l� ��

� D:EM, �� �¿�< �W� �¬% �]�Î �± 1ÏJ8

D:E ���< ÅW# e¥� ÍÊ� ÀÁ?�Ï ?¦�. Fig. 2� Q

E�� =>< $D 1.04, :i =>< $D 0.31� ���� ���

D:EM,#� �ó9ó(space time)8 � 4.5õ8B, Table 1# �+ä

b� »�� �� �� �¿�#�< PW D: �`*� �+ä [i

8�. [i��� =>1 ���D `��� D:EM õM< �^ Í

¢#�� QE�� ��o ��?� =� ��8 nH� �´�M 6

�# CO2� H2OD &o PW�� j K ��. ��, �ÆÄ�ÇÈ#�

`��� QE�� =>D íG�� /±3#�� CO, H2D &o PW

��, 8ÆÄ�ÇÈ� `��� QE�# <% ���]� �Kð QE

��8 ±p � �-� ��0]� D:EM �UÒ��� �^ �3

�Y#� CO2� H2OD &o �+�� �Õ� 5 K ��. ³, =�

��# < Hê�]� D:EM, §yD ¸`� �§]� �O��,

=� PW 8 �9 D:E ��< QE� ¢ý� ?-� �� =� �

� Í¢ 8��� CO2� H2O� h�?� �3, CO� H2� ÷D?

M 9�?� D:E ��8 � �� �Õ� 5 K ��.

Fig. 3' 8ÆÄ�ÇÈ#�< ÌÉK ²E# l� D:EM, py�

� �+ä @8�. D:EM,� `��� QE�� =>< íG 7i

� ÷X9� ��W� Êf9üM Z wx]� 8ÆÄ�ÇÈ< ÌÉ

K� ²E9 � 6< �¿�< �W ²E� ÀÁ% �!�. Fig. 3<

(a)� ÌÉD d�?O "� /{# X %! [i8�. [i��� j

K �#8 =>� QE��< ��# < D: ��< �$%]� 1

% D:EM �^ Í¢#� �� py ²ED �+�� �]B, py

²E# <% �^ �3�#� & �ú.Í¢(Corner Recirculation Zone,

8? CRZ)8 ÅW��, �UÒ� lm D:D '^�]� � �� �

� (8 �¿�� �+,� ��. (b)� 8ÆÄ�ÇÈ#�< ÌÉ p

yD 1.2 m/s� e� ÌÉ< 7iD d�ý 6< py�]� (a)� $

)% 5 6 ÌÉ# < �U�]� �¿8 �ó ��]� ¥{�k

CRZ Í¢< *MD fA� +´J�Õ� ¹1ý K ��. ³, D:

EM< �UÒ ��#� øÄ e�?Ot �¿�< ²ED �´�� �

Õ� ����. ÌÉ pyD 2.3 m/s� ÌÉD $)0 q%� (c)< /

{� �3, �^ �Y< CRZ Í¢< *MD ,- +´J�, ET x�

E# yµ� Ä� �UÒ ��< �ú.Í¢(Central Toroidal Recirculation

Table 1. Composition of heavy residual oil

Proximate analysis(%)

Moisture 0.01Volatile matter 79.71

Ash 0.20Fixed carbon 20.08

Ultimate analysis(%)

C 83.03H 9.77N 0.68S 6.27O 0.04

Ash 0.20Moisture 0.01

Gross heating value(kcal/kg) 9628

Table 2. Standard condition for numerical calculations

Fuel feeding rate(T/D) 1200Oxidizer 95% O2 + 5% N2

Oxidizer/Fuel(kg/kg) 1.04Steam/Fuel(kg/kg) 0.31Oxidizer injection velocity(m/s) 20Swirl number(-)* 0.0L/D(-)* 10

*Simulation Parameters.

Fig. 2� Species distribution in the gasifier at the standard condition.

Fig. 3. Velocity vector plots in accordance with SN at the L/D=10.

���� �39� �3� 2001� 6�

Page 4: A Study on the Characteristics of the Heavy Residual Oil ... · *Consulting Division, ATES Ltd. **Ship & Ocean R&D Institute, Daewoo Shipbuilding & Marine Engineering Co., Ltd. (Received

�� � ���� � �� � ��� ��� �� �� �� 349

Zone, 8? CTRZ)< ÅW8 ôO� �Õ� ¹1ý K ��. ���, Ì

É pyD 3.4 m/s� ÌÉD ,- q%� (d)< �¿�� ./�3, D

:EM �^ �3�]� �¿8 fA� ¥{�k �´ ��# ��8

��´ D:EM ,E�# 0f� �1 K �� @]� ��~�. ³

, �§/�¨< D:EM< /{ ,E�D �Ú< ET x�E ¢ý�

?M 6�# CTRZ Í¢8 O�¥o *o ÅWà ��� 2�� ��

~�.

Fig. 4� ÌÉK ²E# l� �ú.Í¢< *M� $) @]�, [

i#� 5 K �#8, ÌÉKD ÷DýKð ¡ 9ó� h�9ü� �

3�]� ��< ��01 �� aM9� I¡01 ��# yµ� Ä

O "� CRZ Í¢< *M� h�?� �3, ET x�E# yµ� Ä

´ D:EM, ��� Êf9ü� ¢ý� ?� CTRZ Í¢< *M�

÷D?� �Õ� ¹=� j K ��.

Fig. 5� ÌÉK ²E# lm D:EM,#� =>� QE�< íG

�y# l� �� py< ²E� ��Ï D:E ��< Xb01 PW

1 COD:< �3y� $) [i8�. (a)-(d)���, QE�� =

>D ���� D:EM �^ õM#� �´�� =� ��# <% P

W~ CO2� H2O r8 �9 D:E ��< QE�� ��?� D:E

M Í¢#�� CO< 3yD &o PW�� @� 5 K �]�, Ì

É pyD ÷DýKð D:E ��# <% CO 3yD PW�M 9�?

� õM Í¢8 D:EM< �^�]� ��o 8¿?� �Õ� 5 K

��. Ë, ÌÉ pyD ô�Kð QE�� =>< íG8 ÷D?M 6�

# E£ ��8 }Æ0]� 4| �´�� �Õ� ¹1ý K ��.

Fig. 6' ÌÉD 2� �¿�� M�]� D:EM< L/D $� ²E

9 � 6< �¿� %! [i8�. I¡01 �¿� 56' L/D $#

«±28 $7 8f� �8� �]�, D:EM �^ Í¢#� 5 6

L/D $D D� �' (a)< /{, ¡ 9ó� h�9ü� CRZ Í¢< *

MD �3�# fA� 9o `� �� 5 K ��. lm�, D:

EM, ¡ 9ó8 : ;]� h�?� ¸` D:E ��8 �´<

K 2� @]� ��~�. ���, L/D< $D ÷DýKð �¿ 56'

�^ õM Í¢#� �3# ¥{¥3�, CRZ Í¢< *MD h�?�

/� �8� �]-� D:EM< �^ �Y#��� ��o ��8

9��´ D:E ��8 ¸`� �´< K �� @]� MX~�.

³, Fig. 7< §y�� ./�3 L/D< $D 41 (a)< /{, (b)�

(c)# $% D:EM, ºX§yÍ¢8 �3# ¥{¥O "� fX0]

� �^#� =o ÅW�� �]-� L/D $D ��Kð QE�� =

>< fX01 �� �> 9ó8 ÷D?� �� @]� ��~�. ³,

L/D $D ÷DýKð D:EM, ºX§yÍ¢8 �^ �Y#� �+

�� �]-� I¡0]� ��8 ��o � �� �Õ� ¹1ý K

��. �>­, R K¥%! [i� 5 6 �3 �Y# �§ Í¢8 �

�� Rf� �8-� ®� ©I9#� K÷M� QE� ÇÈ �?�

]� ̀ �)]�Î �3 �Y< §yD O�¥o ÷D?� ,E�# 0

f� Ä� Rf� wO?� _@8 ��ý @]� ��~�.

Fig. 8< COD: �`* `ç [i� �3, �UÒ� M�]� L/D

$D 4� 6 ºX 3y¥D '^ Í¢ �Y#� �+¾ �3, L/D $D

÷DýKð CO< ºX 3y¥D �+�� O}8 D:EM A�]�

8¿?� �Õ� 5 K ��­, 8 [i��� L/D $D BKð D:E

M �^ ͢#� ��8 ��o �>�� /� �8� �]-� R

K¥%! »�#� L/D $D 10� /{D D:E ��� �]ü�­

¸` ¡ 9ó� �� @]� ��~�.

Fig. 9� VV �� L/D $� �� D:EM,#� ÌÉ pyD �¿

� ÅW# e¥� 7i� ÀÁ?�Ï @]� ÌÉK 0.23� M�]

� $)?� �!�. L/D $D 41 (a)< /{� �3, ÌÉ# <% �

^ �Y#� �UÒ# øÄ e� CTRZ Í¢8 �+¾ @� 5 K �

�. ���, �3 �Y#�� CRZ Í¢ ³ =o �+�� ��­, 8

Fig. 4. Effect of swirl number on recirculation zone length at the L/D=10(CTRZ: Central Toroidal Recirculation Zone, CRZ: CornerRecirculation Zone).

Fig. 5. CO mole fraction contour plots in accordance with SN at thestandard condition.

Fig. 6. Velocity vector plots in terms of L/D effect at the SN=0.00.

Fig. 7. Temperature contour plots in terms of L/D effect at the SN=0.00

HWAHAK KONGHAK Vol. 39, No. 3, June, 2001

Page 5: A Study on the Characteristics of the Heavy Residual Oil ... · *Consulting Division, ATES Ltd. **Ship & Ocean R&D Institute, Daewoo Shipbuilding & Marine Engineering Co., Ltd. (Received

350 ������ �!"#��"$

� (a)< /{ ÌÉD �¿�# e¥� ÍÊ�8 $)0 � @]� �

�~�. ���, L/D $D ÷D (b)� (c)< �¿� 56� VV ./

�3 (a)� Ö' ÌÉ py� D� 6 }Æ0]� CRZ Í¢< *M�

+´C� �3, �UÒ# ÅW�� CTRZ Í¢< *M� fX0]� ô

O� �Õ� j K ��. Ë, L/D $D ��Kð D:EM, �¿� 5

6# ÍÊ� e¥� ÌÉ 7i� �E�� �Õ� j K �]B, ÌÉ

7i� D:EM< á/(D)i �$D «±D �Õ� ¹1ý K ��.

Fig. 10' L/D $D 41 D:EM,#� ÌÉ py ²E# l� �¿

�� �+ä [i8�. L/D $D 101 Fig. 3< �¿�i $)% 5 6

Fig. 9#� �E �� Ö8 ¿� ÌÉ py#� �+�� �ú.Í

¢< *M� Æ8� �8� �Õ� j K �]�, ÌÉ pyD ÷Dý

Kð D:EM, �UÒ# ÅW�´ ET x�E ¢ý� ?� CTRZ

Í¢< *MD }Æ0]� ôO� ¿� /Ê� �+,� �Õ� ¹

1ý K ��. Ë, ÌÉ �¿8 QE�� =>< íG# yµ� Ä� D

:EM, �¿�� F�E?� I¡01 �� py� Êf9ü� ¢ý

� ?� �� @]� ��~�.

Fig. 11#� �+ä D:EM, á/ wÊ< §y `ç� �3, ÌÉ

D d�?O "� (a)< /{ D:EM f�� Ë, �^ �Y#�� á

/ wÊ< §y ^ÐD : �3#, �¿8 ? � � �3� D:EM

?�� Ë, '^ �Y#�� §y ^ÐD �< �mO� /Ê� �8�

��. �>­, ÌÉ py� ÷D9 � 6 (a)-(d)� �� O}#� V

V $)% �3, (a)#� �+GH D:EM f��< §y ^Ð� ÌÉ

KD ÷D?3� fA� h�?� �]B, � �Kð , �� py

� F�E�� �Õ� 5 K ��. Ë, ÌÉKD : �¿�#�< §y

`çD , 4| F�%OB '^�# D�I�Kð ÌÉK ²E# l

� á/ wÊ< §y Æ8D �< �mO� 8f� E¹� ¹1ý K �

�­, 8 Rf' ÌÉD QE�� =>< íG� ÷D9û]�Î D:

EM, �¿�� F�E9ü�­ ô�ì ¢ý� ?� �Õ� ¹19�

Ä� [im ý K ��. Fig. 12#� �+ä COD: `çy ÌÉ py

D d�?O "� (a)� $)% 5 6, ÌÉ pyD ÷DýKð D:E

M f��#� ��o CO 3y `çD F�%OB '^�#�� 3y

Fig. 8. CO contour plots in terms of L/D effect at the SN=0.00.

Fig. 9. Velocity vector plots in terms of L/D effect at the SN=0.23.

Fig. 10. Velocity vector plots in terms of SN at the L/D=4.

Fig. 11. Temperature profiles in terms of SN at the L/D=4.

Fig. 12. CO mole fraction profiles in terms of SN at the L/D=4.

���� �39� �3� 2001� 6�

Page 6: A Study on the Characteristics of the Heavy Residual Oil ... · *Consulting Division, ATES Ltd. **Ship & Ocean R&D Institute, Daewoo Shipbuilding & Marine Engineering Co., Ltd. (Received

�� � ���� � �� � ��� ��� �� �� �� 351

0

s,”

-

i-

n,

-

cks

^ÐD �< 2´O� f�� 5 K ��. ³, D:EM ,�< Ö'

O}#� CO 3y� $)% �3 ÌÉKD �' /{# $% 3yD

&o �+�-� ÌÉKD BKð íG 7i< Êf# <% �� py

D fX0]� ÷D?� �Õ� ¹1ý K ��.

4. �

� =^#�� D:E FGHI9:;< Xf =>�� �� ��

�� ��( )� �� �1 ���� DO� IQ%!w¤½� 0

�?� �§/�¨ D:EM,#� �´�� D:E �� �W� ÀÁ?

�Ï ?¦�. ��, D:EM �±< Ä� ²K1 8ÆÄ�ÇÈ#�<

ÌÉ py� L/D $< ²E# l� %!� �% �± 1ÏJ8 ���

< D:E �� �W# e¥� ÍÊ� �¬% �!�. IQ%! [i,

b� »�?< � 4.5õ< �ó9ó8 ��� D:E ��� �>9ü

�­ 8½0]� 0G 9ó]� ±Q��]B, ÌÉK 0.23 ��#�

ÅW~ �¿�8 D:EM ���# ��� �9üO "�, ,E�#

0f� ÄO "� @]� ���� 0 56� �¦�. ÌÉKD ô

�Kð ET x�E# yµ� Ä� CTRZ Í¢< *M� ÷D?�, D

:EM, ¡ 9ó� h�9ü� ¢ý� ?� CRZ Í¢< *M� �

øO� �Õ� JK� �+,�]B, =>� QE�< íG8 Êf�´

D:EM, �¿8 F�E�]�Î I¡01 �� �> 9ó8 4mO

� /Ê� ¹1ý K ���. �|�, L/D ²E# l� %! [i� �

%, L/D $D ��Kð ���, =>< �� �> 9ó8 =´O�, Ì

É# < ÍÊ�8 fX0]� �E�� ¹1ý K ���. lm�, �

�� D:EM ©I9 D:E ��8 ¸`� �>�� �ó9ó� �

O9ü3� D:EM �3< ,E� 0f� º�E?�, 0 *M<

CTRZ Í¢� ÅW9ü� QE�� =>< íG� ÷X9üM Z%�

� L/D $ L ÌÉK< »G� º0E?� @8 Ä� �� »�< ?

�m� �����.

� �

� =^� QLÏ�� Q? #NO«|�� R&D��#� O�?�

“!"D:E FGHI M�Mc_H(II)” =^< �.]� K ��MN

�. 8# «±Ï ��`O h�CPN�.

����

1. Liebner, W. and Hauser, N.: “Optimizing/Costing Study for a 50

MW IGCC Power Plant Based on the Shell Gasification Proces

EPRI, Gasification Technologies Conference(1996).

2. Lee, S. J., Yun, Y., Yu, J. and Seo, I. J.: HWAHAK KONGHAK, 37,

775(1999).

3. Bird, R. B., Stewart, W. E. and Lightfoot, E. N.: “Transport Phenom

ena,” John Wiley and Sons, New York(1960).

4. Patankar, S. V.: “Numerical Heat Transfer and Fluid Flow,” Hem

sphere publishing, Washington(1980).

5. Smoot, L. D. and Smith, P. J.: “Coal Combustion and Gasificatio

Plenum Press,” New York(1985).

6. Na, H., Lee, J. and Yun, Y.: Energy Engg. J., 8(2), 309(1999).

7. Modak, S. A. and Alexander, A. J.: J. of Fluid Mech., V.55(part2),

193(1972).

8. Gupta, A. K., Lilley, D. G. and Syred, N.: “Swirl Flows,” Abacus Press

(1984).

9. Collodi, G., Allevi, C., Jones, R. M. and Racine, R. F.: “The SAR

LUX IGCC Project,” EPRI Conference(1997).

10. Texaco Gasification Process for Gaseous or Liquid Feedsto

(1993).

HWAHAK KONGHAK Vol. 39, No. 3, June, 2001