a20 ubiquitin ligase–mediated polyubiquitination of rip1...

17
RESEARCH ARTICLE A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 Inhibits Caspase-8 Cleavage and TRAIL-Induced Apoptosis in Glioblastoma Anita C. Bellail 1 , Jeffrey J. Olson 2 , Xiaolu Yang 3 , Zhijian J. Chen 4 , and Chunhai Hao 1 Cancer Research. on December 25, 2019. © 2012 American Association for cancerdiscovery.aacrjournals.org Downloaded from Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Upload: others

Post on 02-Sep-2019

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

ReseaRch aRticle

A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 Inhibits Caspase-8 Cleavage and TRAIL-Induced Apoptosis in GlioblastomaAnita C. Bellail1, Jeffrey J. Olson2, Xiaolu Yang3, Zhijian J. Chen4, and Chunhai Hao1

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 2: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

FEBRUARY 2012  CANCER DISCOVERY  |  OF2

The BATTLE Trial: Personalizing Therapy for Lung Cancer ReseARCh ARTICLe

regulates  these  biochemical  processes  (13).  Ubiquitin  is  co-valently attached to  lysine  residues of  the substrate proteins through the catalytic reactions mediated by the ubiquitin-ac-tivating enzyme (E1), conjugating enzyme (E2), and ligase (E3) and is removed by deubiquitinating enzymes (14). Ubiquitin has 7 lysine (K) residues and an N-terminal methionine (M1), each of which can be linked to the C-terminal glycine residue of another ubiquitin  to  form polyubiquitin chains  (15);  this regulates TNF-α–induced signaling  (13). Upon TNF-α bind-ing,  TNF  receptor  1  (TNFR1)  recruits  receptor-interacting protein 1 (RIP1), cellular inhibitor of apoptosis protein 1 and 2 (cIAP1 and cIAP2), and TNFR-associated factor 2 (TRAF2) for the assembly of TNFR1-associated complex I (16). TRAF2, cIAP1, and cIAP2 are E3 ligases that activate NF-κB through the attachment of polyubiquitin chains to RIP1 (17) and bind-ing  of  the  polyubiquitin  chain  to  IκB  kinase γ  (IKKγ)  (18). TRAF2 and RIP1 then detach from TNFR1 and recruit FADD and caspase-8 for the assembly of the cytoplasmic complex II (19), where the deubiquitinating cylindromatosis removes the polyubiquitin chains  from RIP1  to promote caspase-8 cleav-age for TNF-α–induced apoptosis (20).

In  contrast  to  TNFR1,  DR4  and  DR5  recruit  FADD  and caspase-8  in  the  assembly  of  a  plasma  membrane-bound DISC, where caspase-8 becomes dimerized and cleaved, initi-ating apoptosis (21, 22). Cullin 3 (CUL3), an E3 ligase, adds K48- and K63-linked polyubiquitin chains  to caspase-8 and facilitates  its  dimerization  and  cleavage  in  the  DISC,  where A20  deubiquitinating  enzyme  removes  the  polyubiquitin chains  from  caspase-8  (23).  A20  (TNF-α–induced  protein  3; TNFAIP3)  is well known for  its anti-inflammatory activities (24)  through  its  N-terminal  ovarian  tumor  domain  (OTU), which  acts  as  a  deubiquitinating  enzyme  and  removes  K63-linked  polyubiquitin  chains  from  RIP1,  TRAF6,  and  RIP2, thus  restricting  TNFR1,  Toll-like  receptor,  and  nucleotide-binding  oligomerization  domain-induced  NF-κB  signaling 

The TNF-related apoptosis-inducing ligand (TRAIL) apoptotic pathway has emerged as a therapeutic target for the treatment of cancer. However, clinical

trials have proven that the vast majority of human cancers are resistant to TRAIL apoptotic path-way-targeted therapies. We show that A20-mediated ubiquitination inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma through 2 signaling complexes. A20 is highly expressed in glioblastomas and, together with the death receptor 5 and receptor- interacting protein 1, forms a plasma membrane-bound preligand assembly complex under physiologic conditions. Treatment with TRAIL leads to the recruitment of caspase-8 to the plasma membrane-bound preligand assembly complex for the assembly of a death-inducing signaling complex. In the death-inducing signaling complex, the C-terminal zinc finger (Znf) domain of the A20 ubiquitin ligase mediates receptor-in-teracting protein 1 polyubiquitination through lysine-63-linked polyubiquitin chains, which bind to the caspase-8 protease domain and inhibit caspase-8 dimerization, cleavage, and the initiation of TRAIL-induced apoptosis in glioblastoma-derived cell lines and tumor-initiating cells.

sIGNIFICANCe: These results identify A20 E3 ligase as a therapeutic target whose inhibition can over-come TNF-related apoptosis-inducing ligand resistance in glioblastoma and thus have an impact on ongoing clinical trials of TNF-related apoptosis-inducing ligand-targeted combination cancer thera-pies. Cancer Discovery; 2(2); OF1–OF16. ©2012 AACR.

intRoductionThe  TNF-related  apoptosis-inducing  ligand  (TRAIL)  

(1, 2) executes the innate and adaptive immune responses in the  process  of  tumor  immunosurveillance  (3).  The  antican-cer  activity  of  TRAIL  is  attributable  to  its  ability  to  induce apoptosis  through  the  binding  of  death  receptors  4  and  5 (DR4,  DR5)  and  the  recruitment  of  intracellular  apoptosis-initiating  caspase-8  through  Fas-associated  death  domain (FADD) for the assembly of a death-inducing signaling com-plex  (DISC)  (4).  Recombinant  TRAIL  as  well  as  agonistic DR4  and  DR5  antibodies  targeting  this  apoptotic  pathway have been generated as potential therapies for the treatment of  cancer  (5).  In  clinical  trials,  however,  investigators  have proven that cancers are resistant to TRAIL pathway-targeted therapies  (6–8),  thus  suggesting  that  cancers  escape  from TRAIL-mediated  immunosurveillance  and  are  resistant  to TRAIL-targeted therapies.

The  dimerization  and  cleavage  of  caspase-8  in  the  DISC are the critical upstream events in TNF family ligand-induced apoptosis (9–12), and ubiquitination of proteins in the DISC 

abstRact

Authors’ Affiliations: 1Department of Pathology and Laboratory Medicine and Winship Cancer Institute, and 2Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia; 3Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; 4Department of Molecular Biology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas Note: Supplementary data for this article are available at Cancer Discovery Online (http://www.cancerdiscovery.aacrjournals.org).Corresponding Author: Chunhai Hao, Department of Pathology and Laboratory Medicine, 1365-C Clifton Road NE, Atlanta, GA 30322. Phone: 404-778-4776; Fax: 404-778-5550; E-mail: [email protected]: 10.1158/2159-8290.CD-11-0172 ©2012 American Association for Cancer Research.

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 3: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

Bellail et al.ReseARCh ARTICLe

www.aacrjournals.orgOF3 |  CANCER DISCOVERY  FEBRUARY 2012 

from  glioblastoma  cell  lines  (Supplementary  Fig.  S2B). TRAIL stimulated caspase-8 ubiquitination in H460, consis-tent with a previous report (23), but not in glioblastoma cell lines (Supplementary Fig. S2C).

To  our  surprise,  A20,  RIP1,  and  TRAF2  were  seen  in  the unstimulated controls in the resistant cell lines whereas only TRAF2 was seen in the sensitive cell lines (Fig. 1B), suggesting that these proteins might interact with DR5 and form a com-plex before treatment with TRAIL. To test this, we performed size exclusion analysis and immunoblotting (19) and identi-fied DR5, A20, RIP1, and TRAF2 in the approximately 669-kDa fractions from resistant lines but only DR5 and TRAF2 in  sensitive  lines  (Fig.  1C;  Supplementary  Fig.  S3A).  These proteins remained in the high-molecular-weight fractions in the  cells  after  TRAIL  treatment.  In  contrast,  caspase-8  iso-forms  were  eluted  in  the  fractions  corresponding  to  their monomeric molecular weights before treatment with TRAIL but quickly shifted to high-molecular-weight fractions under treatment  with  TRAIL.  These  results  suggest  the  presence of  a  DR5-associated  signaling  complex  that  we  named  the preligand  assembly  complex  under  physiologic  conditions. To confirm this, we isolated the preligand assembly complex from  the  pooled  high-  and  low-molecular-weight  fractions through  immunoprecipitation  using  Flag-TRAIL  and  Flag antibody and detected DR5, A20 and RIP1  in the high- but not the low-molecular-weight fractions (Fig. 1D).

Because DR5 is a type I  transmembrane protein, we con-ducted  subcellular  fractionation  to  determine  whether DR5-associated  preligand  assembly  complex  is  plasma membrane-bound. Immunoblotting detected DR5 mainly in the membrane fractions and RIP1, A20, and FADD in both the  membrane  and  cytosolic  fractions  of  TRAIL-resistant cells  (Fig.  1E).  The  DR5-associated  complex  was  then  iso-lated  through  immunoprecipitation  via  the  use  of  a  DR5 antibody.  Immunoblotting  identified  DR5,  A20,  RIP1,  and TRAF2  in  the  membrane  but  not  cytosolic  fractions  in  the resistant but only DR5 and TRAF2 in the sensitive cells (Fig. 1F;  Supplementary  Fig.  S3B).  These  data  indicate  that  al-though RIP1, A20, and TRAF2 are present in the membrane and  cytosolic  fractions,  the  preligand  assembly  complex  is formed  as  a  membrane  bound  complex  composed  of  DR5, A20,  RIP1,  and  TRAF2  in  resistant  cells  but  only  DR5  and TRAF2  in  sensitive cells. TRAIL stimulates  the  recruitment of  FADD  and  caspase-8  to  the  plasma  membrane-bound preligand  assembly  complex  for  the  assembly  of  a  plasma membrane-bound DISC.

The A20 e3 Ligase Znf Domain Inhibits Caspase-8 Cleavage in the DIsC

To  determine  whether  A20,  TRAF2,  and  RIP1  inhibit caspase-8 cleavage, we conducted knockdown experiments by transfecting TRAIL-resistant cell lines with siRNA spe-cific  to  A20,  RIP1,  and  TRAF2.  Identical  results  were  ob-tained with the use of 2 different siRNA sequences specific to  each  gene,  indicating  no  off-target  effects  of  the  se-quences;  thus,  the  data  were  presented  with  one  of  the siRNA  sequences  targeting  each  gene.  The  siRNA-trans-fected  LN443  cells  were  treated  with  TRAIL.  Significant apoptosis  was  observed  in  the  cells  transfected  with  A20 

(25–27).  A20  also  contains  a  C-terminal  Zinc  finger  (Znf) domain of an E3 ligase (28), but the function of the Znf E3 ligase has yet to be established.

Here,  we  show  that  the  Znf  domain  of  the  A20  E3  ligase mediates  RIP1  K63-linked  polyubiquitination;  this  polyu-biquitin chain binds  to  the caspase-8 protease p18 domain, which  blocks  caspase-8  dimerization  and  cleavage  and  thus inhibits  TRAIL-induced  apoptosis  in  human  glioblastoma. Glioblastoma is the most common brain cancer and has no curative  treatment.  Recent  studies  have  identified  tumor-initiating cells (29) and shown that the tumor-initiating cells retain the original tumor genomic features (30), possess self-renewal  and  tumorigenic  capacity  (31),  and  are  responsible for  the  tumor  resistance  to  treatments  (32).  In  this  study, we further establish that A20 E3 ligase-mediated RIP1 ubiq-uitination  inhibits  caspase-8-initiated  and  TRAIL-induced apoptosis in the tumor-initiating cells isolated from glioblas-tomas surgically removed from patients.

ResultsPreligand Assembly Complex Is Formed under Physiologic Conditions

In  exploring  the  role  of  the  ubiquitin  enzymes  A20, cIAP1/2,  CUL3,  and  TRAF2  in  glioblastoma,  we  first  ana-lyzed the expression of these proteins in glioblastoma tissues. Immunoblotting  revealed  that  A20  was  highly  expressed  in the  tumors  as  compared  with  normal  brain  tissue,  whereas CUL3,  cIAP2,  and  TRAF2  were  expressed  consistently  in the  normal  brain  and  tumor  tissues  and  cIAP1  was  seen  in some  tumors  (Fig.  1A).  To  examine  whether  these  enzymes regulate  TRAIL  signaling  in  glioblastoma  cells,  we  analyzed their  expression  in  TRAIL-sensitive  (LN18,  LN71,  T98G, U343MG)  and  resistant  glioblastoma  cell  lines  (LN443, U87MG, U118MG, U138MG). The TRAIL sensitivity of these cell lines was defined in our earlier study (33) and confirmed by  colony  formation  assay  (Supplementary  Fig.  S1A).  A20 was highly expressed in the resistant cell lines but barely de-tected in the sensitive cell lines and normal human astrocytes (34); in contrast, CUL3, cIAP1, cIAP2, RIP1, and TRAF2 were consistently expressed in the resistant and sensitive cell lines (Supplementary Fig. S1B).

The  DISC  was  then  isolated  from  each  cell  line  through immunoprecipitation after the cells were treated with mixed Flag-TRAIL and Flag antibody. For the unstimulated control, the  cells  were  lysed  first  and  treated  with  Flag-TRAIL  and Flag  antibody.  Taking  this  approach,  we  have  shown  that DR5 but not DR4 is the functional receptor that is expressed and  interacts  with  Flag-TRAIL  in  glioblastoma  cells  (33). Immunoblotting  detected  DR5,  A20,  TRAF2,  and  RIP1  in the DISC in the resistant lines but only DR5 and TRAF2 in the sensitive lines (Fig. 1B; Supplementary Fig. S2A). FADD and  caspase-8  were  recruited  to  the  DISC  in  both  resistant and sensitive cell lines; however, caspase-8 was cleaved only in the DISC isolated from the sensitive cells. In contrast, cIAP1 was not seen in the DISC from any of these cell lines, whereas cIAP2  was  detected  only  in  the  DISC  of  sensitive  cell  lines. CUL3 was detected  in the DISC of H460, a TRAIL-sensitive lung cancer line as reported (23), but not in the DISC isolated 

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 4: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

A20 E3 Ligase Inhibits TRAIL-Induced Apoptosis ReseARCh ARTICLe

FEBRUARY 2012  CANCER DISCOVERY  |  OF4

A B

C

F

D

eFigure 1. TRAIL-induced formation from the preligand assembly complex to the DISC. A, normal brain and glioblastoma tissues were examined by immunoblotting using antibodies as indicated (left). The molecular weights are indicated to the right of the panels. Actin was used as a loading control. B, DR5-associated preligand assembly complex and DISC were isolated from LN443 and LN71 cells treated with mixed Flag-TRAIL and Flag antibody for 15 minutes and analyzed by immunoblotting with cell lysates as controls. C, size exclusion fractions from LN443 and LN71 cells untreated or treated with 100 ng/mL TRAIL for 15 min were analyzed by immunoblotting. The elution position of molecular weight markers in kDa are indicated at the top of the panels. D, the preligand assembly complex was isolated from the pooled high-molecular-weight fraction 42–50 and low-molecular-weight fraction 62–70 of LN443 cells and examined by immunoblotting. The input was included, showing the protein loading. e, subcellular cytosol (Cytos), membrane (Memb), and nuclear (Nucl) fractions from LN443 were examined by immunoblotting with antibodies to glyceraldehyde-3-phosphate dehydrogenase (GAPDH), c-Jun, and epidermal growth factor receptor (EGFR) as loading controls, respectively, for cytosol, nuclear, and membrane fraction. F, subcellular cytosol and membrane fractions from LN443 and LN71 were subjected to immunoprecipitation using a DR5 antibody with IgG included as a negative control and examined by immunoblotting for the presence of the proteins as indicated (left).

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 5: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

Bellail et al.ReseARCh ARTICLe

www.aacrjournals.orgOF5 |  CANCER DISCOVERY  FEBRUARY 2012 

apoptosis.  Furthermore,  A20  siRNA  transfection  did  not  affect  the  sensitivity  of  LN443  cells  to  TNF-α,  Fas  ligand (FasL), or cisplatin (Supplementary Fig. S4B).

Immunoblotting  confirmed  A20  and  TRAF2  knockdown in  the  transfectants  and  revealed  the  cleavage  of  caspase-8 

and  RIP1  but  not  TRAF2  siRNA,  as  shown  by  cell  death (Fig.  2A),  caspase-8  enzymatic  activity  (Fig.  2B),  phase contrast  microscopy  (Fig.  2C),  and  Annexin  V  assay (Supplementary  Fig.  S4A).  These  assays  showed  that  the transfection  of  A20  or  RIP1  siRNA  alone  did  not  cause 

Figure 2. A20 inhibits caspase-8 cleavage and TRAIL-induced apoptosis. A, TRAIL-resistant LN443 cells were transfected with A20, TRAF2, and scrambled siRNA; treated with TRAIL for 24 hours; and examined for cell death (points: means; bars: SE; n = 6; ***P < 0.001). B, the transfected cells were treated with 100 ng/mL TRAIL and examined by caspase-8 (Casp-8) enzymatic activity assay (points: means; bars: SE; n = 6; ***P 0.001; NS, no significance). C, apoptotic cell death was observed under phase contrast microscopy in A20 siRNA but not scrambled and TRAF2 siRNA-transfected cells. D, LN443 cells were transfected with siRNA, treated with 100 ng/mL TRAIL, and examined by immunoblotting for the knockdown of the proteins and the cleavage of caspase-8 and RIP1. Nontransfected TRAIL-sensitive U343MG cells were included as the control for caspase-8 and RIP1 cleavage. e, the DISC was isolated from the LN443 cells transfected with siRNA and, together with the cell lysates, examined by immunoblotting for caspase-8 cleavage. F, LN443 cells transfected with A20 and RIP1 siRNA were treated or untreated with 100 ng/mL TRAIL in the absence or presence of the caspase-8 inhibitor z-IEDT and examined by immunoblotting for caspase-8 cleavage.

A B

C D

e

F

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 6: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

A20 E3 Ligase Inhibits TRAIL-Induced Apoptosis ReseARCh ARTICLe

FEBRUARY 2012  CANCER DISCOVERY  |  OF6

domains  inhibit  caspase-8  cleavage,  we  generated  inactive OTU (C103A) and Znf4 (C624A, C627A) A20 mutants (mt; Supplementary Fig. S5D). A20 wild-type and inactive OTU and  Znf4  mt  plasmids  were  introduced  through  lentiviral transduction  into  LN71,  an  A20-deficient  TRAIL-sensitive cell  line.  Stable  clones  were  established,  the  expression  of A20  wild-type  (wt)  and  mt  proteins  was  verified  by  im-munoblotting,  and  the  stable  clones  were  selected  for expressing wt and mt A20 proteins at levels similar to the en-dogenous A20 in the resistant LN443 cells (Supplementary Fig.  S6A).  The  clones  were  treated  with  TRAIL  and  cell death  (Fig.  3A),  caspase-8  enzymatic  activity  (Fig.  3B),  and annexin V staining (Supplementary Fig. S6B) demonstrated that  the  expression  of  A20  wt  and  OTU  but  not  Znf4  mt inhibited TRAIL-induced apoptosis. Expression of A20 wt, OTU, or Znf4 mt alone did not cause apoptotic cell death (Supplementary Fig. S6C). The preligand assembly complex and DISC were isolated from the clones, and A20 wt and mt proteins were observed in the complexes. RIP1 was enriched in  the  TRAIL-resistant  A20  wt-  and  OTU  mt-expressing clones more than  in the TRAIL-sensitive empty vector and Znf mt-expressing clones (Fig. 3C). The clones were treated 

and RIP1  in  the A20 siRNA-transfected but not  the TRAF2 siRNA-transfected LN443 cells (Fig. 2D). Knockdown of A20 or RIP1 but not TRAF2 restored caspase-8 cleavage in other resistant cell  lines (Supplementary Fig. S5A). The DISC was isolated and immunoblotting identified caspase-8 cleavage in the DISC in the A20 and RIP1 siRNA transfected LN443 cells (Fig.  2E).  The  caspase-8  cleavage  was  abolished  by  z-IEDT, a  caspase-8  inhibitor  (Fig.  2F).  To  determine  the  long-term effects  of  A20  knockdown,  we  introduced  a  short  hairpin RNA (shRNA) specific to A20 through lentiviral transduction into LN443 cells. The A20 shRNA transduction alone did not inhibit the colony formation of the cells (Supplementary Fig. S5B). Noncleaved RIP1 was detected in the preligand assem-bly  complex,  whereas  neither  noncleaved  nor  cleaved  RIP1 were  observed  in  the  DISC  in  the  A20  shRNA-transduced cells  (Supplementary  Fig.  S5C),  suggesting  that  RIP1  is  de-tached from the DISC in the absence of A20. These results in-dicate that both A20 and RIP1 are required for the inhibition of caspase-8 cleavage in the DISC.

A20  has  an  N-terminal  OTU  domain  that  acts  as  a  de-ubiquitinating  enzyme  and  a  C-terminal  Znf  domain  that acts  as  an  E3  ligase  (28).  To  test  whether  the  OTU  or  Znf 

A B

C D

Figure 3. A20 E3 ligase inhibits caspase-8 cleavage. A, LN71 stable clones expressing A20 wt, OTU, and Znf mt and empty vector were treated with 100 ng/mL TRAIL for 24 hours and examined for cell death (points: means; bars: SE; n = 6; ***P 0.001). B, LN71 stable clones were treated with 100 ng/mL TRAIL in the absence or presence of z-IEDT for caspase-8 (Casp-8) activity (points: means; bars: SE; n = 6; ***P 0.001). C, the preligand assembly complex (PLAC) and DISC were isolated from LN71 stable clones through immunoprecipitation using Flag-TRAIL and Flag antibody and examined by immunoblotting for the presence of the proteins as indicated (left). D, LN71 stable clones were treated with TRAIL for the times indicated (top) and examined by immunoblotting for A20 expression and cleavage of RIP1.

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 7: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

Bellail et al.ReseARCh ARTICLe

www.aacrjournals.orgOF7 |  CANCER DISCOVERY  FEBRUARY 2012 

compared  with  the  preligand  assembly  complex  (Fig.  4D), suggesting that TRAIL treatment enhances RIP1 polyubiqui-tination in the DISC. To verify this, we carried out a double  immunoprecipitation and  isolated RIP1  from the preligand assembly complex and DISC by using a RIP1 antibody. Again, ubiquitin-conjugated  RIP1  was  detected  more  strongly  in the DISC than in the preligand assembly complex (Fig. 4E). Furthermore,  immunoblotting  using  an  antibody  specific to the K63-linked polyubiquitin chain identified more poly-ubiquitin  chain-conjugated  RIP1  in  the  DISC  than  in  the preligand  assembly  complex  (Fig.  4F).  To  identify  the  A20 domains  responsible  for  RIP1  K63-linked  polyubiquitin,  we isolated the preligand assembly complex and DISC from A20 wt-,  OTU  mt-,  and  Znf4  mt-expressing  clones.  K63-linked polyubiquitin  chain-conjugated  RIP1  was  identified  in  the DISC  of  the  A20  wt  and  OTU  mt  but  not  the  Znf4  mt  ex-pressing  clones  (Fig.  4G).  These  data  suggest  that  TRAIL stimulates  A20  Znf  domain  E3  ligase-mediated  RIP1  ubiq-uitination through K63-linked polyubiquitin chains in glio-blastoma cells.

K63-Linked Polyubiquitin Chain Inhibits Caspase-8 Dimerization and Cleavage

We  then  examined  whether  ubiquitinated  RIP1  binds to  caspase-8  in  resistant  cells.  Caspase-8  was  isolated  from untreated  or  TRAIL-treated  LN443  cells  with  a  caspase-8 antibody  and  greater  molecular  weight  RIP1  species  coim-munoprecipitated with caspase-8 in TRAIL-treated cells (Fig. 5A).  The  cells  were  then  subjected  to  subcellular  fraction-ation; caspase-8 was isolated from the membrane and cytosol fractions and immunoblotting detected enrichment of poly-ubiquitin species in the membrane fraction (Supplementary Fig. S8A). These data suggest that TRAIL stimulates the  in-teraction of ubiquitinated RIP1 and caspase-8.

Caspase-8 consists of 2 death effector domains and a pro-tease  domain  composed  of  a  p18  and  p12  subunit.  To  de-termine  whether  ubiquitinated  RIP1  binds  to  the  caspase-8 protease  domain  and  inhibits  its  cleavage,  we  performed  a ubiquitin-binding assay using Fv-caspase-8 (35), in which the death effector domains were replaced with Fv, a derivative of the FK506 binding protein (Supplementary Fig. S8B). LN443 cells  were  subjected  to  subcellular  fractionation  after  treat-ment with TRAIL. RIP1 was isolated from the cytosolic and membrane  fractions  and  then  incubated  with  recombinant Fv-caspase-8.  Immunoblotting  identified  the  binding  of  Fv-caspase-8 to the K63-linked polyubiquitin chain-conjugated RIP1 in the membrane fractions (Fig. 5B).

To  further  define  caspase-8  as  an  ubiquitin  binding  pro-tein,  we  carried  out  a  series  of  caspase-8  pull-down  assays. Fv-caspase-8 was bound to protein G-beads through the  in-cubation  of  Fv-caspase-8,  caspase-8  antibody,  and  protein G-beads. The Fv-caspase-8-bound beads were incubated with recombinant monoubiquitin, M1-linked linear, and K48- and K63-linked  polyubiquitin  chains.  Unbound  ubiquitin  pro-teins were washed off the beads and bound ubiquitin proteins were eluted. Fv-caspase-8 pulled-down K63-linked polyubiq-uitin chains (Fig. 5C). The experiment was repeated with the Fv-caspase-8  p18  catalytic  site  mt  (35,  36);  the  results  show that  the  caspase-8  p18  catalytic  site  is  not  required  for  the 

with  TRAIL  and  RIP1  cleavage  was  detected  in  the  empty vector and Znf mt but not the A20 wt- or OTU mt-express-ing clones (Fig. 3D). Together, these gain-of-function stud-ies suggest that Znf4 is responsible for caspase-8 inhibition in the DISC.

A20 e3 Ligase Mediates RIP1 K63-Linked Polyubiquitination in the DIsC

The  finding  that  both  A20  Znf4  and  RIP1  are  required for  caspase-8  inhibition  suggests  that  A20  E3  ligase  may inhibit  caspase-8  through  RIP1  ubiquitination.  An  in vitro ubiquitination  assay  has  shown  that  A20  E3  ligase  adds  a K48-linked  polyubiquitin  chain  to  RIP1  (28);  however,  an  in vivo assay has revealed that RIP1 is ubiquitinated through a  K63-linked  polyubiquitin  chain  (17).  To  evaluate  the  role of  the A20 Znf domain, we  repeated  the  in vitro ubiquitina-tion assay using the A20 OTU mt containing the Znf domain in  the  presence  of  the  K48-linked  polyubiquitin  chain-spe-cific E2 enzyme UBCH5A and the K63-linked polyubiquitin chain-specific  E2  enzyme  UBC13  (28).  Flag-RIP1  and  His-Myc-A20 OTU mt proteins were added to an  in vitro ubiqui-tination  assay  consisting  of  ATP,  biotin-ubiquitin,  E1,  and UBCH5A or UBC13 (Supplementary Fig. S7A).

After the reaction, proteins were separated and immunob-lotted  for  avidin-bound  biotin-polyubiquitin  chains  in  the presence  of  UBCH5A  or  UBC13  (Fig.  4A).  To  confirm  this  in vivo, HEK293T cells were co-transfected with His-Myc-A20 OTU mt, Flag-RIP1, and HA-UB mts that contain only one ly-sine at K48 or K63 or have a single point mutation of R48 or R63 (Supplementary Fig. S7B; ref. 17). The transfected cells were lysed in 1% SDS denaturing buffer to dissociate proteins and  then  diluted  10  times  in  non–SDS-containing  buffer. Flag-RIP1 was isolated through immunoprecipitation by the Flag antibody. Immunoblotting using the HA antibody iden-tified  K48-  and  K63-linked  polyubiquitin  chain-conjugated Flag-RIP1 (Fig. 4B). These assays suggest that the Znf domain can mediate RIP1 ubiquitination through either the K48- or K63-linked polyubiquitin chain.

To  determine  whether  RIP1  is  ubiquitinated  in  glioblas-toma  cells,  we  treated  glioblastoma  cell  lines  with  MG132, a  26S  proteasome  inhibitor.  The  K48-linked  polyubiquitin chain  targets  substrates  to  the  26S  proteasome  for  degra-dation;  however,  MG132  treatment  did  not  affect  the  lev-els  of  RIP1  protein  in  the  absence  or  presence  of  TRAIL (Supplementary Fig. S7C), suggesting that it is less likely that RIP1  is  ubiquitinated  by  a  K48-linked  polyubiquitin  chain. To examine this further, U87MG cells were transfected with HA-UB  mts,  treated  with  TRAIL  and  lysed  in  a  denaturing buffer.  RIP1  was  isolated  through  immunoprecipitation. Immunoblotting using an HA antibody detected more polyu-biquitin chain-conjugated RIP1 in the K63 and R48 mt than in the K48 and R63 ubiquitin mt transfected cells (Fig. 4C), suggesting  that  RIP1  is  ubiquitinated  by  K63-linked  polyu-biquitin chains in glioblastoma cells.

To  determine  the  site  of  RIP1  ubiquitination,  the  preli-gand  assembly  complex  and  DISC  were  isolated  from TRAIL-resistant  cells.  Immunoblotting  identified  DR5  and RIP1  in  the  preligand  assembly  complex  and  DISC.  High-molecular-weight  RIP1  species  were  enriched  in  the  DISC 

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 8: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

A20 E3 Ligase Inhibits TRAIL-Induced Apoptosis ReseARCh ARTICLe

FEBRUARY 2012  CANCER DISCOVERY  |  OF8

A B

C D e

F G

Figure 4. A20 E3 ligase mediates RIP1 K63-linked polyubiquitination. A, in vitro ubiquitination was performed in a reaction consisting of the components as indicated (top) with ubiquitinated RIP1 (RIP1-Ub) detected by an avidin antibody on immunoblotting. B, in vivo ubiquitination was performed by transfecting HEK293T cells with the vectors encoding Flag-RIP1, A20, and HA-UB mts and detecting RIP1-Ub by immunoblotting using Myc and HA antibody. C, in vivo ubiquitination in U87MG cells were conducted by transfecting the cells with the vectors encoding HA-UB and mts, treating the transfectants with 100 ng/mL TRAIL for 1.5 hours, isolating RIP1 under denaturing condition, and detecting RIP1-Ub by immunoblotting using antibodies to HA and RIP1. The number represents the quantification of the density. D, the preligand assembly complex (PLAC) and DISC were isolated from LN443 cells through immunoprecipitation by the use of Flag-TRAIL and Flag antibody. RIP1-Ub was detected by overexposure of immunoblotting using a RIP1 antibody. e, RIP1 was purified through immunoprecipitation under denaturing conditions from the PLAC and DISC as in (D) and RIP1-Ub was detected by immunoblotting by the use of an antibody for ubiquitin. F, RIP1 isolated from LN443 cells as in (E) was examined by immunoblotting by the use of antibodies specific to K63-linked polyubiquitin chain and RIP1. G, the PLAC and DISC were isolated from LN71 clones expressing A20 wt, OTU, and Znf mt through immunoprecipitation as in (F) and examined by immunoblotting with antibodies specific to K63-linked polyubiquitin chain and RIP1.

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 9: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

Bellail et al.ReseARCh ARTICLe

www.aacrjournals.orgOF9 |  CANCER DISCOVERY  FEBRUARY 2012 

A B

C D

e

Figure 5. K63-linked ubiquitin chain binds to caspase-8 and inhibits its cleavage. A, caspase-8 (Casp-8) was purified by the use of its antibody through immunoprecipitation from LN443 cells after treatment with 100 ng/mL TRAIL and examined by immunoblotting for ubiquitin-conjugated RIP1. B, in vivo Fv-caspase-8 binding assay was carried out in LN443 cells. The cell line was either treated or untreated with 100 ng/mL TRAIL for the times indicated (top) and then subjected to subcellular fractionation. RIP1 was isolated through immunoprecipitation and caspase-8 binding to the RIP1 K63-linked polyubiquitin chain was detected by immunoblotting. C, in vitro caspase-8 binding to ubiquitin was examined by Fv-caspase-8 (left) and caspase-8 protease p18 subunit pull down (right), in which Fv-caspase-8 and p18 subunit bound beads were incubated with the monoubiquitin, K63, K48-linked, and linear polyubiquitin protein. Unbound (U) were washed off the beads and bound (B) proteins were eluted and identified by immunoblotting. *Indicates a nonspecific (NS) band. D, nickel column pull-down assay was carried out by incubating a His-K63 polyubiquitin chain-labeled nickel column and Fv-caspase-8 in various concentrations as indicated (top). The column was washed and the caspase-8 and His-K63 polyubiquitin chain were eluted and examined by immunoblotting. e, in vitro caspase-8 cleavage assay was performed by incubating monoubiquitin (mono-Ub) and polyubiquitin (pUb) chains with Fv-caspase-8 for 2 hours, then adding Fv ligand AP20187 and detecting caspase-8 cleavage in the reactions by immunoblotting.

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 10: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

A20 E3 Ligase Inhibits TRAIL-Induced Apoptosis ReseARCh ARTICLe

FEBRUARY 2012  CANCER DISCOVERY  |  OF10

assembly complex is formed in glioblastoma tumor tissues and  tumor-initiating cells.

To  further evaluate RIP1 ubiquitination  in CD133+  cells, we  propagated  the  cells  in  neurosphere  culture  conditions, which  maintains  the  original  cancer  genomic  features  (30). The  preligand  assembly  complex  and  DISC  were  isolated from  the  CD133+  cells  and  DR5,  RIP1,  and  A20  were  de-tected  in  both  the  preligand  assembly  complex  and  DISC whereas  FADD  and  caspase-8  were  recruited  to  the  DISC, where  caspase-8  was  not  cleaved  (Fig.  6F).  K63-linked  poly-ubiquitin  chain-conjugated  RIP1  was  also  identified  in  the DISC  but  not  the  preligand  assembly  complex  (Fig.  6G). Taken  together,  these  results  validate  the  preligand  assem-bly  complex  and  DISC  models,  as  established  from  studies of TRAIL-resistant cell lines, in glioblastoma tissues and de-rived tumor-initiating cells and suggest that glioblastomas in  patients are most likely resistant to TRAIL treatment.

The A20 e3 Ligase Inhibits TRAIL-Induced Apoptosis in Tumor-Initiating Cells

To  confirm  that  the  CD133+  population  represents  tumor-initiating  cells  (32),  we  established  the  self-renewal ability  by  neurosphere  formation,  the  differentiation   ability by  cell  differentiation  assay,  and  the  tumorigenic   ability by  mouse  brain  xenograft  formation  (Supplementary Fig.  S10A–C).  Once  identified  as  the  tumor-initiating  cells, CD133+  cells  were  treated  with  100  ng/mL  TRAIL  for  24 hours.  Approximately  20%  cell  death  was  detected  in  EH 091112  and  100113  cells,  but  no  cell  death  was  seen  in EH 091217 and 091106 cells (Fig. 7A).

Next,  we  transfected  A20  siRNA  in  CD133+  cells  and  confirmed A20 knockdown by  immunoblotting  (Fig. 7B). This  showed  that  transfection  of  the  A20  siRNA  alone had  no  significant  effects  on  cell  survival  (Fig.  7A)  and self- renewal  (Supplementary  Fig.  S11A).  The  A20  siRNA- transfected  CD133+  cells  were  treated  with  100  ng/mL TRAIL,  and  TRAIL-induced  apoptosis  was  observed, marked by a significant increase in the enzymatic activities of  caspase-8  (Fig.  7C)  and  caspase-3/-7  (Supplementary Fig.  S11B).  To  confirm  that  the  Znf  domain  of  E3  li-gase  inhibits  caspase-8-initiated  apoptosis,  we  examined the  negative  dominant  effect  of  the  inactive  OTU  and Znf4  mts  on  TRAIL-induced  apoptosis  in  CD133+  cells. A20  wt,  OTU  mt,  and  Znf4  mt  were  introduced  into CD133+  cells  through  lentiviral  transduction.  Expression of  A20  Znf4  mt  but  not  A20  wt  or  OTU  mt  enhanced TRAIL-induced apoptosis, as shown by cell death and cas-pase activity (Fig. 7D). Together, these results suggest that the  Znf  E3  ligase  is  responsible  for  caspase-8  inhibition and  TRAIL  resistance  in  the  tumor-initiating  cells  of  hu-man glioblastomas.

discussionRecent  advances  have  generated  novel  cancer  therapeu-

tics  targeting  the  TRAIL  apoptotic  pathway;  however,  the results of clinical trials have suggested that cancers are resis-tant  to  these  treatments.  The  results  presented  here  reveal a  molecular  mechanism  by  which  A20  E3  ligase-mediated 

interaction  of  caspase-8  and  K63-linked  polyubiqui-tin  chain  (Supplementary  Fig.  S8C).  To  confirm  this,  we used  a  recombinant  caspase-8  protease  p18  subunit  in  a pull-down  assay.  The  protease  p18  subunit  was  bound  to protein  G-beads  with  a  caspase-8  antibody  and  caspase-8 p18-labeled beads were incubated with monoubiquitin and polyubiquitin chains. The pull-down assay showed that the protease  p18  subunit-labeled  beads  mainly  pulled  down K63-linked  polyubiquitin  chains.  To  determine  whether the  K63-linked  polyubiquitin  chain  directly  binds  to  Fv-caspase-8,  we  generated  a  nickel  column  bound  with  His-tagged  K63-linked  polyubiquitin  chains.  Fv-caspase-8  was added  to  the  His-K63-linked  polyubiquitin  chain-labeled nickel column and the nickel column pull-down assay iden-tified  the  binding  of  Fv-caspase-8  to  the  His-K63-linked polyubiquitin chains (Fig. 5D).

To define the role of the K63-linked polyubiquitin chain in  caspase-8  dimerization  and  cleavage,  we  used  an  in vi-tro   Fv-caspase-8  dimerization  and  cleavage  assay  (35)  in which  Fv-caspase-8  is  dimerized  and  cleaved  by  adding  a synthetic  Fv  ligand,  AP20187  (Supplementary  Fig.  S8D). Monoubiquitin and polyubiquitin chains were added to the Fv-caspase-8 cleavage assay. After the reaction, the proteins were separated and examined by immunoblotting with the use of caspase-8 and ubiquitin antibody. The results showed that the cleavage of Fv-caspase-8 in the presence of AP20187 was significantly inhibited by the K63-linked polyubiquitin chains  and  slightly  inhibited  by  the  linear  polyubiquitin chain  (Fig.  5E,  Supplementary  Fig.  S8E).  Taken  together, these  results  suggest  that binding of K63-linked polyubiq-uitin  chain  to  the  caspase-8  protease  domain  inhibits  its  dimerization and cleavage.

Preligand Assembly Complex and DIsC Are Present in Glioblastoma Tissues and Tumor-Initiating Cells

To validate whether A20-mediated ubiquitination of RIP1 occurs  in vivo,  we  examined  human  glioblastoma  tumor tissues  surgically  removed  from  patients  (Supplementary Fig.  S9A)  and  glioblastoma  tumor-initiating  cells  en-riched  by  CD133  sorting  as  previously  reported  (29,  32) (Supplementary  Fig.  S9B).  The  CD133+  cells  were  used soon  after  isolation  to  avoid  prolonged  culturing  effects. Immunoblotting showed that A20 and RIP1 were expressed in  the  CD133+  cells  at  levels  similar  to  those  seen  in  the matched  parental  tissues  (Supplementary  Fig.  S9C),  as  re-cently  reported  (37).  A  size-exclusion  assay  detected  DR5, RIP1,  A20,  and  TRAF2  in  the  high-molecular-weight  frac-tions  of  the  tissues  (Fig.  6A)  and  matched  CD133+  cells (Fig. 6B).

Subcellular  fractionation  further  revealed  DR5,  RIP1, A20, and TRAF2 enrichment in the membrane fractions of the  tissues  (Fig.  6C)  and  matched  CD133+  cells  (Fig.  6D). To further confirm this in the tumor initiating cells, we iso-lated the preligand assembly complex from the pooled high- and  low-molecular-weight  fractions  of  the  CD133+  cells through  immunoprecipitation  using  Flag-TRAIL  and  Flag antibody  and  detected  A20  and  RIP1  in  the  high-  but  not the  low-molecular-weight  fractions  (Fig.  6E).  These  results suggest that a membrane-bound DR5-associated preligand 

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 11: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

Bellail et al.ReseARCh ARTICLe

www.aacrjournals.orgOF11 |  CANCER DISCOVERY  FEBRUARY 2012 

Figure 6. The preligand assembly complex and DISC are identified in glioblastomas. A–D, glioblastoma tumor tissues and derived CD133+ cells (EH 091112) were subjected to size exclusion assay (A, B) and subcellular fractionation (C, D) and then examined by immunoblotting for the presence of the proteins as indicated (left). e, the preligand assembly complex was isolated with the use of Flag-TRAIL from the pooled high-molecular-weight fraction 42–50 and low-molecular-weight fraction 62–70 of CD133+ cells (EH 091112) and examined by immunoblotting. The input was included to show the protein loading. F–G, the preligand assembly complex and DISC were isolated from CD133+ cells (EH 091112, 091106) through immunoprecipitation by the use of Flag-TRAIL and Flag antibody and examined by immunoblotting for the presence of the proteins (F) and the RIP1 ubiquitination (G).

A C

B D

e F G

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 12: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

A20 E3 Ligase Inhibits TRAIL-Induced Apoptosis ReseARCh ARTICLe

FEBRUARY 2012  CANCER DISCOVERY  |  OF12

Figure 7. A20 protects the tumor-initiating cells from TRAIL-induced apoptosis. A–C, CD133+ cells (EH 091112, 100113, 091217, and 091106) were transfected or not transfected with A20 and scrambled (Scr) siRNA, treated or untreated with 100 ng/mL TRAIL, and examined for (A) cell death, (B) immunoblotting (IB), and (C) caspase-8 activity (Casp-8). D, EH 091112 cells were transfected with the lentiviral vectors encoding the A20 wt, OTU, and Znf4 mt; treated or untreated with 100 ng/mL TRAIL; and examined for cell death and caspase-8 activity Each of the experiments was repeated 6 times (points: means; bars: SE; n = 6; ***P 0.001). e, a 2-complex model of A20 E3 ligase-mediated inhibition of caspase-8 through RIP1 polyubiquitination. NT, nontransfected; PLAC, preligand assembly complex.

Ca

sp

-8

a

ctiv

ity

Ce

ll d

ea

th

(%

)C

ell d

ea

th

(%

)

Ca

sp

-8

a

ctiv

ity

Scrambled siRNA

Scrambled siRNA

A

Ca

sp

-8

a

ctiv

ity

Ce

ll d

ea

th

(%

)C

ell d

ea

th

(%

)

Ca

sp

-8

a

ctiv

ity

Scrambled siRNA

Scrambled siRNA

B

Ca

sp

-8

a

ctiv

ity

Ce

ll d

ea

th

(%

)C

ell d

ea

th

(%

)

Ca

sp

-8

a

ctiv

ity

Scrambled siRNA

Scrambled siRNA

C

Ca

sp

-8

a

ctiv

ity

Ce

ll d

ea

th

(%

)C

ell d

ea

th

(%

)

Ca

sp

-8

a

ctiv

ity

Scrambled siRNA

Scrambled siRNA

D

Ca

sp

-8

a

ctiv

ity

Ce

ll d

ea

th

(%

)C

ell d

ea

th

(%

)

Ca

sp

-8

a

ctiv

ity

Scrambled siRNA

Scrambled siRNA

e

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 13: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

Bellail et al.ReseARCh ARTICLe

www.aacrjournals.orgOF13 |  CANCER DISCOVERY  FEBRUARY 2012 

N-terminal OTU deubiquitinating enzyme and a C-terminal E3  ligase  (28). An  in vitro ubiquitination   assay suggests that A20  E3  ligase  mediates  RIP1  K48-linked  ubiquitination  for its degradation and thus inhibits TNF-α–induced NF-κB sig-naling  (28).  In  contrast,  in vivo  studies  indicate  that  RIP1 is  ubiquitinated  through  a  K63-linked  polyubiquitin  (17) and  that  IKKg  binds  to  either  K63  or  M1-linked  polyubiq-uitin chains for NF-κB activation (18). Further studies have confirmed that  the A20 can remove K63-linked polyubiqui-tin  chain  from  RIP1,  RIP2,  and  TRAF6  (25–27).  However, A20 has been shown to  inhibit TNF-α–induced apoptosis in mouse hepatocytes (24), IKKg-deficient Jurkat cells (43), and glioblastoma-derived  CD133+  cells  (37)  through  unknown mechanisms. We show here that the A20 E3 ligase is able to mediate  RIP1  ubiquitination  through  K48-  and  K63-linked polyubiquitin chains  in vitro and  in vivo  in the presence of a polyubiquitin   chain-specific  E2.  In  glioblastoma  cells,  how-ever, A20 E3  ligase mediates RIP1 ubiquitination through a K63-linked  polyubiquitin  chain  that  binds  to  the  caspase-8 protease and inhibits  TRAIL-induced apoptosis.

Somatic  mutations  in  TNFAIP3,  the  gene  encoding  the A20  protein,  have  been  identified  in  lymphomas  (44,  45). The  mutations  are  clustered  in  the  A20  Znf6  and  Znf7  domains and result in loss of A20 function. Reconstitution of  wild-type  TNFAIP3  in  the  TNFAIP3-mutated  lymphoma cells induces cell death (44). However, it is unclear how the transfected  TNFAIP3  triggers  apoptosis  in  the  lymphoma cells.  These  results  suggest  that  TNFAIP3  may  act  as  a  tumor  suppressor  gene  in  lymphomas  (46).  In  contrast  to the  lymphomas, genomic analysis of glioblastomas by The Cancer  Genome  Atlas  (47)  has  failed  to  identify  TNFAIP3 mutations.  However,  the  REpository  for  Molecular  BRAin Neoplasia  DaTa  (REMBRANDT),  sponsored  by  the National  Cancer  Institute,  indicates  TNFAIP3  mRNA  over-expression  in  human  glioblastomas,  keeping  in  line  with our  finding  that  A20  protein  is  highly  expressed  in  these tumors  and  inhibits  TRAIL-induced  apoptosis  in  the  tu-mor-initiating  cells.  It  appears  that  A20  plays  a  different role  in  lymphocytic  tumors  as  opposed  to  solid  tumors, which is consistent with the original report that it restricts NF-κB  signaling  in  lymphocytes  but  protects  hepatocytes from apoptotic insult in mice (24). In conclusion, the data presented here suggest  that A20 E3  ligase acts as an onco-gene  that  inhibits  TRAIL-induced  apoptosis.  Targeting  of the  A20-mediated  RIP1  ubiquitination  process  may  there-fore lead to the development of combination therapies that can eliminate TRAIL resistance in tumor-initiating cells and enhance  the  therapeutic  efficacy  of  TRAIL-targeted  thera-pies in human glioblastomas.

Methodshuman Glioblastoma Tissues, CD1331 Cells, Cell Lines, and Normal human Astrocytes

The  glioblastoma  and  normal  brain  tissues  used  in  Figure  1 were kindly provided by the London (Ontario) Brain Tumor Tissue Bank  (London Health Sciences Center, London, Ontario, Canada) and  the  normal  brain  tissues  were  sampled  from  epilepsy  lobec-tomy  specimen.  The  glioblastoma  tissues  used  in  Figures  6  and  7 were collected from Emory University Hospital in accordance with 

RIP1  polyubiquitination  inhibits  caspase-8  dimerization and  cleavage  and  TRAIL-induced  apoptosis  in  glioblas-toma cells  through two signaling complexes  (Fig. 7E). A20 and  RIP1  are  both  highly  expressed  in  glioblastomas,  in which they  interact with the transmembrane DR5 and form a  plasma   membrane-bound  preligand  assembly  complex under   physiologic  conditions.  TRAIL  treatment  leads  to the  DR5-mediated   recruitment  of  FADD  and  caspase-8  to the   preligand  assembly  complex  for  the  formation  of  the DISC,  where  the  A20  E3  ligase  mediates  K63-linked  RIP1  polyubiquitination.  The  K63-linked  polyubiquitin  chain of  RIP1  binds  to  the  caspase-8  protease  domain,  blocks caspase-8  dimerization  and  cleavage,  and   inhibits  TRAIL-induced apoptosis in glioblastoma cells.

This  2-complex  model  is  compatible  with  recent  reports that  ubiquitination  regulates  the  TRAIL  pathway.  TRAIL-induced  apoptosis  requires  caspase-8  polyubiquitination  in that  caspase-8  is  a  known  substrate  of  the  CUL3  E3  ligase and  caspase-8  ubiquitination  facilitates  caspase-8  cleav-age  in  TRAIL-sensitive  cell  lines  (23).  As  a  complement  to this model, our study establishes a molecular mechanism of TRAIL resistance. Here, we identify caspase-8 as an ubiquitin binding protein and show that a RIP1 K63-linked polyubiq-uitin chain binds to the caspase-8 protease domain to inhibit its  dimerization  and  cleavage.  The  findings  that  A20  and RIP1 are highly expressed and present in both the preligand assembly complex and DISC in resistant cells are in line with the recent  report  that  the content and status of proteins  in a  cell  determine  whether  or  not  cell  death  or  cell  survival  occurs under TRAIL treatment (38).

The  results  reported  here  establish  a  novel  model  that  reconciles the disparity in earlier studies. A size exclusion as-say  has  identified  TNFR1  in  fractions  corresponding  to  its monomeric molecular weight, leading to the notion that the TNFR1-associated complex I is formed after TNF-α stimula-tion  to  enact  TNF-α–induced  NF-κB  signaling,  whereas  the cytoplasmic complex II is formed through the recruitment of FADD and caspase-8 after complex I is detached from TNFR1 to  enact  TNF-α–induced  apoptosis  (20).  We  report  here a  distinct,  2-complex  TRAIL  signaling  model  in  which  the preligand  assembly  complex  is  spontaneously  formed  under physiologic conditions. TRAIL treatment then stimulates the recruitment of FADD and caspase-8 to the preligand assembly complex for the formation of the DISC, leading to either cell death  or  survival  depending  on  the  composition  and  status of  proteins  in  the  complexes.  A20  and  RIP1  are  associated with  DR5  in  the  spontaneously  formed  preligand  assembly complex in TRAIL-resistant cells, and TRAIL stimulates A20 E3  ligase-dependent  RIP1  polyubiquitination  and  caspase-8 binding  through  a  K63-linked  polyubiquitin  chain  that  in-hibits  caspase-8  dimerization  and  cleavage  to  ultimately prevents  initiation of TRAIL-induced   apoptosis. Once apop-tosis  is  inhibited  by  A20-mediated  RIP1   polyubiquitination, subsequent  recruitment  of  IKKg  (17),  cellular  FADD-like interleukin-1β-converting enzyme-inhibitory protein  (c-FLIP), and phosphoprotein enriched in diabetes to the DISC leads to the activation of NF-κB (33, 39) and extracellular signal-regu-lated kinase 1/2 (40, 41) to  promote cell growth (42).

The results presented here establish the role of A20 E3 li-gase in the inhibition of TRAIL-induced apoptosis. A20 has an 

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 14: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

A20 E3 Ligase Inhibits TRAIL-Induced Apoptosis ReseARCh ARTICLe

FEBRUARY 2012  CANCER DISCOVERY  |  OF14

G-linked agarose overnight at 4°C. The beads were washed and eluted with 150 ng/μL of 33 Flag peptide (Sigma-Aldrich) (33). To isolate the  preligand  assembly  complex,  the  cells  were  lysed  first  and  then incubated  with  mixed  Flag-TRAIL  and  Flag  antibody  as  described previously.  The  preligand  assembly  complex,  DISC,  size  exclusion samples,  subcellular  fractions  and  lysates  from  cell  lines,  CD133+ cells,  and  tissues  were  examined  by  immunoblotting  as  described (33)  with  the  use  of  antibodies  specific  to  CUL3  (BD  Biosciences), DR5 (ProSi Inc.), TRAF2 (H249), ubiquitin (P4D1), myc (Santa Cruz Biotechnology,  Inc.),  RIP1,  FADD  (BD  Biosciences),  K63-linked polyubiquitin chain (Biomol International and Millipore), caspase-8 (MBL), DFF45 (StressGen), HA (Covance), and His tag (Novagen).

In Vitro and In Vivo UbiquitinationFlag-RIP1 and myc-A20 wt proteins were generated through TNT 

Quick  Coupled  Transcription/Translation  Systems  (Promega). After  reaction,  a  Flag-RIP1  was  mixed  with  Flag  antibody-labeled agarose  beads  and  eluted  using  Flag  peptide  (Sigma-Aldrich) and  concentrated  through  Amicon  Ultra-0.5  Centrifugal  Filters (Millipore). Myc-A20 wt protein was isolated through immunopre-cipitation using myc-agarose beads. In vitro ubiquitination was per-formed in a 20-μL reaction volume containing 2 μg of N-terminal biotinylated  ubiquitin,  5  μg  of  ubiquitin,  200  ng  of  E1,  400  ng of  UBC13  (Boston  Biochem)  or  UBCH5A  (Calbiochem),  2 μL  of 10×  reaction  buffer,  and  1×  Mg-ATP  (Boston  Biochem).  After  a 1-hour  incubation  at  30°C,  reactions  were  terminated  by  adding SDS loading buffer and examined by  immunoblotting. For  in vivo ubiquitination, U87MG cells were transfected with plasmids encod-ing HA-UB and mts for 24 hours and treated or untreated with 100 ng/mL TRAIL for 1.5 hours. Cell lysates were heated at 95°C for 10 minutes in 1% SDS to dissociate proteins and diluted ten times in non-SDS-containing  buffer.  RIP1  was  isolated  by  RIP1  antibody (Santa  Cruz  Biotechnology,  Inc.)  through  immunoprecipitation and  examined  by  immunoblotting  using  HA  (Covance)  and  RIP1 antibody (BD Biosciences).

Caspase-8 Binding, Dimerization, and Cleavage Assay

In vivo  caspase-8  binding  to  ubiquitin  was  examined  as  follows: LN443 cells were treated or not with 100 ng/mL TRAIL for 1.5 and 3 hours and subjected to subcellular fractionation. RIP1 was isolated from  the  cytosol  and  membrane  fraction  under  denaturing  condi-tions,  then  incubated  with  Fv-caspase-8  for  1  hour  and  examined by  immunoblotting  using  antibodies  to  caspase-8  and  K63-linked polyubiquitin  chain.  In vitro  caspase-8  binding  to  ubiquitin  was examined  in  the  following  2  experiments.  In  the  first  experiment, Fv-caspase-8-labeled  or  caspase-8  protease  p18  domain-labeled agarose beads were  incubated with recombinant ubiquitin (Boston Biochem) for 1 hour at 4°C in ubiquitin binding buffer (50 mM Tris, 150 mM NaCl, 0.2% Triton x-100, 1 mM EDTA, 0.5 mM DTT). After washes,  the  agarose  beads  were  precipitated  by  centrifugation.  In the second experiment, Fv-caspase-8 or caspase-8 protease p18 sub-unit was incubated with His-K63-linked polyubiquitin chain-bound Nickel  agarose  beads  (QIAGEN).  In  both  experiments,  unbound proteins were washed off the beads with binding buffer, and bound proteins were eluted by 1% SDS-containing binding buffer and ex-amined by immunoblotting using ubiquitin and caspase-8 antibody. The  caspase-8  dimerization  and  cleavage  assay  was  performed  as described (35, 36).

statistical AnalysisAll values are expressed as mean ± SD. Statistical significance was 

assessed  by  unpaired  Student  t  test,  one-way  ANOVA  followed  by Dunnett test, and 2-way ANOVA followed by Bonferroni test.

protocols  approved  by  the  Emory  University  Institutional  Review Boards.  CD133  cells  were  sorted  from  dissociated  tumors  using CD133  antibody-labeled  magnetic  microbeads  (Miltenyi  Biotec) on the basis of previous reports  (32) and  labeled with EH (Emory Hospital)  and  numbers.  Glioblastoma  cell  lines  (33)  and  normal human  astrocytes  were  reported  (34),  and  no  authentication  was done by the authors since.

Generation of A20 Wild-Type and Mutant Clones through Lentiviral Transduction

The pcDNA3.1/myc-his A20 wt, OTU, and Znf4 mt were gener-ated through site-directed mutagenesis (Genscript). Lentiviral vec-tor pLenti6.3/V5-DEST was inserted with A20 wt, OTU, and Znf4 mt and introduced into LN71 cells through lentiviral transduction in  the  presence  of  polybrene  (2  μg/mL).  The  transfectants  were grown  in  blasticidin-containing  selection  medium,  and  single-cell clones  were  expanded  and  examined  by  immunoblotting  for  the stable expression of the A20 protein.

RNA Interference, Cell Death, and Caspase Activity Assay

The siRNA specific to TNFAIP3 (CCGAGCTGTTCCACTTGTTAA; CAGATGTATGGCTAACCGGAA),  RIP1,  TRAF2,  and  scrambled siRNA  (QIAGEN)  were  transfected  using  HiPerfect  Transfection (QIAGEN)  for  72  hours.  The  transfectants  were  treated  or  un-treated with TRAIL (PeproTech, Inc.) and examined by Cell Titer-Glo Luminescent Cell Viability assay for cell death and Caspase-Glo8 and Glo3/7 kits (Promega) for the caspase activities. Lentiviral scrambled shRNA  (SHC002)  and  A20  shRNA  (NM_006290.2-635s1c1:5'-CCGGCACTGGAAGAAATACACATATCTCGAGATATGTGTATTTCTTCCAGTGTTTTTG -3') were from Sigma Mission RNAi.

size-exclusion ChromatographyCell  lines  and  CD133+  cells  (108),  treated  or  untreated  with  100 

ng/mL  TRAIL  for  5  minutes,  were  lysed  in  CHAPS-containing  ly-sis  buffer  (14  mM  CHAPS,  150  mM  NaCl,  and  20  mM  Tris-Hcl; pH  7.4)  plus  complete  protease  inhibitors  (Sigma-Aldrich)  and  1 mM  phenylmethylsulfonylfluoride.  Lysates  were  filtered  through  a 0.45-micron filter and loaded onto superdex-200 HR16/60 column. Proteins were eluted at 1 mL/min. Fractions (1 mL) were analyzed by western blotting for DR5, RIP1, A20, TRAF2, and caspase-8. The ap-parent molecular weight was evaluated after column calibration with standard proteins (GE Healthcare): thyroglobulin (669 kDa), ferritin (440 kDa), adolase (158 kDa), Conalbumin (75 kDa), and ovalbumin (43 kDa).

subcellular FractionationSubcellular fractionation experiments were performed using the 

ProteoExtract  subcellular  proteome  extraction  kit  (Calbiochem) with 5 × 106 cells per sample. For RIP ubiquitination, the cytosol and membrane fractions were treated with 1% SDS and boiled for 10 minutes to separate proteins in the complexes and then diluted 10× to 0.1% SDS. RIP1 was immunoprecipitated with the use of 2 μg  of  RIP1  polyclonal  antibody  (Santa  Cruz  Biotechnology,  Inc.) for 4 hours that was washed 5 times: 2 times for 10 minutes in lysis buffer plus 1M NaCl and 3 times for 10 minutes in lysis buffer.

Immunoprecipitation and ImmunoblottingTo  isolate  the  DISC,  1  ×  107  cells  were  incubated  with  mixed 

500  ng/mL  Flag-TRAIL  and  1,500  ng/mL  Flag  antibody  for  15  to 90  minutes  at  37°C  or  3  hours  at  4°C  for  the  detection  of  CUL3. After wash, the cells were lysed for 30 min on ice in DISC immuno-precipitation  lysis  buffer  (30  mM  Tris,  pH  7.5,  150  mM  NaCl,  10% glycerol, 1% Triton X-100). Cell  lysates were  incubated with protein 

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 15: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

Bellail et al.ReseARCh ARTICLe

www.aacrjournals.orgOF15 |  CANCER DISCOVERY  FEBRUARY 2012 

TNFalpha-mediated cell death. Science 2004;305:1471–4. 17.  Ea  CK,  Deng  L,  Xia  ZP,  Pineda  G,  Chen  ZJ.  Activation  of  IKK  by 

TNFalpha  requires  site-specific  ubiquitination  of  RIP1  and  polyubiquitin binding by NEMO. Mol Cell 2006;22:245–57.

 18.  Rahighi  S,  Ikeda  F,  Kawasaki  M,  Akutsu  M,  Suzuki  N,  Kato  R, et  al.  Specific  recognition  of  linear  ubiquitin  chains  by  NEMO  is  important for NF-kappaB activation. Cell 2009;136:1098–109.

 19.  Micheau O, Tschopp J. Induction of TNF receptor I-mediated apop-tosis via two sequential signaling complexes. Cell 2003;114:181–90.

 20.  Wang  L,  Du  F,  Wang  X.  TNF-alpha  induces  two  distinct  caspase-8 activation pathways. Cell 2008;133:693–703.

 21.  Bodmer  JL, Holler N, Reynard S, Vinciguerra P, Schneider P,  Juo P,  et  al.  TRAIL  receptor-2  signals  apoptosis  through  FADD  and  caspase-8. Nat Cell Biol 2000;2:241–3.

 22.  Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A.  Apo2L/TRAIL-dependent  recruitment  of   endogenous  FADD  and caspase-8 to death receptors 4 and 5. Immunity 2000;12:611–20.

 23.  Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, et al. Cullin3-based polyubiquitination  and  p62-dependent  aggregation  of  caspase-8  mediate extrinsic apoptosis signaling. Cell 2009;137:721–35.

 24.  Lee  EG,  Boone  DL,  Chai  S,  Libby  SL,  Chien  M,  Lodolce  JP,  et  al. Failure  to  regulate  TNF-induced  NF-kappaB  and  cell  death  responses in A20-deficient mice. Science 2000;289:2350–4.

 25.  Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010;327:1135–9.

 26.  Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004;5:1052–60.

 27.  Hitotsumatsu O, Ahmad RC, Tavares R, Wang M, Philpott D, Turer EE,  et  al.  The  ubiquitin-editing  enzyme  A20  restricts  nucleotide-binding  oligomerization  domain  containing  2-triggered  signals. Immunity 2008;28:381–90.

 28.  Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, et al. De-ubiquitination and ubiquitin  ligase domains of A20 downregu-late NF-kappaB signalling. Nature 2004;430:694–9.

 29.  Singh SK, Hawkins C, Clarke ID, Squire  JA, Bayani  J, Hide T, et al. Identification  of  human  brain  tumour  initiating  cells.  Nature 2004;432:396–401.

 30.  Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem  cells  derived  from  glioblastomas  cultured  in  bFGF  and  EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006;9:391–403.

 31.  Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 2006;444:761–5.

 32.  Bao  S,  Wu  Q,  McLendon  RE,  Hao  Y,  Shi  Q,  Hjelmeland  AB,  et  al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756–60.

 33.  Bellail AC, Tse MC, Song JH, Phuphanich S, Olson JJ, Sun SY, et al. DR5-mediated  DISC  controls  caspase-8  cleavage  and  initiation  of apoptosis in human glioblastomas. J Cell Mol Med 2010;14:1303–17.

 34.  Song JH, Bellail A, Tse MCL, Yang VW, Hao C. Human astrocytes are resistant to Fas ligand and tumor necrosis factor-related apoptosis-induced apoptosis. J Neurosci 2006;26:1–10.

 35.  Chang  DW,  Yang  X.  Activation  of  procaspases  by  FK506  binding protein-mediated oligomerization. Sci STKE 2003;2003:PL1.

 36.  Chang DW, Xing Z, Capacio VL, Peter ME, Yang X. Interdimer processing mechanism of procaspase-8 activation. EMBO J 2003;22:4132–42.

 37.  Hjelmeland  AB,  Wu  Q,  Wickman  S,  Eyler  C,  Heddleston  J,  Shi  Q, et  al.  Targeting  A20  decreases  glioma  stem  cell  survival  and  tumor growth. PLoS Biol 2010;8:e1000319.

 38.  Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 2009;459:428–32.

 39.  Lin Y, Devin A, Cook A, Keane MM, Kelliher M, Lipkowitz S, et al. The  death  domain  kinase  RIP  is  essential  for  TRAIL  (Apo2L)-induced activation of  IkappaB kinase and c-Jun N-terminal kinase. Mol Cell Biol 2000;20:6638–45.

Disclosure of Potential Conflicts of InterestNo potential conflicts of interest were disclosed.

AcknowledgmentsWe thank Dr. Keith Wilkinson for his constructive suggestions of 

ubiquitination experiments and Zhaobin Zhang for his technical as-sistance in animal studies.

Grant supportThis  work  was  supported  in  part  by  NIH  grant  CA129687  to 

C.  Hao.  C.  Hao  was  a  Georgia  Cancer  Coalition  Distinguished Scholar.

Received July 14, 2011; revised December 8, 2011; accepted December 12, 2011; published OnlineFirst January 24, 2012.

ReFeReNCes  1.  Wiley  SR,  Schooley  K,  Smolak  PJ,  Din  WS,  Huang  CP,  Nicholl  JK,  

et  al.  Identification  and  characterization  of  a  new  member  of  the TNF family that induces apoptosis. Immunity 1995;3:673–82.

  2.  Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the  tumor necrosis factor cytokine family. J Biol Chem 1996;271:12687–90.

  3.  Vesely  MD,  Kershaw  MH,  Schreiber  RD,  Smyth  MJ.  Natural  innate  and  adaptive  immunity  to  cancer.  Annu  Rev  Immunol 2011;29:235–71.

  4.  Johnstone  RW,  Frew  AJ,  Smyth  MJ.  The  TRAIL  apoptotic   pathway in  cancer  onset,  progression  and  therapy.  Nat  Rev  Cancer 2008;8:782–98.

  5.  Bellail AC, Qi L, Mulligan P, Chhabra V, Hao C. TRAIL agonists on clinical  trials  for  cancer  therapy:  the  promises  and  the  challenges. Rev Recent Clin Trials 2009;4:34–41.

  6.  Tolcher AW, Mita M, Meropol NJ, von Mehren M, Patnaik A, Padavic K,  et  al.  Phase  I  pharmacokinetic  and  biologic  correlative  study  of mapatumumab,  a  fully  human  monoclonal  antibody  with  agonist activity  to  tumor  necrosis  factor-related  apoptosis-inducing  ligand receptor-1. J Clin Oncol 2007;25:1390–5.

  7.  Plummer R, Attard G, Pacey S, Li L, Razak A, Perrett R, et al. Phase 1  and  pharmacokinetic  study  of  lexatumumab  in  patients  with  advanced cancers. Clin Cancer Res 2007;13:6187–94.

  8.  Herbst  RS,  Eckhardt  SG,  Kurzrock  R,  Ebbinghaus  S,  O’Dwyer  PJ, Gordon  MS,  et  al.  Phase  I  dose-escalation  study  of  recombinant  human  Apo2L/TRAIL,  a  dual  proapoptotic  receptor  agonist,  in  patients with advanced cancer. J Clin Oncol 2010;28:2839–46.

  9.  Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM,  et  al.  A  unified  model  for  apical  caspase  activation.  Mol  Cell 2003;11:529–41.

 10.  Donepudi  M,  Mac  Sweeney  A,  Briand  C,  Grutter  MG.  Insights into  the  regulatory  mechanism  for  caspase-8  activation.  Mol  Cell 2003;11:543–9.

 11.  Hughes  MA,  Harper  N,  Butterworth  M,  Cain  K,  Cohen  GM, MacFarlane  M.  Reconstitution  of  the  death-inducing  signaling  complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell 2009;35:265–79.

 12.  Oberst  A,  Pop  C,  Tremblay  AG,  Blais  V,  Denault  JB,  Salvesen  GS, et  al.  Inducible  dimerization  and  inducible  cleavage  reveal  a  re-quirement  for  both  processes  in  caspase-8  activation.  J  Biol  Chem 2010;285:16632–42.

 13.  Skaug  B,  Jiang  X,  Chen  ZJ.  The  role  of  ubiquitin  in  NF-kappaB  regulatory pathways. Annu Rev Biochem 2009;78:769–96.

 14.  Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity. Nature 2009;458:430–7.

 15.  Ikeda  F,  Crosetto  N,  Dikic  I.  What  determines  the  specificity  and  outcomes of ubiquitin signaling?. Cell 143:677–81.

 16.  Li  L,  Thomas  RM,  Suzuki  H,  De  Brabander  JK,  Wang  X,  Harran PG.  A  small  molecule  Smac  mimic  potentiates  TRAIL-  and 

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 16: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

A20 E3 Ligase Inhibits TRAIL-Induced Apoptosis ReseARCh ARTICLe

FEBRUARY 2012  CANCER DISCOVERY  |  OF16

 44.  Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 2009;206:981–9.

 45.  Novak U, Rinaldi A, Kwee I, Nandula SV, Rancoita PM, Compagno M,  et  al.  The  NF-{kappa}B  negative  regulator  TNFAIP3  (A20)  is  inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 2009;113:4918–21.

 46.  Malynn BA, Ma A. A20  takes on  tumors:  tumor suppression by an ubiquitin-editing enzyme. J Exp Med 2009;206:977–80.

 47.  Cancer  Genome  Atlas  Research  Network.  Comprehensive  genomic characterization  defines  human  glioblastoma  genes  and  core  pathways. Nature 2008;455:1061–8.

 40.  Kataoka  T,  Tschopp  J.  N-terminal  fragment  of  c-FLIP(L)   processed by caspase 8 specifically interacts with TRAF2 and induces  activation of the NF-kappaB signaling pathway. Mol Cell Biol 2004;24:2627–36.

 41.  Krueger  J,  Chou  FL,  Glading  A,  Schaefer  E,  Ginsberg  MH. Phosphorylation of phosphoprotein enriched in astrocytes (PEA-15) regulates  extracellular  signal-regulated  kinase-dependent  transcrip-tion and cell proliferation. Mol Biol Cell 2005;16:3552–61.

 42.  Ehrhardt  H,  Fulda  S,  Schmid  I,  Hiscott  J,  Debatin  KM,  Jeremias  I.  TRAIL  induced  survival  and  proliferation  in  cancer  cells  resis-tant  towards  TRAIL-induced  apoptosis  mediated  by  NF-kappaB. Oncogene 2003;22:3842–52.

 43.  He KL, Ting AT. A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF re-ceptor 1 complex in Jurkat T cells. Mol Cell Biol 2002;22:6034–45.

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172

Page 17: A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 ...cancerdiscovery.aacrjournals.org/content/candisc/early/2012/01/20/2159... · teracting protein 1 polyubiquitination through

Published OnlineFirst January 24, 2012.Cancer Discovery   Anita C. Bellail, Jeffrey J. Olson, Xiaolu Yang, et al.   in GlioblastomaInhibits Caspase-8 Cleavage and TRAIL-Induced Apoptosis

Mediated Polyubiquitination of RIP1−A20 Ubiquitin Ligase

  Updated version

  10.1158/2159-8290.CD-11-0172doi:

Access the most recent version of this article at:

  Material

Supplementary

  1

http://cancerdiscovery.aacrjournals.org/content/suppl/2011/12/22/2159-8290.CD-11-0172.DCAccess the most recent supplemental material at:

   

   

   

  E-mail alerts related to this article or journal.Sign up to receive free email-alerts

  Subscriptions

Reprints and

  [email protected] at

To order reprints of this article or to subscribe to the journal, contact the AACR Publications

  Permissions

  Rightslink site. (CCC)Click on "Request Permissions" which will take you to the Copyright Clearance Center's

.http://cancerdiscovery.aacrjournals.org/content/early/2012/01/20/2159-8290.CD-11-0172To request permission to re-use all or part of this article, use this link

Cancer Research. on December 25, 2019. © 2012 American Association forcancerdiscovery.aacrjournals.org Downloaded from

Published OnlineFirst January 24, 2012; DOI: 10.1158/2159-8290.CD-11-0172