abstract - john l. wood

417
Abstract Synthesis of Syringolides, Syributins and Analog Compounds, a Family of Metabolites from Pseudomonas syringae: The Total Synthesis of (-)-Syringolide 1, (-)-Syringolide 2, (-)-Syringolide 3, (+)-Syringolide 1, (+)-Syringolide 2, (+)-Syringolide 3, (-)-N-(Carbobenzyloxy)-8-aminosyringolide 1, (+)-Syributin 1, (+)-Syributin 2, (+)- Syributin 3, (-)-Syributin 1, (-)-Syributin 2 and (-)-Syributin 3 Mauricio Navarro Villalobos 2000 The first total synthesis of (-)-syringolide 3 and its unnatural enantiomer (+)- syringolide 3 following a biomimetic procedure is described. In addition, total syntheses of (-)- and (+)-syringolides 1 and 2 were achieved using the same methodology. This biomimetic route was easily modified to obtain (-)-N-(carbobenzyloxy)-8- aminosyringolide 1, a good candidate for the preparation of affinity columns designed for isolation of the soybean protein that binds to syringolide. Model studies towards the total synthesis of syringolides using a rhodium- catalyzed intramolecular C-H insertion reaction as the key step are described. A highly stereospecific synthesis of spirolactones was achieved employing this methodology. The first total synthesis of (+)-syributin 3 and its unnatural enantiomer (-)- syributin 3 using an intermediate of the syringolide synthesis as starting material is described. In addition, total syntheses of (-)- and (+)-syributins 1 and 2 were accomplished by means of the same methodology.

Upload: others

Post on 25-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Abstract - John L. Wood

Abstract

Synthesis of Syringolides, Syributins and Analog Compounds,

a Family of Metabolites from Pseudomonas syringae:

The Total Synthesis of (-)-Syringolide 1, (-)-Syringolide 2,

(-)-Syringolide 3, (+)-Syringolide 1, (+)-Syringolide 2, (+)-Syringolide 3,

(-)-N-(Carbobenzyloxy)-8-aminosyringolide 1, (+)-Syributin 1, (+)-Syributin 2,

(+)- Syributin 3, (-)-Syributin 1, (-)-Syributin 2 and (-)-Syributin 3

Mauricio Navarro Villalobos

2000

The first total synthesis of (-)-syringolide 3 and its unnatural enantiomer (+)-

syringolide 3 following a biomimetic procedure is described. In addition, total syntheses

of (-)- and (+)-syringolides 1 and 2 were achieved using the same methodology. This

biomimetic route was easily modified to obtain (-)-N-(carbobenzyloxy)-8-

aminosyringolide 1, a good candidate for the preparation of affinity columns designed for

isolation of the soybean protein that binds to syringolide.

Model studies towards the total synthesis of syringolides using a rhodium-

catalyzed intramolecular C-H insertion reaction as the key step are described. A highly

stereospecific synthesis of spirolactones was achieved employing this methodology.

The first total synthesis of (+)-syributin 3 and its unnatural enantiomer (-)-

syributin 3 using an intermediate of the syringolide synthesis as starting material is

described. In addition, total syntheses of (-)- and (+)-syributins 1 and 2 were

accomplished by means of the same methodology.

Page 2: Abstract - John L. Wood

Synthesis of Syringolides, Syributins and Analog Compounds,

a Family of Metabolites from Pseudomonas syringae:

The Total Synthesis of (-)-Syringolide 1, (-)-Syringolide 2,

(-)-Syringolide 3, (+)-Syringolide 1, (+)-Syringolide 2, (+)-Syringolide 3,

(-)-N-(Carbobenzyloxy)-8-aminosyringolide 1, (+)-Syributin 1,

(+)-Syributin 2, (+)- Syributin 3, (-)-Syributin 1, (-)-Syributin 2 and

(-)-Syributin 3

A Dissertation

Presented to the Faculty of the Graduate School

of

Yale University

in Candidacy for the Degree of

Doctor of Philosophy

by

Mauricio Navarro Villalobos

Dissertation Director: John Louis Wood

December, 2000

Page 3: Abstract - John L. Wood

ii

© 2000 by Mauricio Navarro Villalobos

All rights reserved.

Page 4: Abstract - John L. Wood

iii

A mi familia de Oradores:

Gaspar

Rosita

Rosa María

Erick

Page 5: Abstract - John L. Wood

iv

Acknowledgements

I would like to thank my advisor Professor John L. Wood for all his friendship,

advice, help and support both inside and outside the walls of the Sterling Chemistry

Laboratories.

I would like to thank my thesis committee, Professors Frederick E. Ziegler and

Professor William L. Jorgensen for reviewing my thesis. I enjoyed very much working

as a Teaching Assistant for Professor Ziegler.

I would like to thank all the members of the Wood Group who worked so hard in

the Syringolide project, that is: Catherine McCarty, Susan Jeong, Cristy M. Lindberg,

Steve Zeman, Jonathan Jenkins, Analee Salcedo and, last but not least, Matthew M.

Weiss.

I would like to thank all the current and former members of the Wood Group

(a.k.a. W6) for their friendship, especially Jón T. Njarðarson for helping me to keep my

sanity during all this years and my adopted Portuguese cousin from Boston, George A.

Moniz.

I would like to thank Professor Martin Saunders for his friendship, help and

advice.

I would like to thank Professor David J. Austin and Serguey N. Savinov for their

friendship and helpful discussions about the C-H insertion part of my project.

I would like to thank Benedict W. Bangerter and Xiaoling Wu for their help in

NMR experiments and Susan De Gala for obtaining the X-ray crystal structures of this

work.

Page 6: Abstract - John L. Wood

v

FOR GOD

I would like to thank God Father, God Son and God Holy Spirit as well as Our

Lady of Guadalupe, St. Thomas Aquinas, St. Anthony of Padua, St. Mary Goretti, St.

Ignatius of Loyola, St. Maurice, St. Thérèse of the Child Jesus, St. Francis of Assisi, St.

Jude Thaddeus, St. Martin of Porres, St. Albertus Magnus and all the angels and saints

for delivering me from evil and keeping me from performing experiments dangerous for

myself and my labmates.

FOR COUNTRY

Mi más sincero cariño y agradecimiento a mi patria, México, porque siempre lo

he llevado en el corazón y la certeza de que tarde o temprano he de volver a él ha hecho

más llevadera en mí la pesada carga del exilio.

Así mismo quisiera agradecerle a mis padres y mis hermanos, a quienes dedico

este trabajo, por su apoyo y confianza a lo largo de toda mi vida.

FOR YALE

I would like to thank Yale University for six great years of my life. I am very

proud of being part of this institution which I will never forget since part of me remains

here and part of her I’ll bring with me.

Mauricio Navarro Villalobos

New Haven, CT

August, 2000

Page 7: Abstract - John L. Wood

vi

Table of Contents

Dedication ......................................................................................................................... iii Acknowledgements .......................................................................................................... iv Table of Contents ............................................................................................................. vi List of Figures.....................................................................................................................x List of Schemes .............................................................................................................. xvii List of Tables .................................................................................................................. xix List of Abbreviations .......................................................................................................xx

Chapter 1, Syringolides: Background and Introduction ...............................................1

1.1 Biological Background: The Hypersensitive Response.............................................1

1.2 Syringolides: Isolation and Biological Activity.........................................................1

1.3 Syringolides as Molecular Probes..............................................................................3

1.4 Isolation and Characterization of a Syringolide-Binding Protein..............................3

1.5 Proposed Biosynthesis of Syringolides......................................................................4

1.6 Syntheses of Syringolides ..........................................................................................5 1.6.1 Wood et al.: Total Synthesis of (+)- and (-)-Syringolides 1 and 2 .....................6 1.6.2 Kuwahara et al.: Total Synthesis of (-)-Syringolides 1 and 2.............................7 1.6.3 Murai et al.: Total Synthesis of (-)-Syringolide 1...............................................8 1.6.4 Rickards and Henschke: Total Synthesis of (-)-Syringolide 2 and (-)-Deuterosyringolide 2 ....................................................................................10 1.6.5 Honda et al.: Total Synthesis of (-)-Syringolides 1 and 2.................................13 1.6.6 Sims et al.: Total Synthesis of (-)- and (+)-Syringolide 1 and (-)-∆7-Syringolide 1............................................................................................13 1.6.7 Wong et al.: Improved Synthesis of (-)-Syringolides 1 and 2 ..........................16 1.6.8 Chênevert and Dasser: Total Synthesis of (-)-Syringolide 2 ............................17 1.6.9 Yoda et al.: Formal Synthesis of (-)-Syringolide 1...........................................19

1.7 References................................................................................................................21

Chapter 2, Syringolides: Biomimetic Total Synthesis ..................................................25

2.1 Retrosynthetic analysis ............................................................................................25

2.2 Biomimetic Total Synthesis of (-)-Syringolides 1, 2 and 3 .....................................27

2.3 Biomimetic Total Synthesis of (+)-Syringolides 1, 2 and 3 ....................................29

2.4 Biomimetic Total Synthesis of (-)-N-(Carbobenzyloxy)-8-aminosyringolide 1 .....31

2.5 Conclusions..............................................................................................................32

Page 8: Abstract - John L. Wood

vii

2.6 Experimental Section ...............................................................................................33 2.6.1 Materials and Methods......................................................................................33 2.6.2 Preparative Procedures......................................................................................34

2.7 Notes and references ................................................................................................57

Appendix 1, Spectra Relevant to Chapter 2 ..................................................................61

Appendix 2, X-ray Structure Reports Relevant to Chapter 2 ...................................117

A.2.1 X-ray Structure Report for (-)-Syringolide 3 .....................................................117 A.2.1.1 Crystal Data.................................................................................................117 A.2.1.2 Intensity Measurements ..............................................................................118 A.2.1.3 Structure Solution and Refinement .............................................................118 A.2.1.4 Atomic coordinates and Biso/Beq...............................................................119

Chapter 3, Syringolides: C-H Insertion Synthetic Studies.........................................120

3.1 Retrosynthetic analysis ..........................................................................................120

3.2 General Strategy.....................................................................................................121

3.3 C-H Insertion: Tetrahydrofurfuryl Esters ..............................................................123 3.3.1 Initial Studies with Tetrahydrofurfuryl Esters of 113.....................................123

3.3.1.1 Diazoacetoacetate ....................................................................................123 3.3.1.2 2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate.................................124 3.3.1.3 Diazomalonate .........................................................................................125 3.3.1.4 3-Methoxyphenyldiazoacetate .................................................................125 3.3.1.5 Vinyldiazoacetate.....................................................................................126 3.3.1.6 Cyclohexenyldiazoacetate........................................................................127

3.4 C-H Insertion: 2,5-Dihydrofurfuryl Esters ............................................................129 3.4.1 Studies with 2,5-Dihydrofurfuryl Esters.........................................................129

3.4.1.1 Diazoacetoacetate ....................................................................................129 3.4.1.2 2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate.................................130 3.4.1.3 Diazoacetate.............................................................................................131 3.4.1.4 3-Methoxyphenyldiazoacetate .................................................................132 3.4.1.5 4-Methoxyphenyldiazoacetate .................................................................133

3.5 C-H Insertion: 1,4-Anhydroarabinityl Esters.........................................................134 3.5.1 Studies with 2,3-di-O-Protected 1,4-Anhydroarabinityl Esters ......................134

3.5.1.1 Masked Diols: 2,3-di-O-(t-Butyldimethylsilyl)-1,4-anhydro-DL-arabinityl Esters............................................................................................................134

3.5.1.1.1 Diazoacetoacetate .............................................................................135 3.5.1.1.2 2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate..........................136 3.5.1.1.3 Diazoacetate......................................................................................137

Page 9: Abstract - John L. Wood

viii

3.5.1.1.4 3-Methoxyphenyldiazoacetate ..........................................................138 3.5.1.2 Masked Diols: 1,4-Anhydro-2,3-di-O-benzyl-D-arabinityl Esters ..........139

3.5.1.2.1 Diazoacetoacetate .............................................................................139 3.5.1.2.2 2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate..........................140 3.5.1.2.3 Diazoacetate......................................................................................141 3.5.1.2.4 3-Methoxyphenyldiazoacetate ..........................................................141

3.5.1.3 Masked Diols: 1,4-Anhydro-2,3-di-O-methyl-DL-arabinityl Esters........142 3.5.1.3.1 Diazoacetoacetate .............................................................................143 3.5.1.3.2 2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate..........................143 3.5.1.3.3 Diazoacetate......................................................................................144 3.5.1.3.4 3-Methoxyphenyldiazoacetate ..........................................................145

3.5.2 Unmasked Diols: 1,4-Anhydroarabinityl Esters .............................................146 3.5.2.1 Diazoacetoacetate ....................................................................................146 3.5.2.2 3-Methoxyphenyldiazoacetate .................................................................147

3.6 C-H Insertion: Stereochemistry .............................................................................149

3.7 Conclusions............................................................................................................150

3.8 Experimental Section .............................................................................................152 3.8.1 Materials and Methods....................................................................................152 3.8.2 Preparative Procedures....................................................................................153

3.9 References..............................................................................................................208

Appendix 3, Spectra Relevant to Chapter 3 ................................................................212

Appendix 4, X-ray Structure Reports Relevant to Chapter 3 ...................................315

A.4.1 X-ray Structure Report for Spirolactone 127 .....................................................315 A.4.1.1 Crystal Data.................................................................................................315 A.4.1.2 Intensity Measurements ..............................................................................316 A.4.1.3 Structure Solution and Refinement .............................................................316 A.4.1.4 Atomic coordinates and Biso/Beq...............................................................317

A.4.2 X-ray Structure Report for Spirolactone 149 .....................................................318 A.4.2.1 Crystal Data.................................................................................................318 A.4.2.2 Intensity Measurements ..............................................................................319 A.4.2.3 Structure Solution and Refinement .............................................................319 A.4.2.4 Atomic coordinates and Biso/Beq...............................................................320

A.4.3 X-ray Structure Report for Spirolactone 153.....................................................321 A.4.3.1 Crystal Data.................................................................................................321 A.4.3.2 Intensity Measurements ..............................................................................322 A.4.3.3 Structure Solution and Refinement .............................................................322 A.4.3.4 Atomic coordinates and Biso/Beq...............................................................323

A.4.4 X-ray Structure Report for Spirolactone 168.....................................................324 A.4.4.1 Crystal Data.................................................................................................324

Page 10: Abstract - John L. Wood

ix

A.4.4.2 Intensity Measurements ..............................................................................325 A.4.4.3 Structure Solution and Refinement .............................................................325 A.4.4.4 Atomic coordinates and Biso/Beq...............................................................326

Chapter 4, Syributins: Background and Introduction ...............................................328

4.1 Syributins and Secosyrins: Isolation and Characterization....................................328

4.2 Proposed Biosynthesis of Syributins and Secosyrins ............................................329

4.3 Syntheses of Secosyrins and Syributins.................................................................330 4.3.1 Honda et al.: Total Synthesis of (+)-Syributin 1.............................................331 4.3.2 Wong et al.: Total Syntheses of (+)-Syributins 1 and 2 and (+)-Secosyrins 1 and 2 .....................................................................................332 4.3.3 Mukai and co-workers: Total Syntheses (+)-Syributins 1 and 2 and (+)-Secosyrins 1 and 2 .....................................................................................334 4.3.4 Yoda et al.: Total Synthesis of (+)-Syributin 1...............................................338 4.3.5 Carda et al.: Formal Synthesis of (+)-Secosyrins and (+)-Syributins.............338

4.4 References..............................................................................................................339

Chapter 5, Syributins: Total Synthesis ........................................................................341

5.1 Retrosynthetic analysis ..........................................................................................341

5.2 Total Synthesis of (+)-Syributins 1, 2 and 3..........................................................342

5.2 Total Synthesis of (-)-Syributins 1, 2 and 3...........................................................343

5.3 Conclusions............................................................................................................344

5.4 Experimental Section .............................................................................................344 5.4.1 Materials and Methods....................................................................................344 5.4.2 Preparative Procedures....................................................................................346

5.5 References..............................................................................................................360

Appendix 5, Spectra Relevant to Chapter 5 ................................................................362

Appendix 6, Notebook Cross Reference.......................................................................383 Bibliography ...................................................................................................................388 Index................................................................................................................................392 About the Author ...........................................................................................................393

Page 11: Abstract - John L. Wood

x

List of Figures

Chapter 1 Figure 1.1 Syringolide elicitors...........................................................................................2 Figure 1.2 Syringolide 1 derivatives ...................................................................................4 Chapter 2 Figure 2.1 (-)-11 and Precursors .......................................................................................27 Figure 2.2 1H NMR (500 MHz, CDCl3) Comparison of (-)-Syringolide 2 ......................30 Appendix 1 Figure A.1.1 1H NMR (500 MHz, CDCl3) of Compound (-)-12 ......................................62 Figure A.1.2 FTIR Spectrum (thin film/NaCl) of Compound (-)-12................................63 Figure A.1.3 13C NMR (125 MHz, CDCl3) of Compound (-)-12 .....................................63 Figure A.1.4 1H NMR (500 MHz, CDCl3) of Compound (+)-12 .....................................64 Figure A.1.5 FTIR Spectrum (thin film/NaCl) of Compound (+)-12...............................65 Figure A.1.6 13C NMR (125 MHz, CDCl3) of Compound (+)-12 ....................................65 Figure A.1.7 1H NMR (500 MHz, CDCl3) of Compound (-)-13 ......................................66 Figure A.1.8 FTIR Spectrum (thin film/NaCl) of Compound (-)-13................................67 Figure A.1.9 13C NMR (125 MHz, CDCl3) of Compound (-)-13 .....................................67 Figure A.1.10 1H NMR (500 MHz, CDCl3) of Compound (+)-13 ...................................68 Figure A.1.11 FTIR Spectrum (thin film/NaCl) of Compound (+)-13.............................69 Figure A.1.12 13C NMR (125 MHz, CDCl3) of Compound (+)-13 ..................................69 Figure A.1.13 1H NMR (500 MHz, CDCl3) of Compound (-)-16a ..................................70 Figure A.1.14 FTIR Spectrum (thin film/NaCl) of Compound (-)-16a............................71 Figure A.1.15 13C NMR (125 MHz, CDCl3) of Compound (-)-16a .................................71 Figure A.1.16 1H NMR (500 MHz, CDCl3) of Compound (+)-16a .................................72 Figure A.1.17 FTIR Spectrum (thin film/NaCl) of Compound (+)-16a...........................73 Figure A.1.18 13C NMR (125 MHz, CDCl3) of Compound (+)-16a ................................73 Figure A.1.19 1H NMR (500 MHz, CDCl3) of Compound (-)-16b..................................74 Figure A.1.20 FTIR Spectrum (thin film/NaCl) of Compound (-)-16b ...........................75 Figure A.1.21 13C NMR (125 MHz, CDCl3) of Compound (-)-16b.................................75 Figure A.1.22 1H NMR (500 MHz, CDCl3) of Compound (+)-16b.................................76 Figure A.1.23 FTIR Spectrum (thin film/NaCl) of Compound (+)-16b...........................77 Figure A.1.24 13C NMR (125 MHz, CDCl3) of Compound (+)-16b................................77 Figure A.1.25 1H NMR (500 MHz, CDCl3) of Compound (-)-16c ..................................78 Figure A.1.26 FTIR Spectrum (thin film/NaCl) of Compound (-)-16c ............................79 Figure A.1.27 13C NMR (125 MHz, CDCl3) of Compound (-)-16c .................................79 Figure A.1.28 1H NMR (500 MHz, CDCl3) of Compound (+)-16c .................................80

Page 12: Abstract - John L. Wood

xi

Figure A.1.29 FTIR Spectrum (thin film/NaCl) of Compound (+)-16c ...........................81 Figure A.1.30 13C NMR (125 MHz, CDCl3) of Compound (+)-16c ................................81 Figure A.1.31 1H NMR (500 MHz, acetone-d6) of Compound (-)-1................................82 Figure A.1.32 1H NMR (500 MHz, CDCl3) of Compound (-)-1 ......................................83 Figure A.1.33 FTIR Spectrum (thin film/NaCl) of Compound (-)-1................................84 Figure A.1.34 13C NMR (125 MHz, acetone-d6) of Compound (-)-1...............................84 Figure A.1.35 1H NMR (500 MHz, CDCl3) of Compound (-)-51a ..................................85 Figure A.1.36 FTIR Spectrum (thin film/NaCl) of Compound (-)-51a............................86 Figure A.1.37 13C NMR (125 MHz, CDCl3) of Compound (-)-51a .................................86 Figure A.1.38 1H NMR (500 MHz, acetone-d6) of Compound (+)-1...............................87 Figure A.1.39 1H NMR (500 MHz, CDCl3) of Compound (+)-1 .....................................88 Figure A.1.40 FTIR Spectrum (thin film/NaCl) of Compound (+)-1...............................89 Figure A.1.41 13C NMR (125 MHz, acetone-d6) of Compound (+)-1..............................89 Figure A.1.42 1H NMR (500 MHz, CDCl3) of Compound (+)-51a .................................90 Figure A.1.43 FTIR Spectrum (thin film/NaCl) of Compound (+)-51a...........................91 Figure A.1.44 13C NMR (125 MHz, CDCl3) of Compound (+)-51a ................................91 Figure A.1.45 1H NMR (500 MHz, acetone-d6) of Compound (-)-2................................92 Figure A.1.46 1H NMR (500 MHz, CDCl3) of Compound (-)-2 ......................................93 Figure A.1.47 FTIR Spectrum (thin film/NaCl) of Compound (-)-2................................94 Figure A.1.48 13C NMR (125 MHz, acetone-d6) of Compound (-)-2...............................94 Figure A.1.49 1H NMR (500 MHz, CDCl3) of Compound (-)-51b..................................95 Figure A.1.50 FTIR Spectrum (thin film/NaCl) of Compound (-)-51b ...........................96 Figure A.1.51 13C NMR (125 MHz, CDCl3) of Compound (-)-51b.................................96 Figure A.1.52 1H NMR (500 MHz, acetone-d6) of Compound (+)-2...............................97 Figure A.1.53 1H NMR (500 MHz, CDCl3) of Compound (+)-2 .....................................98 Figure A.1.54 FTIR Spectrum (thin film/NaCl) of Compound (+)-2...............................99 Figure A.1.55 13C NMR (125 MHz, acetone-d6) of Compound (+)-2..............................99 Figure A.1.56 1H NMR (500 MHz, CDCl3) of Compound (+)-51b...............................100 Figure A.1.57 FTIR Spectrum (thin film/NaCl) of Compound (+)-51b.........................101 Figure A.1.58 13C NMR (125 MHz, CDCl3) of Compound (+)-51b..............................101 Figure A.1.59 1H NMR (500 MHz, acetone-d6) of Compound (-)-3..............................102 Figure A.1.60 FTIR Spectrum (thin film/NaCl) of Compound (-)-3..............................103 Figure A.1.61 13C NMR (125 MHz, acetone-d6) of Compound (-)-3.............................103 Figure A.1.62 1H NMR (500 MHz, CDCl3) of Compound (-)-51c ................................104 Figure A.1.63 FTIR Spectrum (thin film/NaCl) of Compound (-)-51c ..........................105 Figure A.1.64 13C NMR (125 MHz, CDCl3) of Compound (-)-51c ...............................105 Figure A.1.65 1H NMR (500 MHz, acetone-d6) of Compound (+)-3.............................106 Figure A.1.66 FTIR Spectrum (thin film/NaCl) of Compound (+)-3.............................107 Figure A.1.67 13C NMR (125 MHz, acetone-d6) of Compound (+)-3............................107 Figure A.1.68 1H NMR (500 MHz, CDCl3) of Compound (+)-51c ...............................108 Figure A.1.69 FTIR Spectrum (thin film/NaCl) of Compound (+)-51c .........................109 Figure A.1.70 13C NMR (125 MHz, CDCl3) of Compound (+)-51c ..............................109 Figure A.1.71 1H NMR (500 MHz, CDCl3) of Compound (-)-91 ..................................110 Figure A.1.72 FTIR Spectrum (thin film/NaCl) of Compound (-)-91............................111 Figure A.1.73 13C NMR (125 MHz, CDCl3) of Compound (-)-91 .................................111 Figure A.1.74 1H NMR (500 MHz, acetone-d6) of Compound (-)-92............................112

Page 13: Abstract - John L. Wood

xii

Figure A.1.75 1H NMR (500 MHz, CDCl3) of Compound (-)-92 ..................................113 Figure A.1.76 FTIR Spectrum (thin film/NaCl) of Compound (-)-92............................114 Figure A.1.77 13C NMR (125 MHz, acetone-d6) of Compound (-)-92...........................114 Figure A.1.78 1H NMR (500 MHz, CDCl3) of Compound (-)-93 ..................................115 Figure A.1.79 FTIR Spectrum (thin film/NaCl) of Compound (-)-93............................116 Figure A.1.80 13C NMR (125 MHz, CDCl3) of Compound (-)-93 .................................116 Appendix 2 Figure A.2.1 ORTEP plot of Syringolide 3 ....................................................................117 Chapter 3 Figure 3.1 Side Chains for Model Studies ......................................................................122 Figure 3.2 Masked Trans Diol for Model Studies ..........................................................123 Figure 3.3 2,3-di-O-1,4-Arabinitol (98) and Derivatives................................................134 Figure 3.4 Spirolactones Analyzed by X-ray Crystallography .......................................149 Figure 3.5 Proposed Relative Stereochemical Configuration for C-H Insertion Products

131, 135 and 178......................................................................................................150 Appendix 3 Figure A.3.1 1H NMR (500 MHz, CDCl3) of Compound 115 .......................................213 Figure A.3.2 FTIR Spectrum (thin film/NaCl) of Compound 115 .................................214 Figure A.3.3 13C NMR (125 MHz, CDCl3) of Compound 115 ......................................214 Figure A.3.4 1H NMR (500 MHz, CDCl3) of Compound 117 .......................................215 Figure A.3.5 FTIR Spectrum (thin film/NaCl) of Compound 117 .................................216 Figure A.3.6 13C NMR (125 MHz, CDCl3) of Compound 117 ......................................216 Figure A.3.7 1H NMR (500 MHz, CDCl3) of Compound 121 .......................................217 Figure A.3.8 FTIR Spectrum (thin film/NaCl) of Compound 121 .................................218 Figure A.3.9 13C NMR (125 MHz, CDCl3) of Compound 121 ......................................218 Figure A.3.10 1H NMR (500 MHz, CDCl3) of Compound 122 .....................................219 Figure A.3.11 FTIR Spectrum (thin film/NaCl) of Compound 122 ...............................220 Figure A.3.12 13C NMR (125 MHz, CDCl3) of Compound 122 ....................................220 Figure A.3.13 1H NMR (500 MHz, CDCl3) of Compound 125 .....................................221 Figure A.3.14 FTIR Spectrum (thin film/NaCl) of Compound 125 ...............................222 Figure A.3.15 13C NMR (125 MHz, CDCl3) of Compound 125 ....................................222 Figure A.3.16 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 126 .........................223 Figure A.3.17 FTIR Spectrum (thin film/NaCl) of Compound 126 ...............................224 Figure A.3.18 13C NMR (125 MHz, CDCl3) of Compound 126 ....................................224 Figure A.3.19 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 127 .........................225 Figure A.3.20 FTIR Spectrum (thin film/NaCl) of Compound 127 ...............................226 Figure A.3.21 13C NMR (125 MHz, CDCl3) of Compound 127 ....................................226

Page 14: Abstract - John L. Wood

xiii

Figure A.3.22 1H NMR (500 MHz, CDCl3) of Compound 129 .....................................227 Figure A.3.23 FTIR Spectrum (thin film/NaCl) of Compound 129 ...............................228 Figure A.3.24 13C NMR (125 MHz, CDCl3) of Compound 129 ....................................228 Figure A.3.25 1H NMR (500 MHz, CDCl3) of Compound 131 .....................................229 Figure A.3.26 FTIR Spectrum (thin film/NaCl) of Compound 131 ...............................230 Figure A.3.27 13C NMR (125 MHz, CDCl3) of Compound 131 ....................................230 Figure A.3.28 1H NMR (500 MHz, CDCl3) of Compound 134 .....................................231 Figure A.3.29 FTIR Spectrum (thin film/NaCl) of Compound 134 ...............................232 Figure A.3.30 13C NMR (125 MHz, CDCl3) of Compound 134 ....................................232 Figure A.3.31 1H NMR (500 MHz, CDCl3) of Compound 135 .....................................233 Figure A.3.32 FTIR Spectrum (thin film/NaCl) of Compound 135 ...............................234 Figure A.3.33 13C NMR (125 MHz, CDCl3) of Compound 135 ....................................234 Figure A.3.34 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 140 .........................235 Figure A.3.35 FTIR Spectrum (thin film/NaCl) of Compound 140 ...............................236 Figure A.3.36 13C NMR (125 MHz, CDCl3) of Compound 140 ....................................236 Figure A.3.37 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 141 .........................237 Figure A.3.38 FTIR Spectrum (thin film/NaCl) of Compound 141 ...............................238 Figure A.3.39 13C NMR (125 MHz, CDCl3) of Compound 141 ....................................238 Figure A.3.40 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 143 .........................239 Figure A.3.41 FTIR Spectrum (thin film/NaCl) of Compound 143 ...............................240 Figure A.3.42 13C NMR (100 MHz, CDCl3) of Compound 143 ....................................240 Figure A.3.43 1H NMR (500 MHz, CDCl3) of Compound 145 .....................................241 Figure A.3.44 FTIR Spectrum (thin film/NaCl) of Compound 145 ...............................242 Figure A.3.45 13C NMR (125 MHz, CDCl3) of Compound 145 ....................................242 Figure A.3.46 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 147 .........................243 Figure A.3.47 FTIR Spectrum (thin film/NaCl) of Compound 147 ...............................244 Figure A.3.48 13C NMR (125 MHz, CDCl3) of Compound 147 ....................................244 Figure A.3.49 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 148 .........................245 Figure A.3.50 FTIR Spectrum (thin film/NaCl) of Compound 148 ...............................246 Figure A.3.51 13C NMR (125 MHz, CDCl3) of Compound 148 ....................................246 Figure A.3.52 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 149 .........................247 Figure A.3.53 FTIR Spectrum (thin film/NaCl) of Compound 149 ...............................248 Figure A.3.54 13C NMR (125 MHz, CDCl3) of Compound 149 ....................................248 Figure A.3.55 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 151 .........................249 Figure A.3.56 FTIR Spectrum (thin film/NaCl) of Compound 151 ...............................250 Figure A.3.57 13C NMR (125 MHz, CDCl3) of Compound 151 ....................................250 Figure A.3.58 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 152 .........................251 Figure A.3.59 FTIR Spectrum (thin film/NaCl) of Compound 152 ...............................252 Figure A.3.60 13C NMR (125 MHz, CDCl3) of Compound 152 ....................................252 Figure A.3.61 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 153 .........................253 Figure A.3.62 FTIR Spectrum (thin film/NaCl) of Compound 153 ...............................254 Figure A.3.63 13C NMR (125 MHz, CDCl3) of Compound 153 ....................................254 Figure A.3.64 1H NMR (400 MHz, CDCl3) of Compound 158 .....................................255 Figure A.3.65 FTIR Spectrum (thin film/NaCl) of Compound 158 ...............................256 Figure A.3.66 13C NMR (100 MHz, CDCl3) of Compound 158 ....................................256 Figure A.3.67 1H NMR (400 MHz, CDCl3) of Compound 154 .....................................257

Page 15: Abstract - John L. Wood

xiv

Figure A.3.68 FTIR Spectrum (thin film/NaCl) of Compound 154 ...............................258 Figure A.3.69 13C NMR (100 MHz, CDCl3) of Compound 154 ....................................258 Figure A.3.70 1H NMR (500 MHz, CDCl3) of Compound 159 .....................................259 Figure A.3.71 FTIR Spectrum (thin film/NaCl) of Compound 159 ...............................260 Figure A.3.72 13C NMR (100 MHz, CDCl3) of Compound 159 ....................................260 Figure A.3.73 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 160 .........................261 Figure A.3.74 FTIR Spectrum (thin film/NaCl) of Compound 160 ...............................262 Figure A.3.75 13C NMR (100 MHz, CDCl3) of Compound 160 ....................................262 Figure A.3.76 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 162 .........................263 Figure A.3.77 FTIR Spectrum (thin film/NaCl) of Compound 162 ...............................264 Figure A.3.78 13C NMR (100 MHz, CDCl3) of Compound 162 ....................................264 Figure A.3.79 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 164 ........................265 Figure A.3.80 FTIR Spectrum (thin film/NaCl) of Compound 164 ...............................266 Figure A.3.81 13C NMR (100 MHz, CDCl3) of Compound 164 ....................................266 Figure A.3.82 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 165 .........................267 Figure A.3.83 FTIR Spectrum (thin film/NaCl) of Compound 165 ...............................268 Figure A.3.84 13C NMR (100 MHz, CDCl3) of Compound 165. ...................................268 Figure A.3.85 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 166 .........................269 Figure A.3.86 FTIR Spectrum (thin film/NaCl) of Compound 166 ...............................270 Figure A.3.87 13C NMR (100 MHz, CDCl3) of Compound 166 ....................................270 Figure A.3.88 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 167 .........................271 Figure A.3.89 FTIR Spectrum (thin film/NaCl) of Compound 167 ...............................272 Figure A.3.90 13C NMR (100 MHz, CDCl3) of Compound 167 ....................................272 Figure A.3.91 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 168 .........................273 Figure A.3.92 FTIR Spectrum (thin film/NaCl) of Compound 168 ...............................274 Figure A.3.93 13C NMR (100 MHz, CDCl3) of Compound 168 ....................................274 Figure A.3.94 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 169 .........................275 Figure A.3.95 FTIR Spectrum (thin film/NaCl) of Compound 169 ...............................276 Figure A.3.96 13C NMR (100 MHz, CDCl3) of Compound 169 ....................................276 Figure A.3.97 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 170 .........................277 Figure A.3.98 FTIR Spectrum (thin film/NaCl) of Compound 170 ...............................278 Figure A.3.99 13C NMR (125 MHz, CDCl3) of Compound 170 ....................................278 Figure A.3.100 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 172 .......................279 Figure A.3.101 FTIR Spectrum (thin film/NaCl) of Compound 172 .............................280 Figure A.3.102 13C NMR (100 MHz, CDCl3) of Compound 172 ..................................280 Figure A.3.103 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 174 .......................281 Figure A.3.104 FTIR Spectrum (thin film/NaCl) of Compound 174 .............................282 Figure A.3.105 13C NMR (100 MHz, CDCl3) of Compound 174 ..................................282 Figure A.3.106 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 176 .......................283 Figure A.3.107 FTIR Spectrum (thin film/NaCl) of Compound 176 .............................284 Figure A.3.108 13C NMR (125 MHz, CDCl3) of Compound 176 ..................................284 Figure A.3.109 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 177 .......................285 Figure A.3.110 FTIR Spectrum (thin film/NaCl) of Compound 177 .............................286 Figure A.3.111 13C NMR (125 MHz, CDCl3) of Compound 177 ..................................286 Figure A.3.112 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 178 .......................287 Figure A.3.113 FTIR Spectrum (thin film/NaCl) of Compound 178 .............................288

Page 16: Abstract - John L. Wood

xv

Figure A.3.114 13C NMR (100 MHz, CDCl3) of Compound 178 ..................................288 Figure A.3.115 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 179 .......................289 Figure A.3.116 FTIR Spectrum (thin film/NaCl) of Compound 179 .............................290 Figure A.3.117 13C NMR (100 MHz, CDCl3) of Compound 179 ..................................290 Figure A.3.118 1H NMR (500 MHz, CDCl3) of Compound 156 ...................................291 Figure A.3.119 FTIR Spectrum (thin film/NaCl) of Compound 156 .............................292 Figure A.3.120 13C NMR (100 MHz, CDCl3) of Compound 156 ..................................292 Figure A.3.121 1H NMR (400 MHz, CDCl3) of Compound 180 ...................................293 Figure A.3.122 FTIR Spectrum (thin film/NaCl) of Compound 180 .............................294 Figure A.3.123 13C NMR (100 MHz, CDCl3) of Compound 180 ..................................294 Figure A.3.124 1H NMR (500 MHz, CDCl3) of Compound 181 ...................................295 Figure A.3.125 FTIR Spectrum (thin film/NaCl) of Compound 181 .............................296 Figure A.3.126 13C NMR (100 MHz, CDCl3) of Compound 181 ..................................296 Figure A.3.127 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 183 .......................297 Figure A.3.128 FTIR Spectrum (thin film/NaCl) of Compound 183 .............................298 Figure A.3.129 13C NMR (100 MHz, CDCl3) of Compound 183 ..................................298 Figure A.3.130 1H NMR (400 MHz, CDCl3) of Compound 185 ...................................299 Figure A.3.131 FTIR Spectrum (thin film/NaCl) of Compound 185 .............................300 Figure A.3.132 13C NMR (100 MHz, CDCl3) of Compound 185 ..................................300 Figure A.3.133 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 186 .......................301 Figure A.3.134 FTIR Spectrum (thin film/NaCl) of Compound 186 .............................302 Figure A.3.135 13C NMR (100 MHz, CDCl3) of Compound 186 ..................................302 Figure A.3.136 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 187 .......................303 Figure A.3.137 FTIR Spectrum (thin film/NaCl) of Compound 187 .............................304 Figure A.3.138 13C NMR (100 MHz, CDCl3) of Compound 187 ..................................304 Figure A.3.139 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 188 .......................305 Figure A.3.140 FTIR Spectrum (thin film/NaCl) of Compound 188 .............................306 Figure A.3.141 13C NMR (100 MHz, CDCl3) of Compound 188 ..................................306 Figure A.3.142 1H NMR (500 MHz, CDCl3) of Compound 190. ..................................307 Figure A.3.143 FTIR Spectrum (thin film/NaCl) of Compound 190 .............................308 Figure A.3.144 13C NMR (125 MHz, acetone-d6) of Compound 190 ............................308 Figure A.3.145 1H NMR (400 MHz, CDCl3) of Compound 194 ...................................309 Figure A.3.146 FTIR Spectrum (thin film/NaCl) of Compound 194 .............................310 Figure A.3.147 13C NMR (100 MHz, acetone-d6) of Compound 194 ............................310 Figure A.3.148 1H NMR (500 MHz, CDCl3) of Compound 196 ...................................311 Figure A.3.149 FTIR Spectrum (thin film/NaCl) of Compound 196 .............................312 Figure A.3.150 13C NMR (100 MHz, acetone-d6) of Compound 196 ............................312 Figure A.3.151 1H NMR (500 MHz, acetone-d6) of Compound 199 .............................313 Figure A.3.152 FTIR Spectrum (thin film/NaCl) of Compound 199. ............................314 Figure A.3.153 13C NMR (100 MHz, acetone-d6) of Compound 199 ............................314

Page 17: Abstract - John L. Wood

xvi

Appendix 4 Figure A.4.1 ORTEP plot of Spirolactone 127 ...............................................................315 Figure A.4.2 ORTEP plot of Spirolactone 149 ...............................................................318 Figure A.4.3 ORTEP plot of Spirolactone 153 ...............................................................321 Figure A.4.4 ORTEP plot of Spirolactone 168 ...............................................................324 Chapter 4 Figure 4.1 Syributins and Secosyrins..............................................................................328 Appendix 5 Figure A.5.1 1H NMR (500 MHz, CDCl3) of Compound (-)-246 ..................................363 Figure A.5.2 FTIR Spectrum (thin film/NaCl) of Compound (-)-246............................364 Figure A.5.3 13C NMR (125 MHz, CDCl3) of Compound (-)-246 .................................364 Figure A.5.4 1H NMR (500 MHz, CDCl3) of Compound (+)-246 .................................365 Figure A.5.5 FTIR Spectrum (thin film/NaCl) of Compound (+)-246...........................366 Figure A.5.6 13C NMR (125 MHz, CDCl3) of Compound (+)-246 ................................366 Figure A.5.7 1H NMR (500 MHz, CDCl3) of Compound (+)-226c ...............................367 Figure A.5.8 FTIR Spectrum (thin film/NaCl) of Compound (+)-226c .........................368 Figure A.5.9 13C NMR (125 MHz, CDCl3) of Compound (+)-226c ..............................368 Figure A.5.10 1H NMR (500 MHz, CDCl3) of Compound (-)-226c ..............................369 Figure A.5.11 FTIR Spectrum (thin film/NaCl) of Compound (-)-226c ........................370 Figure A.5.12 13C NMR (125 MHz, CDCl3) of Compound (-)-226c .............................370 Figure A.5.13 1H NMR (500 MHz, CDCl3) of Compound (+)-201 ...............................371 Figure A.5.14 FTIR Spectrum (thin film/NaCl) of Compound (+)-201.........................372 Figure A.5.15 13C NMR (125 MHz, CDCl3) of Compound (+)-201 ..............................372 Figure A.5.16 1H NMR (500 MHz, CDCl3) of Compound (-)-201 ................................373 Figure A.5.17 FTIR Spectrum (thin film/NaCl) of Compound (-)-201..........................374 Figure A.5.18 13C NMR (125 MHz, CDCl3) of Compound (-)-201 ...............................374 Figure A.5.19 1H NMR (500 MHz, CDCl3) of Compound (+)-202 ...............................375 Figure A.5.20 FTIR Spectrum (thin film/NaCl) of Compound (+)-202.........................376 Figure A.5.21 13C NMR (125 MHz, CDCl3) of Compound (+)-202 ..............................376 Figure A.5.22 1H NMR (500 MHz, CDCl3) of Compound (-)-202 ................................377 Figure A.5.23 FTIR Spectrum (thin film/NaCl) of Compound (-)-202..........................378 Figure A.5.24 13C NMR (125 MHz, CDCl3) of Compound (-)-202 ...............................378 Figure A.5.25 1H NMR (500 MHz, CDCl3) of Compound (+)-203 ...............................379 Figure A.5.26 FTIR Spectrum (thin film/NaCl) of Compound (+)-203.........................380 Figure A.5.27 13C NMR (125 MHz, CDCl3) of Compound (+)-203 ..............................380 Figure A.5.28 1H NMR (500 MHz, CDCl3) of Compound (-)-203 ................................381 Figure A.5.29 FTIR Spectrum (thin film/NaCl) of Compound (-)-203..........................382 Figure A.5.30 13C NMR (125 MHz, CDCl3) of Compound (-)-203 ...............................382

Page 18: Abstract - John L. Wood

xvii

List of Schemes

Chapter 1 Scheme 1.1 Proposed Biosynthesis of Syringolides............................................................5 Scheme 1.2 Wood et al.: Total Synthesis of (+)- and (-)-Syringolides 1 and 2 ..................6 Scheme 1.3 Kuwahara et al.: Total Synthesis of (-)-Syringolides 1 and 2..........................8 Scheme 1.4 Murai et al.: Total Synthesis of (-)-Syringolide 1............................................9 Scheme 1.5 Rickards and Henschke: Total Synthesis of (-)-Syringolide 2 ......................10 Scheme 1.6 Rickards and Henschke: Total Synthesis of (-)-Deuterosyringolide 2 ..........11 Scheme 1.7 Honda et al.: Total Synthesis of (-)-Syringolides 1 and 2 .............................12 Scheme 1.8 Sims et al.: Total Synthesis of (-)- and (+)-Syringolide 1 and (-)-∆7-Syringolide 1 ...................................................................................................14 Scheme 1.9 Sims et al.: Total Synthesis of (-)-Syringolide 1 ...........................................15 Scheme 1.10 Wong et al.: Synthesis of Precursor 47........................................................16 Scheme 1.11 Wong et al.: Improved Synthesis of (-)-Syringolides 1 and 2 .....................17 Scheme 1.12 Chênevert and Dasser: Total Synthesis of (-)-Syringolide 2 .......................18 Scheme 1.13 Chênevert and Dasser: Improved Total Synthesis of (-)-Syringolide 2.......19 Scheme 1.14 Yoda et al.: Formal Synthesis of (-)-Syringolide 1......................................20 Chapter 2 Scheme 2.1 Proposed Biosynthesis of Syringolides..........................................................25 Scheme 2.2 Syringolides: Retrosynthetic Analysis...........................................................26 Scheme 2.3 Biomimetic Total Synthesis of (-)-Syringolides 1, 2 and 3 ...........................28 Scheme 2.4 Biomimetic Total Synthesis of (-)-N-(Carbobenzyloxy)-8- aminosyringolide 1.....................................................................................................31 Chapter 3 Scheme 3.1 Doyle and Dyatkin: Spirolactone Synthesis ................................................120 Scheme 3.2 Syringolides: Retrosynthetic Analysis........................................................121 Scheme 3.3 C-H Insertion: General Strategy ..................................................................122 Scheme 3.4 ......................................................................................................................124 Scheme 3.5 ......................................................................................................................124 Scheme 3.7 ......................................................................................................................126 Scheme 3.8 ......................................................................................................................127 Scheme 3.9 ......................................................................................................................128 Scheme 3.10 ....................................................................................................................129 Scheme 3.11 ....................................................................................................................130 Scheme 3.12 ....................................................................................................................131 Scheme 3.13 ....................................................................................................................131

Page 19: Abstract - John L. Wood

xviii

Scheme 3.14 ....................................................................................................................132 Scheme 3.15 ....................................................................................................................133 Scheme 3.16 ....................................................................................................................135 Scheme 3.17 ....................................................................................................................136 Scheme 3.18 ....................................................................................................................137 Scheme 3.19 ....................................................................................................................137 Scheme 3.20 ....................................................................................................................138 Scheme 3.21 ....................................................................................................................139 Scheme 3.22 ....................................................................................................................140 Scheme 3.23 ....................................................................................................................140 Scheme 3.24 ....................................................................................................................141 Scheme 3.25 ....................................................................................................................142 Scheme 3.25 ....................................................................................................................143 Scheme 3.27 ....................................................................................................................144 Scheme 3.28 ....................................................................................................................144 Scheme 3.29 ....................................................................................................................145 Scheme 3.30 ....................................................................................................................147 Scheme 3.31 ....................................................................................................................148 Scheme 3.30 ....................................................................................................................151 Chapter 4 Scheme 4.1 Proposed Biosynthesis of Secosyrins and Syributins ..................................330 Scheme 4.2 Honda et al.: Total Synthesis of (+)-Syributin 1..........................................331 Scheme 4.3 Honda et al.: Total Synthesis of (+)-Syributin 1..........................................332 Scheme 4.4 Wong et al.: Total Synthesis (+)-Syributins 1 and 2 ...................................333 Scheme 4.5 Wong et al.: Total Synthesis (+)-Secosyrins 1 and 2...................................334 Scheme 4.6 Mukai et al.: Total Synthesis of (+)-Syributins 1 and 2...............................335 Scheme 4.7 Mukai and co-workers: Total Synthesis of (+)-Secosyrins 1 and 2.............336 Scheme 4.8 Mukai et al.: Synthesis of (+)-Secosyrin 1 from (+)-Syributin 1 ...............337 Scheme 4.9 Yoda et al.: Total Synthesis of (+)-Syributin 1............................................337 Scheme 4.10 Carda et al.: Formal Synthesis of (+)-Secosyrins and (+)-Syributins.......338 Chapter 5 Scheme 5.1 Syributins: Retrosynthetic Analysis............................................................341 Scheme 5.2 Total Synthesis of (+)-Syributins 1, 2 and 3................................................342 Scheme 5.3 Total Synthesis of (-)-Syributins 1, 2 and 3.................................................343

Page 20: Abstract - John L. Wood

xix

List of Tables

Appendix 2 Table A.2.1 Atomic coordinates and Biso/Beq for Syringolide 3 ..................................119 Appendix 4 Table A.4.1 Atomic coordinates and Biso/Beq for Spirolactone 127 .............................317 Table A.4.2 Atomic coordinates and Biso/Beq for Spirolactone 149 .............................320 Table A.4.3 Atomic coordinates and Biso/Beq for Spirolactone 153 .............................323 Table A.4.4 Atomic coordinates and Biso/Beq for Spirolactone 168 .............................326 Appendix 6 Table A.6.1 Compounds Appearing in Chapter 2...........................................................383 Table A.6.2 Compounds Appearing in Chapter 3...........................................................385 Table A.6.3 Compounds Appearing in Chapter 5...........................................................387

Page 21: Abstract - John L. Wood

xx

List of Abbreviations [α]D20 specific rotation at 20 °C and wavelength of sodium D line p-ABSA 4-acetamidobenzenesulfonyl azide AcOH acetic acid app. apparent aq aqueous Bn benzyl br broad Bu butyl c concentration in g/100mL C carbon °C degrees Celsius calcd calculated CCl4 carbon tetrachloride CDCl3 chloroform-d CH3CN acetonitrile CHCl3 chloroform CH2Cl2 methylene chloride CI chemical ionization Cs2CO3 cesium carbonate δ chemical shift in ppm downfield from Me4Si d doublet DBU 1,8-diazabicyclo[5.4.0]undec-7-ene DCC 1,3-dicyclohexylarbodiimide dd doublet of doublets ddd doublet of doublets of doublets DMAP 4-(dimethylamino)pyridine DMF dimethylformamide dt doublet of triplets ea. each Eds. editors EI electron impact equiv equivalent Et ethyl Et2O ethyl ether EtOAc ethyl acetate Et3N triethylamine FAB fast atom bombardment FTIR Fourier transform infrared g gram(s) h hour(s) H hydrogen Hz hertz HBF4 tetrafluoroboric acid HBr hydrobromic acid

Page 22: Abstract - John L. Wood

xxi

HCl hydrochloric acid HF hydrofluoric acid HPLC high-performance liquid chromatography HR hypersensitive response HRMS high-resolution mass spectrum J coupling constant L liter(s) LDA lithium diisopropylamide LiOH lithium hydroxide lit. literature µ micro m milli, medium (FTIR), multiplet (NMR) M moles per liter Me methyl MeOH methanol Me4Si tetramethylsilane MgSO4 magnesium sulfate mp melting point MHz megahertz min minute(s) mol mole(s) mp melting point MsN3 mesyl azide m/z mass to charge ratio N normal NH4Cl ammonium chloride NaCl sodium chloride NaHCO4 sodium bicarbonate NaOH sodium hydroxide NMR nuclear magnetic resonance O oxygen OAc acetate p para P. Pseudomonas P. s. Pseudomonas syringae pv. pathovar pH hydrogen ion concentration POCl3 phosphorous oxychloride ppm parts per million ppt precipitate q quartet quint. quintuplet Rh2(cap)4 rhodium(II) caprolactam Rh2(OAc)4 rhodium(II) acetate dimer Rh2(NHCOC3F7) rhodium(II) perfluorobutyramide Rh2(tfa)4 rhodium(II) trifluoroacetate dimer

Page 23: Abstract - John L. Wood

xxii

RuCl3 ruthenium(III) chloride s singlet (NMR), strong (FTIR) sext. sextuplet soln solution t triplet td triplet of doublets TBAF tetrabutylammonium fluoride TBS tert-butyldimethylsilyl TBSOTf tert-butyldimethylsilyl trifluoromethylsulfonate td triplet of doublets TMSCHN2 (trimethylsilyl)diazomethane TFA trifluoroacetic acid THF tetrahydrofuran TLC thin layer chromatography TsOH toluenesulfonic acid w weak

Page 24: Abstract - John L. Wood

1

Chapter 1

Syringolides: Background and Introduction.

1.1 Biological Background: The Hypersensitive Response.

The hypersensitive response (HR) of plants is an active mechanism of defense

that allows them to resist pathogen infection.1 It involves cell death in the site of

infection and a complex series of biochemical changes in the plant that restrict the

pathogen’s proliferation.

According to the gene-for-gene complementarity hypothesis, first described by

Flor in 1942,2 an HR will only occur if the pathogen contains a specific avirulence (avr)

gene and the plant has a specific resistance (R) gene. These two genes are

complementary since both are required for the HR to occur. If either the pathogen lacks

the avr gene or the plant lacks the corresponding R gene there will be no HR and

infection will not be prevented.

Pathogen avr genes are responsible for the biosynthesis of metabolites named

elicitors that trigger the HR in plants. It is believed that plant R genes encode for specific

receptors for the pathogen elicitors, however these putative receptors have not yet been

characterized and the way they interact with the elicitors and trigger the HR is not well

understood.

1.2 Syringolides: Isolation and Biological Activity.

In 1993 Sims et al.3 reported the isolation of syringolide 1 (1) and syringolide 2

(2), the first nonproteinaceous specific elicitors of a plant HR. Syringolides 1 and 2 are

Page 25: Abstract - John L. Wood

2

bacterial signal molecules (elicitors) produced by the avirulence gene D (avrD) of

Pseudomonas syringae pv. tomato. The syringolides elicit an HR on soybean cultivars

carrying the resistance gene Rpg4. Through a combination of NMR experiments and X-

ray crystallography Sims et al. determined the structures illustrated in Figure 1.1.

OO

O

HO

O

OO

O

HO

O

OO

O

HO

O HO HHH HOHO

(-)-Syringolide 1 (1) (-)-Syringolide 2 (2) (-)-Syringolide 3 (3)

Figure 1.1 Syringolide elicitors.

In 1994 Yucel et al.4 reported that two different classes of avrD alleles occur in P.

syringae pathovars: class I and class II alleles. Class I alleles include the avrD allele 1

from P. s. pv. lachrimans and the avrD allele from P. s. pv. tomato. Class II alleles

include the avrD allele 2 from P. s. pv. lachrimans and the avrD allele from P. s. pv.

phaseolicola. The same year Yucel and co-workers5 reported that the two classes of

alleles direct the production of different syringolides. Class I avrD alleles are responsible

for the biosynthesis of syringolides 1 (1) and 2 (2) while class II avrD alleles direct the

production of syringolide 1 (1) and syringolide 3 (3), a new member of the syringolide

family.

Page 26: Abstract - John L. Wood

3

1.3 Syringolides as Molecular Probes.

From the time syringolides were isolated it was believed that they could be used

to study their interaction with the products of soybean Rpg4 genes and help to elucidate

the molecular mechanisms of the HR and plant-pathogen interactions.

It was supposed that syringolide-like molecules could be used as molecular

probes for the isolation of the putative soybean protein receptor (presumably encoded by

the Rpg4 gene) as long as these syringolide derivatives retained their biological activity

and could bind to their receptor. This could be achieved by obtaining biologically active

syringolide derivatives that could either be fixed to a polymer support for affinity

chromatography or, alternatively, be radiolabelled for radioisotope detection.

Two approaches were used for obtaining the requisite syringolide derivatives;

these include:

a) Total synthesis of syringolides that could be easily modified for the production

of derivatives suitable for affinity chromatography6,7 (by incorporating an amino

functionality at the terminus of the aliphatic side chain) or radiolabelling experiments6,8-11

(by addition of radioactive atoms to a double bond at the end of the aliphatic side chain).

b) Derivatization of the natural product to compounds suitable for affinity

chromatography or radiolabelling experiments.12

1.4 Isolation and Characterization of a Syringolide-Binding Protein.

Using a biologically active 123I labelled derivative of natural syringolide 1, 123I-

syringolide 1 (4), Ji et al.13 discovered that syringolide binds specifically to a soluble

protein fraction from soybean leaves. In 1998 Ji et al.14 isolated and characterized a 34-

kDa soybean protein that binds to syringolide. They achieved this with the aid of 4 and

Page 27: Abstract - John L. Wood

4

an affinity gel chromatography prepared with a biologically active succinyl derivative of

natural syringolide 1 (5). Ji et al. believe this protein may be the protein receptor of

syringolide, although surprisingly this protein is present in plants either harboring or

lacking the Rpg4 gene. These results suggest that initial recognition of the syringolide

elicitor is not done by proteins encoded by Rpg4 as initially presumed, but by receptors

(present in all soybean plants) which transduct a signal which results in an HR only in

plants carrying the Rpg4 gene.15

OO

O

O

OHHO

125I-Syringolide 1 (4)

O125IMeO

MeOOMe

OOO

O

OHHO

OHO

O

4'-Succinyl Syringolide 1 (5)

Figure 1.2 Syringolide 1 derivatives.

1.5 Proposed Biosynthesis of Syringolides.

Sims et al.3 proposed in the original syringolides isolation and characterization

papers a possible biosynthesis for these compounds from common metabolites (Scheme

1.1)

The first step would involve acylation of D-xylulose (6) with a β-ketoacid

derivative such as 7 to furnish the ester intermediate 8. Intramolecular Knoevenagel

condensation of 8 would result in the formation of butenolide 9. Finally, intramolecular

Page 28: Abstract - John L. Wood

5

Michael addition of the primary alcohol over the α,β-unsaturated system and

hemiketalization would result in the formation of the natural product.

OH

HO

HO

OOH

SCoA

O O

n

7a, n = 37b, n = 57c, n = 1

6

OH

HO

HO

OO

O

On

8a, n = 38b, n = 58c, n = 1

OH

9a, n = 39b, n = 59c, n = 1

O

OO

HO

HOn OO

O

HO

O

n

1, n = 32, n = 53, n = 1

HHO

Scheme 1.1 Proposed Biosynthesis of Syringolides.

1.6 Syntheses of Syringolides.

Since 1995 there have been reported nine different total syntheses of syringolides

1 and 26-10,16-19 and a formal one.11 However, syringolide 3 has yet to be synthesized. As

mentioned earlier, many of these syntheses were designed to allow ready access to

syringolide derivatives suitable for affinity chromatography6-7 or radiolabelling

experiments.6,8-11 All the syringolide syntheses reported to date are outlined below.

Page 29: Abstract - John L. Wood

6

1.6.1 Wood et al.: Total Synthesis of (+)- and (-)-Syringolides 1 and 2.

In 1995, Wood et al.6 published the first total synthesis of syringolides 1 and 2.

This approach (Scheme 1.2) is based on the proposed biosynthesis of syringolides

(Scheme 1.1) and confirmed the absolute stereochemistry of (-)-syringolides proposed by

Sims et al.3 (Figure 1.1).

OH

OO

14a, n = 314b, n = 5

OTBS

OO

O

On

15a, n = 315b, n = 5

n OO

O

HO

O

n

1, n = 32, n = 5

OTBS

ON2

OTBS

O

O

O

13

Br

OHOHO

O OTBSOHO

O

O

O

OTBS

O

O

O

OO

NaH, THF

TBSCl(65%)

10 11

12

n

16a, n = 316b, n = 5

O

O

1. RuCl3, NaIO42. EtOC(O)Cl, Et3N

3. CH2N2(50%, three steps)

HBr, Et2O

-78 °C(80%)

Cs2CO3, DMF(75-80%)

HCl, THF

(15%)

HO H

Scheme 1.2 Wood et al.: Total Synthesis of (+)- and (-)-Syringolides 1 and 2.

Page 30: Abstract - John L. Wood

7

In this synthesis, asymmetry originated in the starting material 10 which is

commercially available in both enantiomerically pure forms. The aliphatic side chain of

the β-ketoacids 14 could be easily modified for the production of derivatives suitable for

affinity chromatography (by incorporating an amino functionality) or radiolabelling

experiments (by addition of radioactive atoms to a double bond at the end of the chain)

and this idea was incorporated in several of the subsequent syringolide syntheses. The

key step of the synthesis was the deprotection of 16 to furnish the desired syringolides.

Unfortunately this final step was problematic and low-yielding. Full details of this

synthesis are provided in Chapter 2.

1.6.2 Kuwahara et al.: Total Synthesis of (-)-Syringolides 1 and 2.

Kuwahara et al.7 published the second total synthesis of syringolides (Scheme

1.3). Their approach was very similar to the one by Wood et al., the main difference

being the type of protecting groups used. Deprotection of 22 failed to furnish directly the

syringolides since acetal 23 unexpectedly formed and a second deprotection step was

included. The potential of this approach for the synthesis of aminated syringolide

analogs suitable for affinity chromatography was recognized.

Page 31: Abstract - John L. Wood

8

DCC, DMAP, CH2Cl2

OTBS

OO

O

On

21a, n = 321b, n = 5

n

OTBS

O

OO

NaH, THF

TBSCl(91%)

17 18

22a, n = 322b, n = 5

Swern

oxidation

p-TsOH

1:5 acetone:water(46-51%)

MOMOMOMO

MOMOMOMO

H

19

MOMO

MOMO

O

OTBS

20a, R = EE20b, R = H

MOMO

MOMO

OOR

MOMO

MOMO

MOMO

MOMO

OO

O

HO

O

n

23a, n = 323b, n = 5

MeO H

1. Bu3SnCH2OEE, n-BuLi, THF2. Swern oxidation

3. PPTS, EtOH(63%, four steps)

SiO2, hexanes-EtOAc

(51-56%, two steps)

Dowex 50W-X8

MeOH(30-36%)

Scheme 1.3 Kuwahara et al.: Total Synthesis of (-)-Syringolides 1 and 2.

OH

OH

OH

OTBS OTBS

OH

OO

14a, n = 314b, n = 5

n

OO

O

HO

O

n

1, n = 32, n = 5

HO H

1.6.3 Murai et al.: Total Synthesis of (-)-Syringolide 1.

Murai et al.8 reported the third syringolide synthesis in 1996 and 1997. Sharpless

asymmetric dihydroxylation of 29a was the source of asymmetry. The final deprotection

step was low-yielding as in previous syntheses. The potential of this approach for the

synthesis of radiolabelled analogs suitable for receptor studies was mentioned.

Page 32: Abstract - John L. Wood

9

O

OBu

O

33

TBSO

OTBSOTBS

O

OBuO

32

TBSO

OTBSOTBS

O

OBuMPMO

31

TBSO

OTBSOTBS

O

OMPMO

30aa (38%, 90% ee)30ab (57%, 74% ee)

HO

OTBSOH

O

OBuOR

28a, R = H (68%)28b, R = H (26%)29a, R = MPM (82%)29b, R = MPM (100%)OTBS

O

O

26OTBS

O

O

OO

24

O

O

27OTBS

OBu

Cu(CN)Li

OTBS

25

THF, -78 °C

(49%)+

NaH, BuLi, BuBr;20:1 THF:HMPA, 0 °C

(80%)

1. NaBH4, MeOH, -5 °C

2. MPMOC(=NH)CCl3;TfOH, Et2O

AD-mixβMeSO2NH2

1:1 t-BuOH:H2O, 0 °C29a

30ab

TBSOTf, 2,6-lutidine

CH2Cl2 (98%)

1. DDQ, CH2Cl2-H2O

2. PDC, CH2Cl2(72%, two steps)

1. KHMDS, PhSeBr,THF, -78 °C

2. H2O2, Py, CH2Cl2(67%, two steps)

p-TsOH10:1 THF:H2O

(16%, ca. 87% ee)

Scheme 1.4 Murai et al.: Total Synthesis of (-)-Syringolide 1.

OO

O

HO

O

3

1

HO H

Page 33: Abstract - John L. Wood

10

1.6.4 Rickards and Henschke: Total Synthesis of (-)-Syringolide 2 and (-)-

Deuterosyringolide 2.

Rickards and Henschke9a published the fourth syringolide synthesis in 1996

(Scheme 1.5). This approach is very short and uses D-xylulose (6) as starting material,

just as proposed for the biosynthesis of syringolides. The final step is low-yielding.

O

OO

MeO

HO

OH

O O

O O

OH

O

OO

MeO

HO

O O

5

34

p-MeOC6H4CHO

ZnCl2, sonication(64%)

35b, 0.2 equiv

THF, reflux (67%)

5

36

H2Pd(OH)2/C

AcOH (83%)

Basic Al3O3

THF (6%)

2

Scheme 1.5 Rickards and Henschke: Total Synthesis of (-)-Syringolide 2.

OH

HO

HO

OOH

6

OH

HO

HO

OO

O

O5

8b

OO

O

HO

O

5

HO H

O

Page 34: Abstract - John L. Wood

11

In 1998 Rickards and Henschke9b reported the synthesis of deuterated syringolide

(41). In this approach (Scheme 1.6) they modified their original synthesis by

incorporating a terminal olefin in the Meldrum’s acid 37 used to acylate 34. In contrast

to their original approach, removal of the p-methoxybenzylidene group of 38 to furnish

39 was effected with TFA instead of 2H2 thus postponing the use of isotopic hydrogen

(2H or 3H) until after the low-yielding cyclization. Unsaturated syringolide analogue 40b

was deuterated to furnish 41 in quantitative yield .

O O

O O

OH37, 0.5 equiv

THF, reflux (38%)

5

O

OO

MeO

HO

O

O O

5

38

OH

OHHO

OO

OO

5

39

67% aq TFA

THF (64%)

O

O

HO

OHHO

40b

4

Basic Al3O3

THF (6%)

2H2, Pd(OH)2/C

AcOH (100%)OO

O

HO

OHHO

41

4

2H

2HO

Scheme 1.6 Rickards and Henschke: Total Synthesis of (-)-Deuterosyringolide 2.

O

OO

MeO

HO

OH

34

Page 35: Abstract - John L. Wood

12

O

OOH

TBSO

O

O

HO

OTBSOH

O

O

44OTBS

O

O

42

B

OTBS43

+

TfO

O

O

O

O

HO

OO

O

O

TBSO

OO

OO

O

O

TBSO

OO

O

OO

O

OH

O

AD-mixβMeSO2NH2

1:1 t-BuOH:H2O, 0 °C(85%)

45

2,2-Dimethoxypropane

PPTS, DMF(80%)

46

TBSCl, imidazole

DMF (85%)

47

H

O

48a, n = 348b, n = 5

n

Bu2BOTf, i-Pr2NEt(83-87%)

n Dess-Martinperiodinate

CH2Cl2 (93-96%)

49a, n = 349b, n = 5

50a, n = 350b, n = 5

6 N HCl, THF

50a,b

+

51a, n = 3 (44%)51b, n = 5 (40%)

n

Dowex 50W-X8

MeOH(36-40%)

n

Scheme 1.7 Honda et al.: Total Synthesis of (-)-Syringolides 1 and 2.

OO

OHO

O

n23a, n = 323b, n = 5(Kuwahara et al., scheme 1.3)

MeO H

(Ph3P)2PdCl2K3PO4, THF

70 °C (48%)

OO

O

HO

O

n

1, n = 3 (10%)2, n = 5 (12%)

HO H

Page 36: Abstract - John L. Wood

13

1.6.5 Honda et al.: Total Synthesis of (-)-Syringolides 1 and 2.

The fifth synthesis of syringolides was reported by Honda et al.16 in 1996. As in

the synthesis by Murai et al., Sharpless asymmetric dihydroxylation (in this case of 44)

was the source of asymmetry. The final deprotection step was low-yielding as in

previous syntheses.

1.6.6 Sims et al.: Total Synthesis of (-)- and (+)-Syringolide 1 and (-)-∆7-Syringolide

1.

In 1997, Sims et al.10 published the sixth syringolide synthesis starting with D-

xylose (52). The approach (Scheme 1.8) is short (two steps from 53) but as in previous

syntheses the final step is low-yielding. By replacing D-xylose with L-xylose they

obtained unnatural (+)-syringolide 1 and surprisingly they discovered that both

enantiomers of syringolide 1 are specific elicitors of the HR in soybean plants harboring

the Rpg4 gene. An alternative seven-step synthesis (Scheme 1.9) had a better overall

yield (14% vs. 6.3%).

Page 37: Abstract - John L. Wood

14

O

OO

HO

O

O

R

O

O

O

HO

OHHO

O

O

OO

HO

OH

53

55, R = -(CH2)4CH356, R = -(CH2)3CH=CH2

1, R = -(CH2)4CH340a, R = -(CH2)3CH=CH2

R

14a, R = -(CH2)4CH354, R = -(CH2)3CH=CH2

R

O

OH

O

1. Pyridine, reflux

2. CuSO4, acetone DCC, DMAP, CH2Cl2, 0 °C(48-49%)

9:1 TFA:H2O

(12-13%)

Scheme 1.8 Sims et al.: Total Synthesis of (-)- and (+)-Syringolide 1 and(-)-∆7-Syringolide 1.

1

H2, 10% Pd/C

(100%)

40a

O

HO

HO

OHOH

52

O

O

HO

OHHO

O O

O

HO

OHHO

O

Exploring the possibility of using their methodology to synthesize radiolabelled

syringolide analogues for receptor studies, Sims et al. modified their first approach by

incorporating a terminal olefin in the β-ketoacid 54 used to acylate 53. Thus, they

obtained unsaturated syringolide analogue 40a which was quantitavely hydrogenated to

syringolide 1 (1) and accordingly it should be easily reduced with 3H to afford tritium-

labelled syringolide 1.

Page 38: Abstract - John L. Wood

15

O

OO

BnO

O

O

R

O

O

O

BnO

OHHO

O

O O

O O

R OH

O

OO

BnO

OH

57

35a, R = -(CH2)4CH3

58, R = -(CH2)4CH3

60, R = -(CH2)4CH3

R

OBnO

O

O

R

O

59, R = -(CH2)4CH3

HOHO

Toluene, reflux(98%)

9:1 TFA:H2O

(80%)

H2, 10% Pd/C

(100%)

Scheme 1.9 Sims et al.: Total Synthesis of (-)-Syringolide 1.

1. Ph3CCl, pyridine2. BnCl, NaH, DMF

3. 2 N HCl(77%, three steps)

TFA, AcOH

(23%)

OHO

O

O

R

O

61, R = -(CH2)4CH3

HOHOTiCl4, CH2Cl2

-30 °C (80-84%)

pH 6, H2O

(12%)

1

O

O

HO

OHHO

O

1

O

O

HO

OHHO

O

O

OO

HO

OH

53

O

OO

R'O

O

O

R

O

55; R = -(CH2)4CH3, R' = OH58; R = -(CH2)4CH3, R' = OBn

Page 39: Abstract - John L. Wood

16

O

SiMe3

TBSO

OO

O

O

TBSO

OO

TBSCl, Et3N, DMAP

DMF (96%)

47

Scheme 1.10 Wong et al.: Synthesis of Precursor 47.

OTBSO

OO

67

OHO

OO

64(70% from 62a)(62% from 62b)

OR

LiBEt3H, THF

-78 °C (100%)

1. n-BuLi, THF, -78 °C

2.

62a, R = Sn(n-Bu)362b, R = Br

HO

OO

63

OO

OO

65

PDC, CH2Cl2

(95%)

OHO

OO

66

1. n-BuLi, THF, -78 °C

2. TMSCl(82%, two steps)

68

32% AcOOH, NaOAc

CH2Cl2 (70%)

1.6.7 Wong et al.: Improved Synthesis of (-)-Syringolides 1 and 2.

In 1997 Wong et al.20 synthesized 47 as an intermediate for the total synthesis of

syributins and secosyrins (Scheme 1.10). In 1998 Wong et al.17 published an improved

synthesis of syringolides (seventh in the series) where they used the methodology

developed by Honda et al.16 to obtain syringolide precursors 50 in two steps from 47.

They greatly improved the yield of the final deprotection step to obtain syringolides by

employing 1:1 10% HF:MeCN and discovered that side products 51, obtained in several

Page 40: Abstract - John L. Wood

17

of the previous syringolide syntheses, could be transformed into the corresponding

syringolides by treating them with p-TsOH in 1:1 acetone:water (Scheme 1.11).

1:1 10% HF:MeCN

Scheme 1.11 Wong et al.: Improved Synthesis of (-)-Syringolides 1 and 2.

Silica gel (60%)

p-TsOH1:1 acetone:H2O

(52%)

O

OOH

TBSOO

O

TBSO

OO

OO

O

O

TBSO

OO

O

OO

O

OH

O

47

H

O

48a, n = 348b, n = 5

n

Bu2BOTf, i-Pr2NEt(83-88%)

n

Dess-Martinperiodinate

CH2Cl2 (89-91%)

49a, n = 349b, n = 5

50a, n = 350b, n = 5

51a, n = 351b, n = 5

n

n

OO

O

HO

O

n

1, n = 3 (56%)2, n = 5 (52%)

HO H

1.6.8 Chênevert and Dasser: Total Synthesis of (-)-Syringolide 2.

The eight total synthesis of syringolides was reported by Chênevert and Dasser18

this year. They used di-O-isopropylidene-D-arabinose (69) as the source of asymmetry

(Scheme 1.12) and the final deprotection was made in two steps with good overall yield.

Page 41: Abstract - John L. Wood

18

5

OMPM

O

O

O

OO

69

O

O

Scheme 1.12 Chênevert and Dasser: Total Synthesis of (-)-Syringolide 2.

O

H

OO

71

O

O OH

OO

O

O OMPM

OO

O

O OMPM

OHOH

O

O OMPM

OHOAc O

O OMPM

OOAc

O

O OMPM

OOH

NaBH4, EtOH

(90%)

70

NaH, MPMCl

DMF (91%)

MeOH, p-TsOH

(73%)

72

AcCl, 2,4,6-collidine

-78 °C (90%)

73

(COCl)2, DMSO

(87%)

74

Candida antartica lipase

EtOH, (i-Pr)2O(85%)

75

1. THF, reflux, 35b

2. SiO2, 9:1 hexanes:EtOAc(71%, two steps)

76

5

OH

O

O

O

OO

77

DDQ, CH2Cl2, H2O

(83%)

p-TsOH1:1.2 acetone:H2O

(54%)

2

OO

O

HO

O

5

HO H

O O

O O

OH5

Also this year they reported a ninth total synthesis of syringolides19 wherein the

protected D-xylulose derivative 75 was produced in three steps from aldehyde 78 and

Page 42: Abstract - John L. Wood

19

dihydroxyacetone phosphate (79) (Scheme 1.13) . The key step of the synthesis is the

enantiospecific condensation of 78 and 79 in the presence of fructose 1,6-diphosphate

aldolase (FDP aldolase).

Scheme 1.13 Chênevert and Dasser: Improved Total Synthesis of (-)-Syringolide 2.

OMPM

OOHHO

HO

OOPO3

=HOOMPMH

O+

78 79

80

1. FDP aldolase, H2O, DMF

2. Acid phosphatase(65%, two steps)

Acetone, p-TsOH

(67%)

5

OMPM

O

O

O

OO

O

O OMPM

OOH

75

1. THF, reflux, 35b

2. SiO2, 9:1 hexanes:EtOAc(71%, two steps)

76

5

OH

O

O

O

OO

77

DDQ, CH2Cl2, H2O

(83%)

p-TsOH1:1.2 acetone:H2O

(54%)

2

OO

O

HO

O

5

HO H

O O

O O

OH5

1.6.9 Yoda et al.: Formal Synthesis of (-)-Syringolide 1.

In 1997 Yoda et al.11 published a formal synthesis of syringolides using 1,2-O-

isopropylidene-D-xylofuranose (81) as the source of asymmetry (Scheme 1.14). They

Page 43: Abstract - John L. Wood

20

accomplished the synthesis of the syringolide precursors 23, previously reported by

Kuwahara et al.7 and the potential of this approach for the synthesis of radiolabelled

analogs suitable for receptor studies was mentioned.

Scheme 1.14 Yoda et al.: Formal Synthesis of (-)-Syringolide 1.

OO

OHO

HO OOMe

OBnBnO

BnO

OH

BnOOBn

OH

OMOM

BnOOBn

OH

OMOM

O

O

O3

OBnBnO

BnOOMOM

O

O

O3

OBnO

O

Ph

OMOM

O

O

Ph O

OO

3

1. NaH, BnBr,THF (93%)

2. MeOH, concd HCl (93%)

81 82

83 84

1. 8:1 AcOH:H2O,100 °C (91%)

2. NaBH4, EtOH(96%)

1. TBDPSCl, imidazole,DMF (92%)

2. MOMCl, (i-Pr)2Et,CH2Cl2 (97%)3. BuNF4, THF (98%)

DCC, DMAP,CH2Cl2 (92%)

85

1. 4.4% HCOOH-MeOHPd (black), 40 °C (94%)

2. PhCH(OMe)2, p-TsOH(60%)

86

1. PCC, MS4A, CH2Cl2

2. Silica gel, hexanes:EtOAc(27%, two steps)

Dowex 50W-X8

MeOH(40%)

87

OO

OHO

O

n

23a, n = 323b, n = 5

MeO H

OH

OO

14a3

OBn OBn

Page 44: Abstract - John L. Wood

21

1.7 References.

(1) (a) Keen, N. T. Adv. Bot. Res. 1999, 30, 291-328. (b) Strange, R. N. Sci.

Progr. 1998, 81, 35-68. (c) Heath, M. C. Eur. J. Plant. Pathol. 1998, 104, 117-124. (d)

Staskawicz, B. J.; Ausubel, F. M.; Baker, B. J.; Ellis, J. G.; Jones, J. D. G. Science 1995,

268, 661-667. (e) Keen, N. T. In Mechanisms of Plant Defense Responses; Fritig, B.;

Legrand, M., Eds.; Kluwer Academic: Boston, 1993; pp 3-11. (f) Keen, N. T. Plant

Molecular Biology 1992, 19, 109-122. (g) Keen, N. T. Annu. Rev. Genet. 1990, 24, 447-

463. (h) Lamb, C. J.; Lawton, M. A.; Dron, M.; Dixon, R. A. Cell 1989, 56, 215-224. (i)

Gianinazzi, S. In Plant-Microbe Interactions; Kosuge, T.; Nester, E. W., Eds.;

Macmillan: New York, 1984; Vol. 1, Chapter 13.

(2) Flor, H. H. Phytopathology 1942, 32, 653-669.

(3) (a) Smith, M. J., Mazzola, E. P.; Sims, J. J.; Midland, S. L.; Keen, N. T.;

Burton, V.; Stayton, M. M. Tetrahedron Lett. 1993, 34, 223-226. (b) Midland, S. L.;

Keen, N. T.; Sims, J. J.; Midland, M. M.; Stayton, M. M.; Burton, V.; Smith, M. J.,

Mazzola, E. P.; Graham, K. J.; Clardy, J. J. Org. Chem. 1993, 58, 2940-2945.

(4) Yucel, I.; Boyd, C.; Debnam, Q.; Keen, N. T. Mol. Plant-Microbe Interact.

1994, 7, 131-139.

Page 45: Abstract - John L. Wood

22

(5) (a) Yucel, I.; Midland, S. L.; Sims, J. J.; Keen, N. T. Mol. Plant-Microbe

Interact. 1994, 7, 148-150. (b) Keen, N.; Midland, S. L.; Boyd, C.; Yucel, I.; Tsurushima,

T.; Lorang, J.; Sims, J. J. In Advances in Molecular Genetics of Plant-Microbe

Interactions; Daniels, M. J.; Downie, J. A.; Osburn, A. E., Eds.; Kluwer Academic:

Boston, 1994; Vol. 3, pp 41-48.

(6) Wood, J. L.; Jeong, S.; Salcedo, A.; Jenkins, J. J. Org. Chem. 1995, 60, 286-

287.

(7) (a) Kuwahara, S.; Moriguchi, M.; Miyagawa, K.; Konno, M.; Kodama O.

Tetrahedron Lett. 1995, 36, 3201-3202. (b) Kuwahara, S.; Moriguchi, M.; Miyagawa, K.;

Konno, M.; Kodama O. Tetrahedron, 1995, 51, 8809-8814.

(8) (a) Ishihara, I.; Sugimoto, T.; Murai, A.; Synlett 1996, 335-336. (b) Ishihara,

I.; Sugimoto, T.; Murai, A.; Tetrahedron 1997, 53, 16029-16040.

(9) Henschke, J. P.; Rickards, R. W. Tetrahedron Lett. 1996, 37, 3557-3560. (b)

Henschke, J. P.; Rickards, R. W. J. Labelled Cpd. Radiopharm. 1998, 41, 211-220.

(10) Zeng, C.-M.; Midland, S. L.; Keen, N. T.; Sims, J. J. J. Org. Chem. 1997, 62,

4780-4784.

Page 46: Abstract - John L. Wood

23

(11) Yoda, H.; Kawauchi, M.; Takabe, K.; Hosoya, K. Heterocycles 1997, 45,

1895-1898.

(12) Tsurushima, T.; Midland, S. L.; Zeng, C.-M.; Ji, C.; Sims, J. J.; Keen, N. T.

Phytochemistry 1996, 43, 1219-1225.

(13) Ji, C.; Okinaka, Y.; Takeuchi, T.; Tsurushima, T.; Buzzell, R. I.; Sims, J. J.;

Midland, S. L.; Salymaker, D.; Yoshikawa, M.; Yamaoka, N.; Keen, N. T. The Plant Cell

1997, 9, 1425-1433.

(14) Ji, C.; Boyd; C.; Salymaker, D.; Okinaka, Y.; Takeuchi, T.; Midland, S. L.;

Sims, J. J.; Herman, E.; Keen, N. T. Proc. Natl. Acad. Sci. USA 1998, 95, 3306-3311.

(15) Ji, C.; Smith-Becker, J.; Keen, N. T. Curr. Opin. Biothechnol. 1998, 9, 202-

207.

(16) Honda, T.; Mizutani, H.; Kanai, K. J. Org. Chem. 1996, 61, 9374-9378.

(17) Yu, P.; Wang, Q.-G.; Mak, T. C. W.; Wong, H. N. C. Tetrahedron, 1998, 54,

1783-1788.

(18) Chênevert, R.; Dasser, M. Can. J. Chem. 2000, 78, 275-279.

Page 47: Abstract - John L. Wood

24

(19) Chênevert, R.; Dasser, M. J. Org. Chem. 2000, 65, 4529-4531.

(20) Yu, P.; Yang, Y.; Zhang, Z. Y.; Mak, T. C. W.; Wong, H. N. C. J. Org

Chem. 1997, 62, 6359-6366.

Page 48: Abstract - John L. Wood

25

Chapter 2

Syringolides: Biomimetic Total Synthesis.

2.1 Retrosynthetic analysis.

According to the proposed biosynthesis of syringolides (Scheme 2.1), these

metabolites can be formed by condensation between D-xylulose (6) and a β-ketoacid such

as 7 to produce the ester intermediate 8 which could undergo an intramolecular

Knoevenagel condensation to furnish lactone 9. Finally, intramolecular Michael addition

of the primary alcohol over the α,β-unsaturated system and hemiketalization would result

in the formation of the natural product.

OH

HO

HO

OOH

SCoA

O O

n

7a, n = 37b, n = 57c, n = 1

6

OH

HO

HO

OO

O

On

8a, n = 38b, n = 58c, n = 1

OH

9a, n = 39b, n = 59c, n = 1

O

OO

HO

HOn OO

O

HO

O

n

Syringolide 1 (1, n = 3)Syringolide 2 (2, n = 5)Syringolide 3 (3, n = 1)

HHO

Scheme 2.1 Proposed Biosynthesis of Syringolides.

Page 49: Abstract - John L. Wood

26

Based on this proposed biosynthetic pathway, the retrosynthetic analysis shown

on Scheme 2.2 was devised. In this approach, the lactone required for the syringolide

synthesis would be obtained by complete deprotection of butenolide 16. This butenolide

could arise from intramolecular Knoevenagel condensation of ester 15, which would be

produced by condensation between the α-bromoketone 13 and a β-ketoacid 14. The

different syringolides would be synthesized by changing the length of the side chain of

the β-ketoacid 14. This side chain could also be easily modified for the production of

syringolide derivatives suitable for affinity chromatography (by incorporating an amino

functionality) or radiolabelling experiments (by addition of radioactive atoms to a double

bond at the end of the chain).

OH

OO

14a, n = 314b, n = 514c, n = 1

OTBS

OO

O

On

15a, n = 315b, n = 515c, n = 1

nOO

O

HO

O

n

1, n = 32, n = 53, n = 1

OTBS

ON2

O

O

OTBS

O

O

O

OO

13

n

16a, n = 316b, n = 516c, n = 1

O

O

HO H

Scheme 2.2 Syringolides: Retrosynthetic Analysis.

+

Page 50: Abstract - John L. Wood

27

2.2 Biomimetic Total Synthesis of (-)-Syringolides 1, 2 and 3.

The total synthesis of (-)-syringolides 1, 2 and 3 (1, 2 and 3, respectively) is

described on Scheme 2.3. The starting material was the monoprotected alcohol (-)-111

which is commercially available in both enantiomeric forms and can be easily prepared in

quantitative yield2 from (-)-2,3-O-isopropylidene-D-threitol [(-)-10, Figure 2.1] using the

monosilylation procedure of McDougal et al.3 Moreover, (-)-10 can be obtained from (-)-

D-tartaric acid [(-)-88] on multigram scale4 and by replacing (-)-D-tartaric acid with (+)-

L-tartaric acid the alcohols (+)-10 and (+)-11 can be prepared.

OHOHO

O

(-)-10

OHOH

(-)-88

O

OHO

HO

OTBSOHO

O

(-)-11

Figure 2.1 (-)-11 and Precursors.

As illustrated in Scheme 2.3, alcohol (-)-11 was transformed into α-bromoketone

(-)-13 via a four-step procedure without purification of the intermediates. First 11 was

oxidized to the corresponding carboxylic acid 89 using the catalytic RuCl3 procedure of

Sharpless et al.5 Acid 89 was treated first with ethyl chloroformate and triethylamine and

then with excess diazomethane6 to furnish (-)-12. Halogenation6 of (-)-12 with

anhydrous ethereal HBr provided (-)-13 in 29% overall yield from (-)-11. This α-

bromoketone (-)-13 was the common intermediate for the synthesis of all three

syringolides and their amino analogue.

Page 51: Abstract - John L. Wood

28

OH

OO

14a, n = 314b, n = 514c, n = 1

OTBS

OO

O

On

15a, n = 315b, n = 515c, n = 1

n

OO

O

HO

O

n

(-)-1, n = 3 (12%)(-)-2, n = 5 (8%)(-)-3, n = 1 (7%)

OTBS

ON2

OTBS

O

O

O

(-)-13

Br

OTBSOHO

O

O

O

OTBS

O

O

O

OO

(-)-11

(-)-12

n

(-)-16a, n = 3 (50%)(-)-16b, n = 5 (47%)(-)-16c, n = 1 (53%)

O

O

1. EtOC(O)Cl, Et3N

2. CH2N2

HBr, Et2O, -78 °C

(29%, four steps) Cs2CO3, DMF

HF, H2O/CH3CN

HO H

Scheme 2.3 Biomimetic Total Synthesis of (-)-Syringolides 1, 2 and 3

OTBSOHO

O

89

ORuCl3, NaIO4

CCl4/CH3CN/H2O

OO

O

OH

O

(-)-51a, n = 3 (8%)(-)-51b, n = 5 (10%)(-)-51c, n = 1 (7%)

n

+

According to the retrosynthetic analysis, different syringolides could be obtained

after several steps by changing the length of the β-ketoacid 147 used to acylate (-)-13.

Page 52: Abstract - John L. Wood

29

This acylation was performed by treating (-)-13 with the cesium salts9 of β-ketoacids

14a-b10 and 14c.11 The expected ester intermediates 15a-c were not detected since they

underwent an intramolecular Knoevenagel condensation in the same pot to furnish the

desired butenolides (-)-16a-c in 47-53% yields.12

The final step of the synthesis involved complete deprotection of butenolides (-)-

16a-c using 10% aq HF in CH3CN13 to furnish the corresponding syringolides (-)-1, (-)-2

and (-)-3 in 7-12% yields, along with the side products (-)-51a-c in 7-10% yields.

Spectroscopic data for (-)-syringolides 1 and 2 were identical to that reported in the

literature.14,15 Synthetic (-)-syringolide 2 was identical in all respects with a sample

derived from natural sources16 of the natural product (Figure 2.2). There is no published

data for (-)-syringolide 3, however, spectroscopic data for this compound is similar to

that for (-)-syringolides 1 and 2 and X-ray crystallographic analysis of (-)-3 confirms that

this compound has the same relative stereochemical configuration as (-)-1 and (-)-2.14

2.3 Biomimetic Total Synthesis of (+)-Syringolides 1, 2 and 3.

The total synthesis of (+)-syringolides 1, 2 and 3 was accomplished in the same

manner as for the corresponding (-)-syringolides by replacing (-)-11 with (+)-11. Thus,

α-bromoketone (+)-13 was obtained in 35% overall yield form (+)-11 and was treated

with the β-ketoacids 14a-c to give butenolides (+)-16a-c in 42-51% yields. Deprotection

of these butenolides furnished the corresponding syringolides (+)-1, (+)-2 and (+)-3 in

10-17% yields, along with the side products (+)-51a-c in 6-10% yields.

Page 53: Abstract - John L. Wood

30 30

OOO

HO

OHO H

(-)-Syringolide 2(-)-2

Top: Natural Bottom: Synthetic

Figure 2.2 1H NMR (500 MHz, CDCl3) Comparison of (-)-Siringolide 2.

Page 54: Abstract - John L. Wood

31 31

OOO

HO

OHO H

(-)-Syringolide 2(-)-2

Figure 2.2 1H NMR (500 MHz, CDCl3) Comparison of (-)-Siringolide 2.

Top: Natural Bottom: Synthetic

Page 55: Abstract - John L. Wood

31

2.4 Biomimetic Total Synthesis of (-)-N-(Carbobenzyloxy)-8-aminosyringolide 1.

As mentioned in Chapter 1, it was supposed that syringolide-like molecules could

be used as molecular probes for the isolation of the receptor protein in soybean provided

these derivatives retained their biological activity and could bind to their receptor.

OH

OO

NH

4

OO

O

HO

OHN

4

(-)-92 (11%)

OTBS

O

O

O

ONH

O

4

(-)-91

Cs2CO3, DMF

(45%)

HF, H2O/CH3CN

HO H

Scheme 2.4 Biomimetic Total Synthesis of (-)-N-(Carbobenzyloxy)-8-aminosyringolide 1.

OO

O

OH

O

HN

(-)-93 (5%)

4+

O

O

90

O

O

O

O

+

O

O

OTBS

O

O

O

(-)-13

Br

To this end, a synthesis of (-)-N-(carbobenzyloxy)-8-aminosyringolide 1 [(-)-92]

was initiated by incorporating β-ketoacid 9017 into the biomimetic syringolide synthesis

(Scheme 2.4). Thus, α-bromoketone (-)-13 was treated with β-ketoacid 90 to give

butenolide (-)-91 in 45% yield. Deprotection of (-)-91 furnished (-)-N-(carbobenzyloxy)-

Page 56: Abstract - John L. Wood

32

8-aminosyringolide 1 [(-)-92] in 11% yield, along with the corresponding side product

(-)-93 in 5% yield. It was found that, just as syringolides, (-)-N-(carbobenzyloxy)-8-

aminosyringolide 1 is a specific elicitor of the HR in soybean plants harboring the Rpg4

gene.18 Therefore, (-)-N-(carbobenzyloxy)-8-aminosyringolide 1 would be a good

candidate for use in affinity columns designed to isolate the soybean protein that binds

syringolide.

2.5 Conclusions.

The first total synthesis of (-)-syringolide 3 and its unnatural enantiomer (+)-

syringolide 3 was successfully completed following a biomimetic procedure. In addition,

total synthesis of (-)- and (+)-syringolides 1 and 2 was achieved using the same

methodology. This biomimetic route was easily modified to obtain (-)-N-

(carbobenzyloxy)-8-aminosyringolide 1, a good candidate for the preparation of affinity

columns designed for isolation of the soybean protein that binds to syringolide.

Page 57: Abstract - John L. Wood

33

2.6 Experimental Section.

2.6.1 Materials and Methods.

Unless stated otherwise, reactions were performed in flame dried glassware under

a nitrogen atmosphere, using freshly distilled solvents. Diethyl ether (Et2O) and

tetrahydrofuran (THF) were distilled from sodium/benzophenone ketyl. Methylene

chloride (CH2Cl2) and triethylamine (Et3N) were distilled from calcium hydride. All

other commercially obtained reagents were used as received.

Unless stated otherwise, all reactions were magnetically stirred and monitored by

thin-layer chromatography (TLC) using E. Merck silica gel 60 F254 precoated plates (0.25

mm). Column or flash chromatography was performed with the indicated solvents using

silica gel (230-400 mesh) purchased from Bodman. In general, the chromatography

guidelines reported by Still et al.19 were followed. When reactions were adsorbed onto

silica gel, the amount of silica gel used was equal to two times the weight of the reagents.

All melting points were obtained on a Thomas Hoover capillary melting point

apparatus and are uncorrected. Infrared spectra were recorded on a Midac M1200 FTIR.

1H and 13C NMR spectra were recorded on a Bruker AM-500, Bruker Avance DPX-500

or Bruker Avance DPX-400 spectrometer. Chemical shifts are reported relative to

internal chloroform (1H, δ 7.26 ppm; 13C, δ 77.2 ppm)20, Me4Si (1H, δ 0.00 ppm) or

acetone (1H, δ 2.05 ppm; 13C, δ 29.8 ppm).20 High resolution mass spectra were

performed at the University of Illinois Mass Spectrometry Center. High performance

liquid chromatography (HPLC) was performed on a Waters 510 solvent delivery system

using a Rainin Microsorb 80-199-C5 column, or a Rainin Dynamax SD-200 solvent

Page 58: Abstract - John L. Wood

34

delivery system with a Rainin Microsorb 80-120-C5 column. Optical rotations were

measured on a Perkin Elmer 341 polarimeter. Single-crystal X-ray analyses were

performed by Susan DeGala of Yale University.

For purposes of this work, in any given reaction the number of equivalents of a

reactant A is equal to the number of mmol of A used per mmol of the limiting reagent B

employed. The phrase: “was allowed to warm to room temperature” should be taken to

mean that no more cooling agent (ice or dry-ice) was added to the insulating cooling bath.

2.6.2 Preparative Procedures.

Preparation of α-Diazoketone (-)-12.

OTBS

ON2

(-)-12

O

O

α-Diazoketone (-)-12. This compound was prepared in the same manner as its

enantiomer (+)-12 and was used without purification. An analytical sample (yellow oil)

was prepared by flash column chromatography followed by HPLC employing 9:1

hexanes:EtOAc as eluant in both cases: [α]D20 -20° (c 1.02, CHCl3); FTIR (thin

film/NaCl) 3128 (m), 2992 (m), 2956 (s), 2930 (s), 2856 (s), 2118 (m), 1621 (s), 1472

(w), 1460 (m), 1453 (m), 1380 (s), 1361 (s), 1254 (s), 1078 (s), 840 (s) cm-1; 1H NMR

(500 MHz, CDCl3) δ 5.82 (s, 1H), 4.36 (d, J=7.7 Hz, 1H), 4.09-4.08 (m, 1H), 3.95 (dd,

J=11.4, 2.6 Hz, 1H), 3.79 (dd, J=11.2, 4.0 Hz, 1H), 1.45 (s, 3H), 1.42 (s, 3H), 0.90 (s,

Page 59: Abstract - John L. Wood

35

9H), 0.09 (s, 3H), 0.08 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 194.5, 111.0, 80.4, 79.4,

62.9, 52.9, 27.0, 26.5, 26.1, 18.5, -5.1, -5.3; HRMS (CI, isobutane) m/z 315.1740 [calcd

for C14H27N2O4Si (M+H) 315.1740].

Preparation of α-Diazoketone (+)-12.

TBSO

ON2

(+)-12

O

O

α-Diazoketone (+)-12. To a stirred biphasic solution of mono-protected alcohol

(+)-11 (5.532 g, 20.01 mmol, 1 equiv), CCl4 (40 mL), CH3CN (40 mL) and water (60

mL) were added sodium periodate (12.894 g, 60.28 mmol, 3.01 equiv) and RuCl3 hydrate

(210 mg, 0.93 mmol, 0.05 equiv).5b After vigorously stirring the reaction mixture

overnight, water (165 mL) and CH2Cl2 (120 mL) were added. The phases were separated

and the aqueous one was extracted with CH2Cl2 (2 X 180 mL). The combined organic

phases were dried over MgSO4, filtered and concentrated in vacuo to furnish acid 89 as a

purple oil (3.914 g, 67% yield) which was used without purification.

Triethylamine (2.2 mL, 15.78 mmol) and ethyl chloroformate (1.4 mL, 14.64

mmol) were sequentially added to a stirred (–10 °C) solution of acid 89 (3.914 g, 13.48

mmol) in THF (17 ml). After 10 min of stirring, a white ppt formed. Excess

diazomethane in Et2O (146 mL) was added at -10 °C and the resultant mixture was stirred

(0 °C) for 30 min. The reaction mixture was allowed to warm to room temperature,

quenched with 0.1 M aqueous acetic acid (40.5 mL) and stirred until the deep yellow

Page 60: Abstract - John L. Wood

36

color of diazomethane was no longer present. The biphasic mixture was separated and

the organic phase was washed with saturated aqueous NaHCO3 (2 X 81 mL). The

aqueous washings were extracted with CH2Cl2 (81 mL) and the combined organic phases

were dried over MgSO4, filtered and concentrated in vacuo. The resultant yellow oil was

chromatographed on silica employing 4:1 hexanes:EtOAc as eluant to furnish (+)-12

(2.958 g, 70% yield) as a yellow oil An analytical sample (yellow oil) was obtained by

HPLC employing 9:1 hexanes:EtOAc as eluant: [α]D20 +19° (c 1.01, CHCl3); FTIR

(thin film/NaCl) 3129 (m), 2992 (m), 2957 (s), 2934 (s), 2856 (s), 2114 (m), 1622 (m),

1471 (w), 1460 (m), 1454 (m), 1381 (s), 1361 (s), 1254 (s), 1078 (s), 840 (s) cm-1; 1H

NMR (500 MHz, CDCl3) δ 5.81 (s, 1H), 4.34 (d, J=7.6 Hz, 1H), 4.08-4.05 (m, 1H), 3.93

(dd, J=11.5, 2.4 Hz, 1H), 3.77 (dd, J=11.5, 4.1 Hz, 1H), 1.43 (s, 3H), 1.40 (s, 3H), 0.89

(s, 9H), 0.07 (s, 3H), 0.06 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 194.4, 110.9, 80.3,

79.3, 62.9, 52.8, 27.0, 26.4, 26.0, 18.5, -5.2, -5.3; HRMS (CI, isobutane) m/z 315.1753

[calcd for C14H27N2O4Si (M+H) 315.1740].

Preparation of α-Bromoketone (-)-13.

OTBS

O

O

O

(-)-13

Br

α-Bromoketone (-)-13. This compound was prepared in the same manner as its

enantiomer (+)-13 [29% overall yield from (-)-11]. An analytical sample (colorless oil)

was prepared by flash column chromatography employing 9:1 hexanes:EtOAc as eluant:

Page 61: Abstract - John L. Wood

37

[α]D20 -17° (c 0.95, CHCl3); FTIR (thin film/NaCl) 2988 (w), 2954 (s), 2930 (s), 2885

(m), 2858 (m), 1733 (m), 1472 (w), 1463 (w), 1383 (m), 1374 (m), 1254 (s), 1216 (m),

1146 (s), 1096 (s), 838 (s) cm-1; 1H NMR (500 MHz, CDCl3) δ 4.57 (d, J=7.5 Hz, 1H),

4.28 (d, J=13.7 Hz, 1H), 4.24 (d, J=13.7 Hz, 1H), 4.14 (app. dt, J=7.4, 3.7 Hz, 1H), 3.89

(dd, J=11.3, 3.4 Hz, 1H), 3.79 (dd, J=11.3, 3.6 Hz, 1H), 1.46 (s, 3H), 1.43 (s, 3H), 0.90

(s, 9H), 0.08 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 201.1, 111.3, 79.9, 79.4, 62.7, 32.5,

27.0, 26.5, 26.1, 18.6, -5.1, -5.3; HRMS (CI, isobutane) m/z 369.0910 [calcd for

C14H2181BrO4Si (M+H) 369.0920].

Preparation of α-Bromoketone (+)-13.

TBSO

O

O

O

(+)-13

Br

α-Bromoketone (+)-13. A ca. 1 M soln of HBr in MeOH was prepared by

adding MeOH (0.85 mL, 20.98 mmol, 2.90 equiv) to a stirred (0 °C) solution of acetyl

bromide (1.04 mL, 14.07 mmol, 1.95 equiv) in Et2O (14 mL). The HBr solution was

added dropwise to a stirred (-78 °C) solution of (+)-12 (2.272 g, 7.23 mol, 1 equiv) in

Et2O (12 mL). Gas evolution was immediately noted upon addition of the HBr solution.

After stirring at -78 °C for 30 min, saturated aqueous NaHCO3 (48 mL) was added. After

allowing to warm to room temperature, the biphasic mixture was separated and the

organic phase was washed with saturated aqueous NaHCO3 (2 X 48 mL) and brine (60

mL). The aqueous washings were extracted with CH2Cl2 (48 mL) and then the combined

Page 62: Abstract - John L. Wood

38

organic phases were dried over MgSO4, filtered and concentrated in vacuo. The resultant

yellow oil was chromatographed on silica employing 9:1 hexanes:EtOAc as eluant to

furnish (+)-13 (1.955 g, 74% yield) as a yellowish oil. An analytical sample (colorless

oil) was obtained by a second flash chromatography employing 9:1 hexanes:EtOAc as

eluant: [α]D20 +16° (c 1.33, CHCl3); FTIR (thin film/NaCl) 2989 (w), 2954 (s), 2930 (s),

2885 (m), 2858 (m), 1733 (m), 1472 (w), 1463 (w), 1383 (m), 1374 (m), 1254 (s), 1216

(m), 1146 (s), 1096 (s), 838 (s) cm-1; 1H NMR (500 MHz, CDCl3) δ 4.57 (d, J=7.5 Hz,

1H), 4.28 (d, J=13.7 Hz, 1H), 4.24 (d, J=13.7 Hz, 1H), 4.14 (app. dt, J=7.4, 3.7 Hz, 1H),

3.89 (dd, J=11.3, 3.4 Hz, 1H), 3.79 (dd, J=11.3, 3.6 Hz, 1H), 1.46 (s, 3H), 1.43 (s, 3H),

0.90 (s, 9H), 0.08 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 200.6, 110.9, 79.5, 79.1, 62.4,

32.3, 26.7, 26.3, 25.8, 18.2, -5.4, -5.5; HRMS (CI, isobutane) m/z 369.0910 [calcd for

C14H2181BrO4Si (M+H) 369.0920].

Preparation of Butenolide (-)-16a.

OTBS

O

O

O

OO

(-)-16a

Butenolide (-)-16a. This compound was prepared in the same manner as its

enantiomer (+)-16a (50% yield). An analytical sample (yellow oil) was prepared by flash

column chromatography employing 9:1 hexanes:EtOAc as eluant: [α]D20 -38° (c 0.97,

CHCl3); FTIR (thin film/NaCl) 2987 (m), 2956 (s), 2931 (s), 2858 (m), 1769 (s), 1694

Page 63: Abstract - John L. Wood

39

(m), 1632 (m), 1471 (m), 1463 (m), 1381 (m), 1373 (m), 1252 (m), 1090 (s), 838 (s) cm-

1; 1H NMR (500 MHz, CDCl3) δ 5.48 (d, J=7.4 Hz, 1H), 5.05 (d, J=19.4 Hz, 1H), 4.88

(dd, J=19.8, 0.9 Hz, 1H), 3.93-3.84 (m, 3H), 2.96 (dt, J=18.4, 7.5 Hz, 1H), 2.91 (dt,

J=18.2, 7.4 Hz, 1H), 1.60 (quint., J=7.2 Hz, 2H), 1.44 (s, 6H), 1.36-1.25 (m, 4H), 0.91-

0.86 (m, 3H), 0.89 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H); 13C NMR (125 MHz, CDCl3) δ

196.6, 173.3, 170.5, 126.9, 111.2, 83.0, 73.5, 69.3, 63.6, 42.1, 31.4, 27.1, 27.0, 26.1, 23.0,

22.7, 18.6, 14.1, -5.1, -5.2; HRMS (CI, isobutane) m/z 427.2499 [calcd for C22H39SiO6

(M+H) 427.2516].

Preparation of Butenolide (+)-16a.

TBSO

O

O

O

O O

(+)-16a

Butenolide (+)-16a. To a stirred solution of β-ketoacid 14a (548 mg, 3.58 mmol,

1.26 equiv) and α-bromoketone (+)-13 (1.010 g, 2.75 mmol, 1 equiv) in DMF (3 mL)

was added in small portions over a 10 min period solid Cs2CO3 (1.167 g, 3.58 mmol, 1.30

equiv). The reaction mixture was stirred at room temperature for 30 min and then diluted

with water and EtOAc (10 mL ea.). The aqueous layer was acidified to pH 1 with 1 N

HCl and extracted with EtOAc (3 X 20 mL). The combined organic layers were dried

over MgSO4, filtered and concentrated in vacuo to a brown oil. Silica gel

chromatography employing 9:1 hexanes:EtOAc as eluant furnished (+)-16a (546 mg,

Page 64: Abstract - John L. Wood

40

47% yield) as a yellow oil. An analytical sample (yellow oil) was obtained by a second

flash chromatography using 9:1 hexanes:EtOAc as eluant: [α]D20 +37° (c 1.03, CHCl3);

FTIR (thin film/NaCl) 2987 (m), 2956 (s), 2931 (s), 2858 (m), 1769 (s), 1693 (m), 1632

(m), 1471 (m), 1463 (m), 1381 (m), 1373 (m), 1252 (m), 1090 (s), 838 (s) cm-1; 1H

NMR (500 MHz, CDCl3) δ 5.48 (d, J=7.4 Hz, 1H), 5.05 (d, J=19.6 Hz, 1H), 4.88 (dd,

J=19.6, 0.5 Hz, 1H), 3.928-3.847 (m, 3H), 2.96 (dt, J=18.3, 7.5 Hz, 1H), 2.91 (dt, J=18.6,

7.3 Hz, 1H), 1.60 (quint., J=7.3 Hz, 2H), 1.44 (s, 6H), 1.35-1.25 (m, 4H), 0.91-0.86 (m,

3H), 0.88 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 196.6,

173.2, 170.5, 126.8, 111.2, 83.0, 73.5, 69.3, 63.6, 42.1, 31.4, 27.1, 26.9, 26.1, 23.0, 22.7,

18.6, 14.1, -5.2 (2); HRMS (CI, isobutane) m/z 427.2512 [calcd for C22H39SiO6 (M+H)

427.2516].

Preparation of Butenolide (-)-16b.

OTBS

O

O

O

OO

(-)-16b

Butenolide (-)-16b. To a stirred solution of β-ketoacid 14b (956 mg, 5.13 mmol,

1.27 equiv) and α-bromoketone (-)-13 (1.487 g, 4.05 mmol, 1 equiv) in DMF (4.5 mL)

was added in small portions over a 10 min period solid Cs2CO3 (1.723 g, 5.29 mmol, 1.31

equiv). The reaction mixture was stirred at room temperature for 30 min and then diluted

with water and EtOAc (15 mL ea.). The aqueous layer was acidified to pH 1 with 1 N

Page 65: Abstract - John L. Wood

41

HCl and extracted with EtOAc (3 X 30 mL). The combined organic layers were dried

over MgSO4, filtered and concentrated in vacuo to a brown oil. Silica gel

chromatography employing 9:1 hexanes:EtOAc as eluant furnished (-)-16b (863 mg,

47% yield) as a yellow oil. An analytical sample (yellow oil) was obtained by a second

flash chromatography using 9:1 hexanes:EtOAc as eluant: [α]D20 -36° (c 0.57, CHCl3);

FTIR (thin film/NaCl) 2986 (w), 2955 (m), 2930 (s), 2857 (m), 1769 (s), 1693 (m), 1632

(w), 1463 (w), 1381 (m), 1373 (m), 1252 (m), 1089 (m), 838 (s) cm-1; 1H NMR (500

MHz, CDCl3) δ 5.48 (d, J=6.9 Hz, 1H), 5.05 (d, J=19.4 Hz, 1H), 4.88 (dd, J=19.7, 0.9

Hz, 1H), 3.93-3.85 (m, 3H), 2.96 (dt, J=17.8, 7.4 Hz, 1H), 2.91 (dt, J=18.0, 7.4 Hz, 1H),

1.59 (quint., J=7.1 Hz, 2H), 1.44 (s, 6H), 1.31-1.27 (m, 8H), 0.95-0.86 (m, 3H), 0.89 (s,

9H), 0.09 (s, 3H), 0.07 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 196.6, 173.2, 170.5,

126.9, 111.2, 83.0, 73.5, 69.3, 63.6, 42.2, 31.9, 29.3, 29.2, 27.1, 27.0, 26.1, 23.3, 22.8,

18.6, 14.3, -5.1, -5.2; HRMS (CI, isobutane) m/z 455.2820 [calcd for C24H43SiO6

(M+H) 455.2829].

Preparation of Butenolide (+)-16b.

TBSO

O

O

O

O O

(+)-16b

Butenolide (+)-16b. This compound was prepared in the same manner as its

enantiomer (-)-16b (42% yield). An analytical sample (yellow oil) was prepared by flash

Page 66: Abstract - John L. Wood

42

column chromatography employing 9:1 hexanes:EtOAc as eluant: [α]D20 +35° (c 0.86,

CHCl3); FTIR (thin film/NaCl) 2986 (w), 2955 (m), 2930 (s), 2857 (m), 1769 (s), 1693

(s), 1693 (m), 1632 (m), 1463 (w), 1381 (m), 1373 (m), 1252 (m), 1089 (m), 838 (s) cm-

1; 1H NMR (500 MHz, CDCl3) δ 5.49 (d, J=7.2 Hz, 1H), 5.05 (dd, J=19.5 Hz, 1H), 4.89

(dd, J=19.7, 0.9 Hz, 1H), 3.93-3.85 (m, 3H), 2.97 (dt, J=18.1, 7.5 Hz, 1H), 2.93 (dt,

J=18.3, 7.5 Hz, 1H), 1.59 (quint., J=7.0 Hz, 2H), 1.44 (s, 6H), 1.31-1.25 (m, 8H), 0.95-

0.86 (m, 3H), 0.89 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H); 13C NMR (125 MHz, CDCl3) δ

196.6, 173.2, 170.5, 126.9, 111.2, 83.0, 73.5, 69.3, 63.6, 42.2, 31.8, 29.2, 29.1, 27.1, 27.0,

26.0, 23.3, 22.8, 18.6, 14.2, -5.1, -5.2; HRMS (CI, isobutane) m/z 455.2818 [calcd for

C24H43SiO6 (M+H) 455.2829].

Preparation of Butenolide (-)-16c.

OTBS

O

O

O

OO

(-)-16c

Butenolide (-)-16c. This compound was prepared in the same manner as its

enantiomer (+)-16c (53% yield). An analytical sample (yellow oil) was prepared by flash

column chromatography followed by HPLC employing 9:1 hexanes:EtOAc as eluant in

both cases: [α]D20 -36.74° (c 0.89, CHCl3); FTIR (thin film/NaCl) 2959 (m), 2932 (m),

2881 (m), 2858 (m), 1769 (s), 1694 (m), 1633 (w), 1472 (w), 1463 (w), 1381 (m), 1373

(m), 1252 (m), 1090 (m), 838 (s) cm-1; 1H NMR (500 MHz, CDCl3) δ 5.50 (d, J=7.9 Hz,

Page 67: Abstract - John L. Wood

43

1H), 5.06 (d, J=19.9 Hz, 1H), 4.87 (d, J=19.0 Hz, 1H), 3.93-3.85 (m, 3H), 2.96 (dt,

J=18.2, 7.3 Hz, 1H), 2.91 (dt, J=18.2, 7.4 Hz, 1H), 1.64 (sext., J=7.4 Hz, 2H), 1.45 (s,

6H), 0.95 (t, J=7.4 Hz, 3H), 0.89 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H); 13C NMR (125 MHz,

CDCl3) δ 196.4, 173.2, 170.5, 126.8, 111.1, 83.0, 73.5, 69.3, 63.6, 44.0, 27.1, 27.0, 26.0,

18.5, 16.7, 13.7, -5.2, -5.3; HRMS (CI, isobutane) m/z 399.2192 [calcd for C20H35SiO6

(M+H) 399.2203].

Preparation of Butenolide (+)-16c.

TBSO

O

O

O

O O

(+)-16c

Butenolide (+)-16c. To a stirred solution of β-ketoacid 14c (598 mg, 4.59 mmol,

1.11 equiv) and α-bromoketone (+)-13 (1.517 g, 4.13 mmol, 1 equiv) in DMF (4.8 mL)

was added in small portions over a 10 min period solid Cs2CO3 (1.723 g, 5.29 mmol, 1.28

equiv). The reaction mixture was stirred at room temperature for 30 min and then diluted

with water and EtOAc (16 mL ea.). The aqueous layer was acidified to pH 1 with 1 N

HCl and extracted with EtOAc (3 X 32 mL). The combined organic layers were dried

over MgSO4, filtered and concentrated in vacuo to a brown oil. Silica gel

chromatography employing 9:1 hexanes:EtOAc as eluant furnished (+)-16c (836 mg,

51% yield) as a yellow oil. An analytical sample (yellow oil) was prepared by flash

column chromatography followed by HPLC employing 9:1 hexanes:EtOAc as eluant in

both cases: [α]D20 +39.74° (c 1.16, CHCl3); FTIR (thin film/NaCl) 2958 (m), 2932 (m),

Page 68: Abstract - John L. Wood

44

2881 (w), 2858 (m), 1769 (s), 1694 (m), 1633 (w), 1472 (w), 1463 (w), 1381 (m), 1373

(m), 1252 (m), 1090 (m), 838 (s) cm-1; 1H NMR (500 MHz, CDCl3) δ 5.50 (d, J=7.5 Hz,

1H), 5.05 (d, J=19.4 Hz, 1H), 4.88 (d, J=20.0 Hz, 1H), 3.94-3.86 (m, 3H), 2.96 (dt,

J=18.2, 7.3 Hz, 1H), 2.91 (dt, J=18.2, 7.4 Hz, 1H), 1.64 (sext., J=7.4 Hz, 2H), 1.45 (s,

6H), 0.96 (t, J=7.3 Hz, 3H), 0.89 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H); 13C NMR (125 MHz,

CDCl3) δ 196.4, 173.1, 170.5, 126.9, 111.1, 83.0, 73.5, 69.3, 63.6, 44.0, 27.1, 27.0, 26.0,

18.5, 16.8, 13.7, -5.1, -5.2; HRMS (CI, isobutane) m/z 399.2192 [calcd for C20H35SiO6

(M+H) 399.2203].

Preparation of (-)-Syringolide 1 and Acetal (-)-51a.

OO

O

HO

OHO H

(-)-Syringolide 1(-)-1

OO

O

OH

O

(-)-51a

(-)-Syringolide 1 and Acetal (-)-51a. These compounds were prepared in the

same manner as their enantiomers (+)-1 and (+)-51a (12% and 8% yields respectively).

An analytical sample of (-)-syringolide 1 [(-)-1, white solid] was prepared by

HPLC employing 1:1 CH2Cl2:EtOAc as eluant: mp 113-114 °C; [α]D20 -73.64° (c 0.11,

CHCl3); FTIR (thin film/NaCl) 3400 (br w), 2955 (m), 2933 (m), 2870 (w), 2861 (w),

1759 (s), 1467 (m), 1380 (m), 1192 (m), 1153 (m), 1076 (s), 1031 (s), 977 (m), 915 (m)

cm-1; 1H NMR (500 MHz, acetone-d6) δ 5.36 (d, J=1.0 Hz, 1H), 4.67 (d, J=10.2 Hz,

1H), 4.49 (s, 1H), 4.32 (d, J=9.9 Hz, 1H), 4.16-4.14 (m, 1H), 3.95 (dd, J=9.5, 0.9 Hz,

Page 69: Abstract - John L. Wood

45

1H), 3.83 (dd, J=10.4, 2.6 Hz, 1H), 3.09 (s, 1H), 1.89 (m, 2H), 1.67-1.54 (m, 1H), 1.53-

1.42 (m, 1H), 1.32-1.29 (m, 4H), 0.88 (t, J=7.1 Hz, 3H); 1H NMR (500 MHz, CDCl3) δ

4.72 (d, J=10.2 Hz, 1H), 4.55 (s, 1H), 4.41 (d, J=10.3 Hz, 1H), 4.31 (d, J=3.0 Hz, 1H),

4.04 (dd, J=10.3, 1.2 Hz, 1H), 3.85 (dd, J=10.5, 2.7 Hz, 1H), 3.07 (s, 1H), 2.47 (br s,

1H), 1.93 (dd, J=6.9, 2.4 Hz, 1H), 1.91 (dd, J=7.1, 2.2 Hz, 1H), 1.65-1.42 (m, 2H), 1.34-

1.32 (m, 4H), 1.26 (s, 1H), 0.90 (t, J=6.8 Hz, 3H); 13C NMR (125 MHz, acetone-d6) δ

172.7, 108.8, 98.9, 92.2, 75.6, 75.4, 74.9, 59.7, 39.4, 32.6, 24.0, 23.1, 14.2; HRMS (CI,

isobutane) m/z 273.1343 [calcd for C13H21O6 (M+H) 273.1338].

An analytical sample of (-)-51a (colorless oil) was prepared by HPLC employing

1:1 CH2Cl2:EtOAc as eluant: [α]D20 -33.23° (c 0.99, CHCl3); FTIR (thin film/NaCl)

3426 (br m), 2956 (s), 2931 (s), 2871 (m), 2861 (m), 1736 (s), 1657 (m), 1440 (m), 1378

(m), 1338 (s), 1247 (m), 1173 (m), 1088 (s), 1027 (s), 1018 (s), 991 (s) cm-1; 1H NMR

(500 MHz, CDCl3) δ 5.09 (d, J=3.8 Hz, 1H), 4.99 (d, J=18.0 Hz, 1H), 4.77 (dd, J=18.2,

1.2 Hz, 1H), 4.64 (ddd, J=6.0, 4.4, 2.0 Hz, 1H), 4.10 (dd, J=8.8, 2.0 Hz, 1H), 4.05-4.02

(m, 1H), 3.07 (br s, 1H), 2.27 (ddd, J=14.8, 10.8, 4.0 Hz, 1H), 2.05 (ddd, J=14.7, 10.5,

4.6 Hz, 1H), 1.50-1.27 (m, 6H), 0.88 (t, J=7.3 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ

170.2, 163.4, 129.0, 104.4, 75.6, 69.3, 66.8, 64.1, 32.0, 31.3, 22.7, 22.6, 14.1; HRMS (CI,

isobutane) m/z 255.1231 [calcd for C13H19O5 (M+H) 255.1232]. Spectroscopic data for

this material was identical to that reported in the literature.21-23

Page 70: Abstract - John L. Wood

46

Preparation of (+)-Syringolide 1 and Acetal (+)-51a.

O O

O

OH

O OHH

(+)-Syringolide 1(+)-1

OO

O

OH

O

(+)-51a

(+)-Syringolide 1 and Acetal (+)-51a. To a stirred solution of butenolide (+)-

16a (546 mg, 1.28 mmol, 1 equiv) in CH3CN (50 mL) was added 10% aq HF (50 mL).

The reaction mixture was stirred at room temperature for 36 h and then neutralized to pH

7 with saturated aqueous NaHCO3 and extracted with EtOAc (4 X 100 mL). The organic

phases were washed with brine (100 mL) and then they were combined, dried over

MgSO4, filtered and concentrated in vacuo to a beige solid. Silica gel chromatography

employing 1:1 CH2Cl2:EtOAc as eluant furnished two products: (+)-syringolide 1 [(+)-1]

(59 mg, 17% yield, eluted second) as a white solid and (+)-51a (22 mg, 7% yield, eluted

first) as a yellowish oil.

An analytical sample of (+)-1 (white solid) was prepared by HPLC employing 1:1

hexanes:EtOAc as eluant: mp 118-119 °C; [α]D20 +77.42° (c 0.16, CHCl3); FTIR (thin

film/NaCl) 3401 (br m), 2955 (s), 2937 (s), 2924 (s), 2878 (m), 2853 (m), 1755 (s), 1467

(w), 1385 (w), 1198 (w), 1151 (w), 1131 (w), 1071 (m), 1044 (m), 973 (w), 913 (w) cm-

1; 1H NMR (500 MHz, acetone-d6) δ 5.36 (s, 1H), 4.67 (d, J=10.3 Hz, 1H), 4.49 (s, 1H),

4.33 (s, 1H), 4.32 (d, J=10.5 Hz, 1H), 4.15 (m, 1H), 3.95 (d, J=10.7 Hz, 1H), 3.83 (dd,

J=9.6, 3.1 Hz, 1H), 3.09 (s, 1H), 1.89 (m, 2H), 1.66-1.57 (m, 1H), 1.53-1.44 (m, 1H),

1.34-1.29 (m, 4H), 0.89 (t, J=6.9 Hz, 3H); 1H NMR (500 MHz, CDCl3) δ 4.72 (d, J=10.5

Page 71: Abstract - John L. Wood

47

Hz, 1H), 4.55 (s, 1H), 4.46 (d, J=10.2 Hz, 1H), 4.31 (d, J=2.9 Hz, 1H), 4.04 (dd, J=10.3,

1.5 Hz, 1H), 3.85 (dd, J=10.5, 2.7 Hz, 1H), 3.08 (s, 1H), 2.53 (br s, 1H), 1.93 (dd, J=6.6,

2.4 Hz, 1H), 1.91 (dd, J=7.0, 2.4 Hz, 1H), 1.65-1.44 (m, 2H), 1.34-1.32 (m, 4H), 1.25 (s,

1H), 0.90 (m, 3H); 13C NMR (125 MHz, acetone-d6) δ 172.7, 108.8, 99.0, 92.2, 75.6,

75.4, 74.9, 59.7, 39.4, 32.6, 24.0, 23.1, 14.2; HRMS (CI, isobutane) m/z 273.1343 [calcd

for C13H21O6 (M+H) 273.1338];

An analytical sample of (+)-51a (colorless oil) was prepared by HPLC employing

1:1 hexanes:EtOAc as eluant: [α]D20 +24.67° (c 0.15, CHCl3); FTIR (thin film/NaCl)

3424 (w), 2957 (m), 2930 (m), 2870 (w), 2860 (w), 1740 (s), 1659 (w), 1443 (w), 1378

(w), 1339 (m), 1246 (w), 1173 (m), 1087 (m), 1018 (m), 991 (m) cm-1; 1H NMR (500

MHz, CDCl3) δ 5.11 (d, J=4.3 Hz, 1H), 4.98 (d, J=18.0 Hz, 1H), 4.76 (dd, J=18.1, 0.9

Hz, 1H), 4.64 (m, 1H), 4.10 (dd, J=8.5, 2.3 Hz, 1H), 4.07-4.04 (m, 1H), 2.54 (br s, 1H),

2.29 (ddd, J=14.4, 11.2, 4.3 Hz, 1H), 2.06 (ddd, J=14.4, 11.0, 4.7 Hz, 1H), 1.48-1.27 (m,

6H), 0.88 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 169.5, 162.0, 129.6, 104.7,

75.7, 68.8, 67.2, 64.0, 32.1, 31.3, 22.7 (2), 14.1; HRMS (CI, isobutane) m/z 255.1233

[calcd for C13H19O5 (M+H) 255.1232].

Page 72: Abstract - John L. Wood

48

Preparation of (-)-Syringolide 2 and Acetal (-)-51b.

OO

O

HO

OHO H

(-)-Syringolide 2(-)-2

OO

O

OH

O

(-)-51b

(-)-Syringolide 2 and Acetal (-)-51b. These compounds were prepared in the

same manner as their enantiomers (-)-2 and (-)-51b (8% and 10% yields respectively).

An analytical sample of (-)-syringolide 2 [(-)-2, white solid] was prepared by

HPLC employing 5:6 CH2Cl2:EtOAc as eluant: mp 108-109 °C; [α]D20 -71.57° (c 0.10,

CHCl3); FTIR (thin film/NaCl) 3404 (br m), 2955 (m), 2939 (m), 2918 (m), 2873 (w),

2848 (m), 1754 (s), 1467 (w), 1386 (w), 1198 (w), 1151 (w), 1046 (m), 1025 (m), 971

(w) cm-1; 1H NMR (500 MHz, acetone-d6) δ 5.36 (d, J=1.6 Hz, 1H), 4.67 (d, J=10.2 Hz,

1H), 4.49 (s, 1H), 4.32 (d, J=10.2 Hz, 1H), 4.23 (br s, 1H), 4.14 (m, 1H), 3.95 (d, J=10.0

Hz, 1H), 3.83 (dd, J=10.1, 2.8 Hz, 1H), 3.09 (s, 1H), 1.89 (m, 2H), 1.65-1.59 (m, 1H),

1.53-1.43 (m, 1H), 1.32-1.29 (m, 8H), 0.88 (m, 3H); 1H NMR (500 MHz, CDCl3) δ 4.72

(d, J=10.6 Hz, 1H), 4.55 (s, 1H), 4.46 (d, J=10.6 Hz, 1H), 4.31 (d, J=2.5 Hz, 1H), 4.05

(dd, J=10.4, 1.1 Hz, 1H), 3.85 (dd, J=10.4, 2.8 Hz, 1H), 3.07 (s, 1H), 2.48 (br s, 1H),

1.93 (dd, J=6.7, 2.4 Hz, 1H), 1.91 (dd, J=6.9, 2.0 Hz, 1H), 1.65-1.42 (m, 2H), 1.35-1.26

(m, 8H), 1.26 (s, 1H), 0.88 (t, J=6.5 Hz, 3H); 13C NMR (125 MHz, acetone-d6) δ 172.6,

108.8, 99.0, 92.2, 75.6, 75.4, 74.9, 59.7, 39.5, 32.5, 30.4, 29.9, 24.4, 23.3, 14.3; HRMS

(CI, isobutane) m/z 301.1650 [calcd for C15H25O6 (M+H) 301.1651].

Page 73: Abstract - John L. Wood

49

An analytical sample of (-)-51b (colorless oil) was prepared by HPLC employing

5:6 CH2Cl2:EtOAc as eluant: [α]D20 -30.77° (c 0.46, CHCl3); FTIR (thin film/NaCl)

3436 (br m), 2956 (s), 2929 (s), 2870 (m), 2857 (s), 1737 (s), 1659 (m), 1467 (m), 1378

(m), 1339 (s), 1246 (m), 1089 (s), 1028 (s), 991 (s) cm-1; 1H NMR (500 MHz, CDCl3) δ

5.10 (d, J=3.3 Hz, 1H), 4.98 (d, J=17.7 Hz, 1H), 4.76 (dd, J=18.1, 0.9 Hz, 1H), 4.64 (m,

1H), 4.10 (dd, J=8.9, 2.0 Hz, 1H), 4.05 (dd, J=8.6, 6.1 Hz, 1H), 2.63 (br s, 1H), 2.28

(ddd, J=14.4, 10.7, 4.6 Hz, 1H), 2.06 (ddd, J=14.8, 10.4, 4.6 Hz, 1H), 1.50-1.21 (m,

10H), 0.87 (t, J=6.7 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 169.9, 162.8, 129.2, 104.5,

75.6, 69.1, 66.9, 64.0, 31.9, 31.3, 29.8, 29.3, 23.0, 22.8, 14.3; HRMS (CI, isobutane) m/z

283.1550 [calcd for C15H23O5 (M+H) 283.1545].

Preparation of (+)-Syringolide 2 and Acetal (+)-51b.

O O

O

OH

O OHH

(+)-Syringolide 2(+)-2

OO

O

OH

O

(+)-51b

(+)-Syringolide 2 and Acetal (+)-51b. To a stirred solution of butenolide (+)-

16b (524 mg, 1.15 mmol, 1 equiv) in CH3CN (48 mL) was added 10% aq HF (48 mL).

The reaction mixture was stirred at room temperature for 36 h and then neutralized to pH

7 with saturated aqueous NaHCO3 and extracted with EtOAc (4 X 96 mL). The organic

phases were washed with brine (96 mL) and then they were combined, dried over

MgSO4, filtered and concentrated in vacuo to a beige oil. Silica gel chromatography

Page 74: Abstract - John L. Wood

50

employing 6:5 CH2Cl2:EtOAc as eluant furnished two products: (+)-syringolide 2 [(+)-2]

(49 mg, 14% yield eluted second) as a yellowish solid and (+)-51b (21 mg, 6% yield,

eluted first) as a yellowish oil.

An analytical sample of (+)-2 (white solid) was prepared by HPLC employing 5:6

CH2Cl2:EtOAc as eluant: mp 113 °C; [α]D20 +84.12° (c 0.17, CHCl3); FTIR (thin

film/NaCl) 3404 (br m), 2954 (m), 2939 (m), 2873 (m), 2848 (m), 1754 (s), 1466 (w),

1385 (m), 1197 (m), 1151 (w), 1047 (m), 1024 (m), 971 (m) cm-1; 1H NMR (500 MHz,

acetone-d6) δ 5.36 (s, 1H), 4.67 (d, J=10.3 Hz, 1H), 4.49 (s, 1H), 4.32 (d, J=10.3 Hz,

1H), 4.30 (s, 1H), 4.14 (m, 1H), 3.95 (d, J=10.2 Hz, 1H), 3.83 (dd, J=10.4, 2.5 Hz, 1H),

3.09 (s, 1H), 1.89 (m, 2H), 1.65-1.57 (m, 1H), 1.53-1.44 (m, 1H), 1.32-1.29 (m, 8H), 0.88

(t, J=6.7 Hz, 3H); 1H NMR (500 MHz, CDCl3) δ 4.72 (d, J=10.6 Hz, 1H), 4.55 (s, 1H),

4.46 (d, J=10.2 Hz, 1H), 4.30 (d, J=2.4 Hz, 1H), 4.05 (dd, J=10.3, 1.4 Hz, 1H), 3.85 (dd,

J=10.3, 2.9 Hz, 1H), 3.07 (s, 1H), 2.52 (br s, 1H), 1.93 (dd, J=7.1, 2.6 Hz, 1H), 1.91 (dd,

J=6.7, 2.0 Hz, 1H), 1.67-1.40 (m, 2H), 1.35-1.12 (m, 8H), 0.88 (t, J=7.03 Hz, 1H); 13C

NMR (125 MHz, acetone-d6) δ 172.7, 108.9, 99.0, 92.3, 75.6, 75.5, 75.0, 59.8, 39.5,

32.5, 30.4, 29.9, 24.4, 23.3, 14.3; HRMS (CI, isobutane) m/z 301.1646 [calcd for

C15H25O6 (M+H) 301.1651].

An analytical sample of (+)-51b (colorless oil) was prepared by HPLC employing

5:6 CH2Cl2:EtOAc as eluant: [α]D20 +26.67° (c 0.16, CHCl3); FTIR (thin film/NaCl)

3435 (m), 2954 (m), 2925 (s), 2869 (m), 2855 (m), 1737 (s), 1659 (m), 1467 (m), 1378

(m), 1339 (m), 1245 (m), 1088 (m), 1018 (s), 991 (s) cm-1; 1H NMR (500 MHz, CDCl3)

δ 5.10 (d, J=3.9 Hz, 1H), 4.98 (d, J=18.4 Hz, 1H), 4.76 (d, J=18.4 Hz, 1H), 4.64 (m, 1H),

4.10 (dd, J=8.8, 2.1 Hz, 1H), 4.06-4.03 (m, 1H), 2.72 (br s, 1H), 2.28 (ddd, J=14.5, 10.9,

Page 75: Abstract - John L. Wood

51

4.0 Hz, 1H), 2.06 (ddd, J=14.4, 10.3, 4.7 Hz, 1H), 1.48-1.21 (m, 10H), 0.87 (t, J=6.8 Hz,

3H); 13C NMR (125 MHz, CDCl3) δ 169.6, 162.3, 129.5, 104.6, 75.7, 68.9, 67.1, 64.0,

31.9, 31.3, 29.8, 29.3, 23.0, 22.8, 14.2; HRMS (CI, isobutane) m/z 283.1548 [calcd for

C15H23O5 (M+H) 283.1545].

Preparation of (-)-Syringolide 3 and Acetal (-)-51c.

OO

O

HO

OHO H

(-)-Syringolide 3(-)-3

OO

O

OH

O

(-)-51c

(-)-Syringolide 3 and Acetal (-)-51c. These compounds were prepared in the

same manner as their enantiomers (+)-3 and (+)-51c (7% and 7% yields respectively).

Recrystallization of (-)-syringolide 3 [(-)-3] from heptane produced crystals suitable for a

single-crystal X-ray analysis which established the illustrated relative stereochemical

configuration.24

An analytical sample of (-)-3 (white solid) was prepared by HPLC employing 5:6

CH2Cl2:EtOAc as eluant: mp 120-122 °C; [α]D20 -97.74° (c 0.09, CHCl3); FTIR (thin

film/NaCl) 3358 (br m), 2961 (m), 2933 (m), 2917 (m), 2874 (w), 2848 (w), 1759 (s),

1466 (w), 1380 (m), 1191 (m), 1151 (m), 1077 (m), 1025 (s), 975 (m) cm-1; 1H NMR

(500 MHz, acetone-d6) δ 5.35 (s, 1H), 4.67 (d, J=10.2 Hz, 1H), 4.49 (s, 1H), 4.32 (d,

J=10.5 Hz, 1H), 4.31 (br s, 1H), 4.15 (s, 1H), 3.95 (d, J=9.6 Hz, 1H), 3.82 (d, J=10.3 Hz,

1H), 3.08 (s, 1H), 1.87 (t, J=8.1 Hz, 2H), 1.66-1.57 (m, 1H), 1.55-1.46 (m, 1H), 0.92 (t,

Page 76: Abstract - John L. Wood

52

J=7.4 Hz, 3H); 13C NMR (125 MHz, acetone-d6) δ 172.7, 108.7, 99.0, 92.3, 75.6, 75.4,

74.9, 59.7, 41.7, 17.8, 14.4; HRMS (CI, isobutane) m/z 245.1031 [calcd for C11H16O6

(M+H) 245.1025].

An analytical sample of (-)-51c (colorless oil) was prepared by HPLC employing

5:6 CH2Cl2:EtOAc as eluant: [α]D20 -33.40° (c 0.94, CHCl3); FTIR (thin film/NaCl)

3418 (br m), 2965 (m), 2933 (w), 2879 (w), 1736 (s), 1658 (w), 1434 (w), 1377 (w), 1339

(m), 1245 (w), 1179 (m), 1086 (m), 1023 (m), 990 (m) cm-1; 1H NMR (500 MHz,

CDCl3) δ 5.10 (d, J=3.1 Hz, 1H), 4.99 (d, J=18.3 Hz, 1H), 4.76 (dd, J=18.0, 1.0 Hz, 1H),

4.64 (m, 1H), 4.10 (dd, J=8.6, 2.3 Hz, 1H), 4.05-4.02 (m, 1H), 2.99 (br s, 1H), 2.26 (ddd,

J=14.4, 10.9, 5.5 Hz, 1H), 2.05 (ddd, J=14.1, 10.7, 5.2 Hz, 1H), 1.53-1.38 (m, 2H), 0.98

(t, J=7.4 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 170.4, 163.5, 129.0, 104.3, 75.5, 69.4,

66.8, 64.0, 33.3, 16.5, 14.4; HRMS (CI, isobutane) m/z 227.0914 [calcd for C11H15O5

(M+H) 227.0919].

Preparation of (+)-Syringolide 3 and Acetal (+)-51c.

O O

O

OH

O OHH

(+)-Syringolide 3(+)-3

OO

O

OH

O

(+)-51c

(+)-Syringolide 3 and Acetal (+)-51c. To a stirred solution of butenolide (+)-16c

(836 mg, 2.10 mmol, 1 equiv) in CH3CN (85 mL) was added 10% aq HF (85 mL). The

reaction mixture was stirred at room temperature for 36 h and then neutralized to pH 7

Page 77: Abstract - John L. Wood

53

with saturated aqueous NaHCO3 and extracted with EtOAc (4 X 170 mL). The organic

phases were washed with brine (170 mL) and then they were combined, dried over

MgSO4, filtered and concentrated in vacuo to a brown syrup. Silica gel chromatography

employing 1:1 CH2Cl2:EtOAc as eluant furnished two products: (+)-syringolide 3 [(+)-3]

(50 mg, 10% yield, eluted second) as a white solid and (+)-51c (47 mg, 10% yield, eluted

first) as a yellowish oil.

An analytical sample of (+)-3 (white solid) was prepared by HPLC employing 5:6

CH2Cl2:EtOAc as eluant: mp 118-120 °C; [α]D20 +98.46° (c 0.13, CHCl3); FTIR (thin

film/NaCl) 3396 (br m), 2963 (m), 2937 (m), 2922 (w), 2876 (m), 1755 (s), 1467 (w),

1385 (m), 1198 (m), 1053 (m), 1029 (s), 973 (m) cm-1; 1H NMR (500 MHz, acetone-d6)

δ 5.35 (s, 1H), 4.67 (d, J=10.2 Hz, 1H), 4.48 (s, 1H), 4.32 (d, J=10.4 Hz, 1H), 4.31 (s,

1H), 4.14 (s, 1H), 3.95 (d, J=10.2 Hz, 1H), 3.82 (d, J=9.8 Hz, 1H), 3.08 (s, 1H), 1.87 (t,

J=7.9 Hz, 2H), 1.66-1.57 (m, 1H), 1.55-1.47 (m, 1H), 0.87 (t, 3H); 13C NMR (125 MHz,

acetone-d6) δ 172.7, 108.7, 99.0, 92.2, 75.6, 75.4, 74.9, 59.7, 41.6, 17.8, 14.4; HRMS

(CI, isobutane) m/z 245.1028 [calcd for C11H16O6 (M+H) 245.1025].

An analytical sample of (+)-51c (colorless oil) was prepared by HPLC employing

5:6 CH2Cl2:EtOAc as eluant: [α]D20 +33.5° (c 0.83, CHCl3); FTIR (thin film/NaCl)

3416 (m), 2965 (m), 2933 (w), 1737 (s), 1657 (w), 1433 (w), 1376 (w), 1339 (m), 1246

(w), 1180 (m), 1025 (m), 990 (m) cm-1; 1H NMR (500 MHz, CDCl3) δ 5.09 (d, J=4.4

Hz, 1H), 4.99 (d, J=18.2 Hz, 1H), 4.77 (d, J=18.2 Hz, 1H), 4.64 (ddd, J=6.3, 4.5, 1.9 Hz,

1H), 4.10 (dd, J=8.8, 2.0 Hz, 1H), 4.05-4.02 (m, 1H), 3.14 (br s, 1H), 2.25 (ddd, J=14.3,

11.0, 4.9 Hz, 1H), 2.04 (ddd, J=14.2, 10.9, 5.3 Hz, 1H), 1.52-1.38 (m, 2H), 0.97 (t, J=7.6

Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 170.1, 163.0, 129.2, 104.3, 75.7, 69.2, 66.9,

Page 78: Abstract - John L. Wood

54

64.0, 33.3, 16.4, 14.4; HRMS (CI, isobutane) m/z 227.0912 [calcd for C11H15O5 (M+H)

227.0919].

Preparation of Butenolide (-)-91.

4

OTBS

O

O

O

ONH

O

(-)-91

O

O

Butenolide (-)-91. To a stirred solution of β-ketoacid 90 (1.668 g, 5.43 mmol,

1.25 equiv) and α-bromoketone (-)-13 (1.591 g, 4.33 mmol, 1 equiv) in DMF (5 mL) was

added in small portions over a 10 min period solid Cs2CO3 (1.843 g, 5.66 mmol, 1.31

equiv). The reaction mixture was stirred at room temperature for 4 h and then diluted

with water and EtOAc (50 mL ea.). The aqueous layer was acidified to pH 1 with 1 N

HCl and extracted with EtOAc (3 X 100 mL). The combined organic layers were dried

over MgSO4, filtered and concentrated in vacuo to a brown oil. Silica gel

chromatography employing 9:1 hexanes:EtOAc as eluant furnished (-)-91 (1.114 g, 45%

yield) as a yellow oil. An analytical sample (yellow oil) was prepared by HPLC

employing 9:1 hexanes:EtOAc as eluant: [α]D20 -28.97° (c 1.37, CHCl3); FTIR (thin

film/NaCl) 3352 (br w), 2985 (w), 2932 (w), 2884 (w), 2857 (m), 1766 (s), 1714 (s),

1631 (w), 1527 (m), 1381 (m), 1373 (m), 1250 (s), 1138 (m), 1088 (m), 1050 (m), 838 (s)

cm-1; 1H NMR (500 MHz, CDCl3) δ 7.34 (s, 2H), 7.33 (s, 2H), 7.30 (m, 1H), 5.47 (d,

J=7.1 Hz, 1H), 5.07 (s, 2H), 5.04 (d, J=18.6 Hz, 1H), 4.87 (d, J=19.6 Hz, 1H), 4.83 (br s,

Page 79: Abstract - John L. Wood

55

1H), 3.92-3.89 (m, 2H), 3.85 (dd, J=12.0, 5.8 Hz, 1H), 3.18 (m, 2H), 2.93 (m, 2H), 1.61

(m, 2H), 1.51 (m, 2H), 1.43 (s, 6H), 1.34 (m, 2H), 0.88 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H);

13C NMR (125 MHz, CDCl3) δ 196.1, 173.4, 170.5, 156.5, 136.8, 128.6, 128.2, 126.7,

111.2, 82.9, 73.5, 69.3, 66.7, 63.6, 41.9, 41.0, 29.9, 27.1, 26.9, 26.3, 26.0, 22.9, 18.5, -

5.2, -5.3; HRMS (CI, isobutane) m/z 576.2981 [calcd for C30H46NO8Si (M+H)

576.2992].

Preparation of (-)-N-(Carbobenzyloxy)-8-aminosyringolide 1 and Acetal (-)-93.

OO

O

HO

OHN

4

HO H

OO

O

OH

O

HN

(-)-93

4

O

O

O

O

(-)-N-(Carbobenzyloxy)-aminosyringolide 1(-)-92

(-)-N-(Carbobenzyloxy)-8-aminosyringolide 1 and Acetal (-)-93. To a stirred

solution of butenolide (-)-91 (1.197 g, 2.08 mmol, 1 equiv) in CH3CN (84 mL) was added

16% aq HF (84 mL). The reaction mixture was stirred at room temperature for 24 h and

then neutralized to pH 7 with saturated aqueous NaHCO3 and extracted with EtOAc (4 X

168 mL). The organic phases were washed with brine (168 mL) and then they were

combined, dried over MgSO4, filtered and concentrated in vacuo to a brownish oil. Silica

gel chromatography employing 1:3 hexanes:EtOAc as eluant furnished two products: (-)-

N-(carbobenzyloxy)-8-aminosyringolide 1 [(-)-92] (100 mg, 11% yield, eluted second) as

a yellowish oil and (-)-93 (39 mg, 5% yield, eluted first) as a yellowish oil.

Page 80: Abstract - John L. Wood

56

An analytical sample of (-)-92 (colorless oil) was prepared by flash column

chromatography employing 1:3 hexanes:EtOAc as eluant followed by HPLC using 1:2

hexanes:EtOAc as eluant: [α]D20 -46.4° (c 0.13, CHCl3); FTIR (thin film/NaCl) 3347

(br m), 2935 (m), 2862 (w), 1736 (s), 1693 (s), 1529 (m), 1455 (w), 1376 (w), 1253 (s),

1185 (m), 1148 (m), 1076 (m), 1028 (s), 977 (m), 912 (w) cm-1; 1H NMR (500 MHz,

acetone-d6) δ 7.36 (s, 2H), 7.35 (s, 2H), 7.30 (m, 1H), 6.33 (br s, 1H), 5.41 (s, 1H), 5.05

(s, 2H), 4.68 (d, J=10.3 Hz, 1H), 4.49 (s, 1H), 4.35 (br s, 1H), 4.33 (d, J=10.4 Hz, 1H),

4.16 (s, 1H), 3.93 (d, J=9.9 Hz, 1H), 3.83 (d, J=9.9 Hz, 1H), 3.14 (q, J=6.5 Hz, 2H), 3.11

(s, 1H), 1.90 (t, J=7.9 Hz, 2H), 1.63 (m, 1H), 1.53 (m, 3H), 1.37 (m, 2H); 1H NMR (500

MHz, CDCl3) δ 7.36-7.28 (m, 5H), 5.06 (s, 3H), 5.02 (br s, 1H), 4.71 (d, J=10.2 Hz, 1H),

4.53 (s, 1H), 4.44 (d, J=10.4 Hz, 1H), 4.24 (d, J=1.7 Hz, 1H), 4.01 (d, J=10.0 Hz, 1H),

3.78 (d, J=8.6 Hz, 1H), 3.15 (m, 3H), 3.03 (s, 1H), 1.81 (t, J=7.8 Hz, 2H), 1.50 (m, 5H),

1.35 (m, 3H); 13C NMR (125 MHz, acetone-d6) δ 172.7, 157.2, 138.5, 129.1, 128.6,

128.5, 108.8, 98.9, 92.3, 75.7, 75.4, 74.9, 66.3, 59.7, 41.4, 39.3, 30.5, 27.5, 24.0; HRMS

(CI, isobutane) m/z 422.1809 [calcd for C21H28NO8 (M+H) 422.1815].

An analytical sample of (-)-93 (colorless oil) was prepared by flash column

chromatography employing 1:3 hexanes:EtOAc as eluant followed by HPLC using 2:3

hexanes:EtOAc as eluant: [α]D20 -29.91° (c 0.56, CHCl3); FTIR (thin film/NaCl) 3368

(br s), 2935 (m), 2862 (w), 1754 (s), 1695 (s), 1533 (m), 1455 (m), 1338 (m), 1258 (s),

1094 (m), 1020 (m), 990 (m) cm-1; 1H NMR (500 MHz, CDCl3) δ 7.37-7.30 (m, 5H),

5.07 (s, 2H), 5.03 (d, J=3.7 Hz, 1H), 4.96 (d, J=18.3 Hz, 1H), 4.87 (br s, 1H), 4.73 (dd,

J=18.2, 1.5 Hz, 1H), 4.61 (m, 1H), 4.09 (dd, J=8.8, 2.2 Hz, 1H), 4.02-3.99 (m, 1H), 3.16

(m, 2H), 3.07 (br s, 1H), 2.28 (m, 1H), 2.06 (ddd, J=14.4, 10.1, 4.7 Hz, 1H), 1.54-1.45

Page 81: Abstract - John L. Wood

57

(m, 3H), 1.42-1.37 (m, 3H); 13C NMR (125 MHz, CDCl3) δ 169.8, 163.1, 156.8, 136.7,

129.0, 128.7, 128.3, 128.2, 104.3, 75.7, 69.1, 66.9, 64.1, 41.1, 31.1, 29.7, 26.8, 22.5;

HRMS (CI, isobutane) m/z 404.1704 [calcd for C21H26NO7 (M+H) 404.1709].

2.7 Notes and references.

(1) Iida, H.; Yamazaki, N.; Kibayashi, C. J. Org. Chem. 1987, 52, 3337-3342.

(2) Preparation of (+)-11 in a 30.5 mmol scale: Taunton, J.; Collins, J. L.;

Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 10412-10422.

(3) McDougal, P. G.; Rico, J. G.; Oh, Y.-I.; Condon, B. D. J. Org. Chem. 1986,

51, 3388-3390.

(4) Preparation of (+)-10 in a 0.37 mol scale: Mash, E. A.; Nelson, K. A.; Van

Deusen, S.; Hemperly, S. B. Org. Synth. 1990, 68, 92-103.

(5) (a) Carlsen, P. H. J; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem.

1981, 46, 3936-3938. (b) Calculations based on n = 1 [RuCl3(H2O)n)]

(6) (a) Birch, P. L.; El-Obeid, H. A.; Akhtar, M. Arch. Biochem. Biophys. 1972,

148, 447-451. (b) Coggins, J. R.; Kray, W.; Shaw, E. Biochem. J. 1974, 137, 579-585.

Page 82: Abstract - John L. Wood

58

(7) β-Ketoacids are readily available by saponification of their corresponding

ethyl esters.8,10,11

(8) For an easy preparation of β-ketoesters see: Wang, X.; Monte, W. T.; Naiper,

J. J.; Ghannam, A. Tetrahedron Lett. 1994, 35, 9323-9326.

(9) For acylation (macrolactonization) of alkyl halides using cesium carboxylates

in DMF see: (a) Kruizinga, W. H.; Kellogg, R. M. J. Chem. Soc., Chem. Commun. 1979,

286-288. (b) Kruizinga, W. H.; Kellogg, R. M. J. Am. Chem. Soc. 1981, 103, 5183-5189.

(10) Cook, L.; Ternai, B.; Ghosh, P. J. Med. Chem. 1987, 30, 1017-1023.

(11) (a) Bloodworth, A. J.; Bothwell, B. D.; Collins, A. N.; Maidwell, N. L.

Tetrahedron Lett. 1996, 37, 1885-1888. (b) The corresponding ethyl ester of 14c is

commercially available.

(12) For butenolide formation employing a dihydroxyacetone derivative see:

Sakuda, S.; Tanaka, S.; Mizuno, K.; Sukcharoen, O.; Nihira, T.; Yamada, Y. J. Chem.

Soc., Perkin Trans. 1 1993, 2309-2315.

(13) Yu, P.; Yang, Y.; Zhang, Z. Y.; Mak, T. C. W.; Wong, H. N. C. J. Org

Chem. 1997, 62, 6359-6366.

Page 83: Abstract - John L. Wood

59

(14) (a) Smith, M. J., Mazzola, E. P.; Sims, J. J.; Midland, S. L.; Keen, N. T.;

Burton, V.; Stayton, M. M. Tetrahedron Lett. 1993, 34, 223-226. (b) Midland, S. L.;

Keen, N. T.; Sims, J. J.; Midland, M. M.; Stayton, M. M.; Burton, V.; Smith, M. J.,

Mazzola, E. P.; Graham, K. J.; Clardy, J. J. Org. Chem. 1993, 58, 2940-2945.

(15) Chênevert, R.; Dasser, M. Can. J. Chem. 2000, 78, 275-279.

(16) Sample of natural (-)-syringolide 2 kindly provided by Mitchell J. Smith

(U.S. Food and Drug Administration)

(17) Readily available by saponification10,11 of the corresponding ethyl ester.8

(18) Noel T. Keen, personal communication (University of California, Riverside;

Dept. of Plant Pathology).

(19) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.

(20) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512-

7515.

(21) Ishihara, I.; Sugimoto, T.; Murai, A.; Tetrahedron 1997, 53, 16029-16040.

Page 84: Abstract - John L. Wood

60

(22) Zeng, C.-M.; Midland, S. L.; Keen, N. T.; Sims, J. J. J. Org. Chem. 1997, 62,

4780-4784.

(23) Yu, P.; Wang, Q.-G.; Mak, T. C. W.; Wong, H. N. C. Tetrahedron, 1998, 54,

1783-1788.

(24) The atomic coordinates for this structure have been deposited with the

Cambridge Crystallographic Data Centre.

Page 85: Abstract - John L. Wood

61

Appendix 1

Spectra Relevant to Chapter 2.

Page 86: Abstract - John L. Wood

62 62

8 6 4 2 0 ppm

Figure A.1.1 1H NMR (500 MHz, CDCl3) of Compound (-)-12.

OTBS

ON2

(-)-12

O

O

Page 87: Abstract - John L. Wood

63 63

200

150

100

50PP

M

20406080

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.1.2

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

12.

Figu

re A

.1.3

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

(-)-

12.

Page 88: Abstract - John L. Wood

64 64

8 6 4 2 0 ppm

Figure A.1.4 1H NMR (500 MHz, CDCl3) of Compound (+)-12.

TBSO

ON2

(+)-12

O

O

Page 89: Abstract - John L. Wood

65 65

200

150

100

50PP

M

Figu

re A

.1.6

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

(+)-

12.

020406080

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.1.5

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

12.

Page 90: Abstract - John L. Wood

66 66

8 6 4 2 0 ppm

OTBS

O

O

O

(-)-13

Br

Figure A.1.7 1H NMR (500 MHz, CDCl3) of Compound (-)-13.

Page 91: Abstract - John L. Wood

67 67

200

150

100

50PP

M

Figu

re A

.1.9

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

(-)-

13.

Figu

re A

.1.8

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

13.

406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 92: Abstract - John L. Wood

68 68

8 6 4 2 0 ppm

TBSO

O

O

O

(+)-13

Br

Figure A.1.10 1H NMR (500 MHz, CDCl3) of Compound (+)-13.

Page 93: Abstract - John L. Wood

69 69

200

150

100

50PP

M

Figu

re A

.1.1

2 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-13

.

Figu

re A

.1.1

1 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

13.

20406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 94: Abstract - John L. Wood

70 70

8 6 4 2 0 ppm

OTBS

O

O

O

OO

(-)-16a

Figure A.1.13 1H NMR (500 MHz, CDCl3) of Compound (-)-16a.

Page 95: Abstract - John L. Wood

71 71

200

150

100

50PP

M

Figu

re A

.1.1

5 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-16

a.

Figu

re A

.1.1

4 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

16a.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 96: Abstract - John L. Wood

72 72

8 6 4 2 0 ppm

Figure A.1.16 1H NMR (500 MHz, CDCl3) of Compound (+)-16a.

TBSO

O

O

O

O O

(+)-16a

Page 97: Abstract - John L. Wood

73 73

200

150

100

50PP

M

Figu

re A

.1.1

8 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-16

a.

Figu

re A

.1.1

7 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

16a.

20406080100

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 98: Abstract - John L. Wood

74 74

8 6 4 2 0 ppm

Figure A.1.19 1H NMR (500 MHz, CDCl3) of Compound (-)-16b.

OTBS

O

O

O

OO

(-)-16b

Page 99: Abstract - John L. Wood

75 75

200

150

100

50PP

M

Figu

re A

.1.2

1 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-16

b.

Figu

re A

.1.2

0 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

16b.

406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 100: Abstract - John L. Wood

76 76

8 6 4 2 0 ppm

Figure A.1.22 1H NMR (500 MHz, CDCl3) of Compound (+)-16b.

TBSO

O

O

O

O O

(+)-16b

Page 101: Abstract - John L. Wood

77 77

200

150

100

50PP

M

Figu

re A

.1.2

4 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-16

b.

Figu

re A

.1.2

3 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

16b.

406080100

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 102: Abstract - John L. Wood

78 78

8 6 4 2 0 ppm

OTBS

O

O

O

OO

(-)-16c

Figure A.1.25 1H NMR (500 MHz, CDCl3) of Compound (-)-16c.

Page 103: Abstract - John L. Wood

79 79

200

150

100

50PP

M

Figu

re A

.1.2

7 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-16

c.

Figu

re A

.1.2

6 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

16c.

406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 104: Abstract - John L. Wood

80 80

8 6 4 2 0 ppm

Figure A.1.28 1H NMR (500 MHz, CDCl3) of Compound (+)-16c.

TBSO

O

O

O

O O

(+)-16c

Page 105: Abstract - John L. Wood

81 81

200

150

100

50PP

M

Figu

re A

.1.3

0 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-16

c.

Figu

re A

.1.2

9 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

16c.

5060708090100

110

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 106: Abstract - John L. Wood

82 82

8 6 4 2 0 ppm

OO

OHO

OHO H

(-)-Syringolide 1(-)-1

Figure A.1.31 1H NMR (500 MHz, acetone-d6) of Compound (-)-1.

Page 107: Abstract - John L. Wood

83 83

8 6 4 2 0 ppm

Figure A.1.32 1H NMR (500 MHz, CDCl3) of Compound (-)-1.

OO

OHO

OHO H

(-)-Syringolide 1(-)-1

Page 108: Abstract - John L. Wood

84 84

200

150

100

50PP

M

Figu

re A

.1.3

4 13

C N

MR

(125

MH

z, a

ceto

ne-d

6) o

f Com

poun

d (-

)-1.

Figu

re A

.1.3

3 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

1.

9092949698

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 109: Abstract - John L. Wood

85 85

8 6 4 2 0 ppm

OO

O

OH

O

(-)-51a

Figure A.1.35 1H NMR (500 MHz, CDCl3) of Compound (-)-51a.

Page 110: Abstract - John L. Wood

86 86

200

150

100

50PP

M

Figu

re A

.1.3

7 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-51

a.

Figu

re A

.1.3

6 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

51a.

60708090100

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 111: Abstract - John L. Wood

87 87

8 6 4 2 0 ppm

O O

OOH

O OHH

(+)-Syringolide 1(+)-1

Figure A.1.38 1H NMR (500 MHz, acetone-d6) of Compound (+)-1.

Page 112: Abstract - John L. Wood

88 88

8 6 4 2 0 ppm

O O

OOH

O OHH

(+)-Syringolide 1(+)-1

Figure A.1.39 1H NMR (500 MHz, CDCl3) of Compound (+)-1.

Page 113: Abstract - John L. Wood

89 89

200

150

100

50PP

M

Figu

re A

.1.4

1 13

C N

MR

(125

MH

z, a

ceto

ne-d

6) o

f Com

poun

d (+

)-1.

Figu

re A

.1.4

0 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

1.

979899100

101

102

103

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 114: Abstract - John L. Wood

90 90

8 6 4 2 0 ppm

OO

O

OH

O

(+)-51a

Figure A.1.42 1H NMR (500 MHz, CDCl3) of Compound (+)-51a.

Page 115: Abstract - John L. Wood

91 91

200

150

100

50PP

M

Figu

re A

.1.4

4 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-51

a.

Figu

re A

.1.4

3 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

51a.

65707580859095100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 116: Abstract - John L. Wood

92 92

8 6 4 2 0 ppm

Figure A.1.45 1H NMR (500 MHz, acetone-d6) of Compound (-)-2.

OOO

HO

OHO H

(-)-Syringolide 2(-)-2

Page 117: Abstract - John L. Wood

93 93

8 6 4 2 0 ppm

OOO

HO

OHO H

(-)-Syringolide 2(-)-2

Figure A.1.46 1H NMR (500 MHz, CDCl3) of Compound (-)-2.

Page 118: Abstract - John L. Wood

94 94

200

150

100

50PP

M

Figu

re A

.1.4

8 13

C N

MR

(125

MH

z, a

ceto

ne-d

6) o

f Com

poun

d (-

)-2.

Figu

re A

.1.4

7 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

2.

7580859095

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 119: Abstract - John L. Wood

95 95

8 6 4 2 0 ppm

Figure A.1.49 1H NMR (500 MHz, CDCl3) of Compound (-)-51b.

OO

O

OH

O

(-)-51b

Page 120: Abstract - John L. Wood

96 96

200

150

100

50PP

M

Figu

re A

.1.5

1 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-51

b.

Figu

re A

.1.5

0 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

51b.

65707580859095100

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 121: Abstract - John L. Wood

97 97

8 6 4 2 0 ppm

Figure A.1.52 1H NMR (500 MHz, acetone-d6) of Compound (+)-2.

O O

O

OH

O OHH

(+)-Syringolide 2(+)-2

Page 122: Abstract - John L. Wood

98 98

O O

O

OH

O OHH

(+)-Syringolide 2(+)-2

8 6 4 2 0 ppm

Figure A.1.53 1H NMR (500 MHz, CDCl3) of Compound (+)-2.

Page 123: Abstract - John L. Wood

99 99

200

150

100

50PP

M

Figu

re A

.1.5

5 13

C N

MR

(125

MH

z, a

ceto

ne-d

6) o

f Com

poun

d (+

)-2.

Figu

re A

.1.5

4 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

2.

9698100

102

104

106

108

110

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 124: Abstract - John L. Wood

100 10

0

8 6 4 2 0 ppm

Figure A.1.56 1H NMR (500 MHz, CDCl3) of Compound (+)-51b.

OO

O

OH

O

(+)-51b

Page 125: Abstract - John L. Wood

101 10

1

200

150

100

50PP

M

Figu

re A

.1.5

8 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-51

b.

Figu

re A

.1.5

7 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

51b.

80859095100

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 126: Abstract - John L. Wood

102 10

2

8 6 4 2 0 ppm

OOO

HO

OHO H

(-)-Syringolide 3(-)-3

Figure A.1.59 1H NMR (500 MHz, acetone-d6) of Compound (-)-3.

Page 127: Abstract - John L. Wood

103 10

3

200

150

100

50PP

M

Figu

re A

.1.6

1 13

C N

MR

(125

MH

z, a

ceto

ne-d

6) o

f Com

poun

d (-

)-3.

Figu

re A

.1.6

0 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

3.

859095

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 128: Abstract - John L. Wood

104 10

4

8 6 4 2 0 ppm

Figure A.1.62 1H NMR (500 MHz, CDCl3) of Compound (-)-51c.

OO

O

OH

O

(-)-51c

Page 129: Abstract - John L. Wood

105 10

5

200

150

100

50PP

M

Figu

re A

.1.6

4 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-51

c.

Figu

re A

.1.6

3 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

51c.

707580859095100

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 130: Abstract - John L. Wood

106 10

6

8 6 4 2 0 ppm

O O

O

OH

O OHH

(+)-Syringolide 3(+)-3

Figure A.1.65 1H NMR (500 MHz, acetone-d6) of Compound (+)-3.

Page 131: Abstract - John L. Wood

107 10

7

200

150

100

50PP

M

Figu

re A

.1.6

7 13

C N

MR

(125

MH

z, a

ceto

ne-d

6) o

f Com

poun

d (+

)-3.

Figu

re A

.1.6

6 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

3.

5060708090

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 132: Abstract - John L. Wood

108 10

8

8 6 4 2 0 ppm

OO

O

OH

O

(+)-51c

Figure A.1.68 1H NMR (500 MHz, CDCl3) of Compound (+)-51c.

Page 133: Abstract - John L. Wood

109 10

9

200

150

100

50PP

M

Figu

re A

.1.7

0 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-51

c.

Figu

re A

.1.6

9 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

51c.

708090100

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 134: Abstract - John L. Wood

110 11

0

8 6 4 2 0 ppm

4

OTBS

O

O

O

ONH

O

(-)-91

O

O

Figure A.1.71 1H NMR (500 MHz, CDCl3) of Compound (-)-91.

Page 135: Abstract - John L. Wood

111 11

1

200

150

100

50PP

M

Figu

re A

.1.7

3 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-91

.

Figu

re A

.1.7

2 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

91.

707580859095100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 136: Abstract - John L. Wood

112 11

2

8 6 4 2 0 ppm

Figure A.1.74 1H NMR (500 MHz, acetone-d6) of Compound (-)-92.

OOO

HO

OHN

4

HO HO

O

(-)-N-(Carbobenzyloxy)-aminosyringolide 1(-)-92

Page 137: Abstract - John L. Wood

113 11

3

8 6 4 2 0 ppm

Figure A.1.75 1H NMR (500 MHz, CDCl3) of Compound (-)-92.

OOO

HO

OHN

4

HO HO

O

(-)-N-(Carbobenzyloxy)-aminosyringolide 1(-)-92

Page 138: Abstract - John L. Wood

114 11

4

200

150

100

50PP

M

Figu

re A

.1.7

7 13

C N

MR

(125

MH

z, a

ceto

ne-d

6) o

f Com

poun

d (-

)-92

.

Figu

re A

.1.7

6 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

92.

8486889092949698

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 139: Abstract - John L. Wood

115 11

5

8 6 4 2 0 ppm

Figure A.1.78 1H NMR (500 MHz, CDCl3) of Compound (-)-93.

OO

O

OH

O

HN

(-)-93

4

O

O

Page 140: Abstract - John L. Wood

116 11

6

200

150

100

50PP

M

Figu

re A

.1.8

0 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-93

.

Figu

re A

.1.7

9 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

93.

405060708090

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 141: Abstract - John L. Wood

117

Appendix 2

X-ray Structure Reports Relevant to Chapter 2.

A.2.1 X-ray Structure Report for (-)-Syringolide 3.

OO

O

HO

OHO H

(-)-Syringolide 3(-)-3

O1

O2

O3

O4

O5

O6

C1

C2 C3

C4

C5

C6

C7 C8

C9

C10

C11

H1

H2

H3

H8

H9

Figure A.2.1 ORTEP plot of Syringolide 3.

A.2.1.1 Crystal Data.

Empirical Formula C11H16O6 Formula Weight 244.24 Crystal Color, Habit colorless, plate Crystal Dimensions 0.07 X 0.12 X 0.23 mm Crystal System monoclinic Lattice Type Primitive Lattice Parameters a = 8.0462(4)Å b = 5.7570(3) Å c = 12.680(1) Å β = 102.094(3)o V = 574.34(6) Å3 Space Group P21 (#4) Z value 2 Dcalc 1.412 g/cm3 F000 260.00 µ(MoKα) 1.15 cm-1

Page 142: Abstract - John L. Wood

118

A.2.1.2 Intensity Measurements.

Diffractometer Nonius KappaCCD Radiation MoKα (λ = 0.71069 Å) Graphite monochromated Take-off Angle 2.8o Crystal to Detector Distance 33 mm Temperature -90.0oC Scan Rate 120s/frame Scan Width 2.0o/frame 2θmax 54.9o No. of Reflections Measured Total: 2478 Unique: 1453 (Rint = 0.040) Corrections Lorentz-polarization A.2.1.3 Structure Solution and Refinement.

Structure Solution Direct Methods (SIR92) Refinement Full-matrix least-squares Function Minimized Σ w (|Fo| - |Fc|)2 Least Squares Weights 1/σ 2(Fo) p-factor 0.0100 Anomalous Dispersion All non-hydrogen atoms No. Observations (I>3.00σ(I)) 959 No. Variables 217 Reflection/Parameter Ratio 4.42 Residuals: R; Rw 0.041 ; 0.041 Goodness of Fit Indicator 1.80 Max Shift/Error in Final Cycle 0.00 Maximum peak in Final Diff. Map 0.21 e-/Å3 Minimum peak in Final Diff. Map -0.25 e-/Å3

Page 143: Abstract - John L. Wood

119

A.2.1.4 Atomic coordinates and Biso/Beq.

Table A.2.1 Atomic coordinates and Biso/Beq for Syringolide 3.

atom x y z Beq O(1) 0.9081(3) 0.5000 0.2473(2) 2.24(6) O(2) 0.5268(3) 0.5908(8) 0.0401(2) 3.31(7) O(3) 0.6705(3) 0.9421(6) 0.1840(2) 2.22(6) O(4) 1.0367(3) 1.0865(7) 0.1006(2) 2.75(6) O(5) 1.2308(3) 1.1354(6) 0.2511(2) 3.04(6) O(6) 1.1715(3) 0.6108(7) 0.2155(2) 2.20(6) C(1) 0.8067(5) 0.5921(9) 0.1494(3) 2.09(8) C(2) 0.6193(5) 0.5508(8) 0.1471(3) 2.46(9) C(3) 0.5799(6) 0.7477(9) 0.2158(3) 2.39(10) C(4) 0.8274(5) 0.8586(8) 0.1617(3) 1.89(8) C(5) 0.8683(5) 0.9920(9) 0.0657(3) 2.14(9) C(6) 1.0994(5) 1.0492(7) 0.2073(3) 2.14(9) C(7) 0.9812(5) 0.8958(8) 0.2527(3) 2.03(9) C(8) 1.0527(5) 0.6469(8) 0.2812(3) 2.08(8) C(9) 1.1233(6) 0.6008(10) 0.3985(3) 2.53(9) C(10) 1.2800(6) 0.746(1) 0.4486(4) 3.3(1) C(11) 1.3484(8) 0.693(1) 0.5660(4) 4.3(1) H(1) 0.849(4) 0.536(5) 0.081(2) 0.3(6) H(2) 0.603(5) 0.397(10) 0.178(3) 3.2(9) H(3) 0.512(9) 0.46(2) -0.012(7) 10(1) H(4) 0.628(5) 0.717(8) 0.292(3) 3.4(9) H(5) 0.457(5) 0.796(6) 0.206(2) 0.7(7) H(6) 0.793(4) 1.131(7) 0.049(2) 1.7(7) H(7) 0.870(6) 0.89(1) -0.013(4) 7(1) H(8) 0.953(4) 0.976(8) 0.330(3) 3.3(8) H(9) 1.202(5) 0.480(8) 0.221(3) 1.3(8) H(10) 1.036(5) 0.625(9) 0.449(3) 4.2(9) H(11) 1.146(5) 0.437(9) 0.401(3) 3.6(10) H(12) 1.364(6) 0.712(9) 0.387(4) 5(1) H(13) 1.251(8) 0.90(1) 0.432(5) 8(1) H(14) 1.457(7) 0.78(1) 0.617(4) 6(1) H(15) 1.357(8) 0.52(1) 0.564(5) 8(1) H(16) 1.271(5) 0.728(9) 0.622(3) 3.9(9)

Beq = 8/3 π2(U11(aa*)2 + U22(bb*)2 + U33(cc*)2 + 2U12(aa*bb*)cos γ + 2U13(aa*cc*)cos β + 2U23(bb*cc*)cos α)

Page 144: Abstract - John L. Wood

120

Chapter 3

Syringolides: C-H Insertion Synthetic Studies.

3.1 Retrosynthetic analysis.

In 1995 Doyle and Dyatkin1 reported that diazoacetate 94 underwent a

regioselective carbon-hydrogen insertion to furnish spirolactone 95 upon exposure to

Rh2(cap)4 (Scheme 3.1).

Rh2(cap)4, CH2Cl2

reflux (76%)

Scheme 3.1 Doyle and Dyatkin: Spirolactone Synthesis.

95

OO

O

94

OO

H

OH

N2 H H

Based on this report and with an interest in improving the syringolide synthesis, a

new approach using a C-H insertion as the key step was devised. Accordingly the

retrosynthetic analysis shown on Scheme 3.2 was conceived. As illustrated, the

hemiacetals of syringolides (1-3) were envisioned to arise via an intramolecular ring

closure in ketones 96a-c. The spirolactone rings in 96a-c would, in time, arise from an

intramolecular C-H insertion reaction applied to the α-diazoesters 97a-c. The requisite

α-diazoesters 97a-c would be synthesized by acylation of a primary alcohol such as 98

and the corresponding β-ketoacids 14a-c, followed by the required diazo transfer

reaction.

Page 145: Abstract - John L. Wood

121

OO

O

HO

O

n

Syringolide 1 (1, n = 3)Syringolide 2 (2, n = 5)Syringolide 3 (3, n = 1)

HHO

O

O

O

n

96a, n = 396b, n = 596c, n = 1

O

HO

HO

H

O

n

97a, n = 397b, n = 597c, n = 1

HO

HO

HO

ON2

O

OHO

HO

HOH

OH

OO

14a, n = 314b, n = 514c, n = 1

+

98

n

Scheme 3.2 Syringolides: Retrosynthetic Analysis.

3.2 General Strategy.

Rather than synthesizing the highly advanced intermediates 97a-c, it was decided

to first try the C-H insertion key step with a series of model systems such as 101 where

the lateral chain and the trans diol would be masked with suitable precursors. Such

precursors would be synthesized as described on Scheme 3.3. First, a masked diol such

as 99 (R-R’ = masked diol) would be acylated with an acid2 or diketene3 to give ester

100. Exposure of 100 to diazo transfer conditons4,5 would furnish the α-diazoester 101

which, when treated with a rhodium(II) catalyst such as Rh2(OAc)4, would undergo the

Page 146: Abstract - John L. Wood

122

desired intramolecular C-H insertion6 producing the spirolactones 102, the proposed

precursors to syringolides 1-3.

O

O

O

OH

O

Syringolide 1 (1, n = 3)Syringolide 2 (2, n = 5)Syringolide 3 (3, n = 1)

HHO

99

Scheme 3.3 C-H Insertion: General Strategy.

R R'

OHO

Diazo transferAcylation

100

R R'

OO

OR"

101

R R'

OO

OR"

N2

Rh2(L)4R R'

OO

OR"

102

n

O

OO

N2

RO

O

N2

RO

OTBSO

N2

RO

O

N2

R

O

O

N2

RO

O

N2

RO

O

N2

RMeO

MeOO

HO OH

R =

103 104 105 107

108 109 110

O

O

MeO

O

N2

R

106

H

Figure 3.1 Side Chains for Model Studies.

In model studies, the α-diazo-β-ketoester side chain of 97 was masked as a

diazoacetoacetate (103), a diazoacetate7 (104), a 2-diazo-3-[(t-butyldimethylsilyl)oxy]-3-

Page 147: Abstract - John L. Wood

123

butenoate8 (105), a diazomalonate (106), a vinyldiazoacetate (107-108) or a

methoxyphenyldiazoacetate (109-110) (Figure 3.1). Additionally, the diol coupling

partner was masked as a protected trans diol (111), and an olefin (112) (Figure 3.2). To

assess reactivity of the various side chains (i.e.: 103-110) towards C-H insertion

chemistry, the parent tetrahydrofuran (113) was also included in our model studies.

ORO O O

N2

R =OROO

PO OP

RO

111P = Bn, Me or TBS

112 113

Figure 3.2 Masked Trans Diol for Model Studies.

3.3 C-H Insertion: Tetrahydrofurfuryl Esters.

3.3.1 Initial Studies with Tetrahydrofurfuryl Esters of 113.

3.3.1.1 Diazoacetoacetate.

Given that the diazoacetoacetate side chain (103) most closely resembles that

required for the synthesis of 97, known acetoacetate 1149 was exposed to diazo transfer

conditions (Scheme 3.4). The derived diazoacetoacetate 1151 was treated with several

rhodium(II) catalysts [i.e.: Rh2(OAc)4, Rh2(cap)4, Rh2(tfa)4 and Rh2(NHCOC3F7)4], all of

which failed to promote the formation of the desired spirolactone 116 and produced

instead an intractable mixture of compounds.

Page 148: Abstract - John L. Wood

124

Scheme 3.4

114

OO

OO

N2

O

OO

O

O

115

116

p-ABSA, Et3N

CH3CN (88%)

Rh2(L)4

CH2Cl2X

O O O

3.3.1.2 2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate.

Knowing that methyl 2-diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate

undergoes O-H insertion when treated with Rh2(OAc)4,10 the reactivity of the 2-diazo-3-

[(t-butyldimethylsilyl)oxy]-3-butenoate side chain (105) was explored as an alternative to

the diazoacetoacetate chain (103). To this end, 115 was treated with TBSOTf and Et3N

to furnish 117 quantitatively (Scheme 3.5). Diazo decomposition of 117 furnished the

desired spirolactone 118, but unfortunately it is unstable and decomposed to an

intractable mixture of compounds before it could be fully characterized.

Scheme 3.5

TBSOTf, Et3N

CH2Cl2 (100%)

OO

N2

O

115

OO

ON2

OTBS

117

O

OO

O

TBSO

118

Rh2(OAc)4

CH2Cl2 (18%)

Page 149: Abstract - John L. Wood

125

3.3.1.3 Diazomalonate.

Having failed with 103, we turned to the diazomalonate side chain (106) (Scheme

3.6). Thus, acylation of tetrahydrofurfuryl alcohol (119) with methyl malonyl chloride11

(120) followed by exposure of the derived malonate 121 to diazo transfer conditions

provided diazomalonate 122. Treatment of 122 with Rh2(OAc)4 failed to furnish any of

the desired spirolactone 123 and resulted in an intractable mixture of products.

Cl

O

MeO

OOOH +

Pyridine, CH2Cl2

(96%)

121

OO OMe

OO

N2

OMe

O

122

p-ABSA, Et3N

CH3CN (68%)

119 120

OO

O

O OMe123

Rh2(OAc)4

CH2Cl2X

Scheme 3.6

O O

O

3.3.1.4 3-Methoxyphenyldiazoacetate.

Concerned over the stabilizing effects of the β-dicarbonyl moieties in 115 and 122

we next turned to the 3-methoxyphenylacetate side chain (109) since it could produce a

less stable and thus more reactive carbenoid (Scheme 3.7). To this end, 119 was acylated

with 3-methoxyphenylacetic acid (124) to furnish ester 125. Diazo transfer reaction on

125 provided 3-methoxyphenyldiazoacetate 126 which when treated with Rh2(OAc)4

produced the desired spirolactone 127 in very good yield (85%). Only one of the two

possible C-H insertion isomers was observed and single-crystal X-ray analysis

established the illustrated anti orientation of the tetrahydrofurfuryl oxygen and the proton

Page 150: Abstract - John L. Wood

126

α to the carbonyl. As described later in this chapter, the same relative stereochemical

configuration was observed in all the other spirolactones analyzed by X-ray

crystallography. Although transformation of the aromatic side chain in 127 to the

required β-ketoester for the actual synthesis of syringolides would be difficult, the high

yield obtained with the 3-methoxyphenyldiazoacetate side chain led us to continue its use

in other model systems.

OH

O+

DCC, DMAP

CH2Cl2 (96%)

125

OO

OO

N2

126

p-ABSA, DBU

CH3CN (81%)

119 124

Rh2(OAc)4

CH2Cl2 (85%)

Scheme 3.7

MeO

OO

O

127

H

OMe

OOH

O

O

OMe

OMe

3.3.1.5 Vinyldiazoacetate.

Since an olefin could serve as a precursor to the β-ketoester functionality of the

side chain, it was decided to test the reactivity of the vinyldiazoacetate side chain (107)

(Scheme 3.8). Accordingly, 119 was acylated with vinylacetic acid (128) to furnish ester

129. Diazo transfer reaction on 129 provided vinyldiazoacetate 130 which, upon

Page 151: Abstract - John L. Wood

127

treatment with Rh2(OAc)4, produced the desired spirolactone 131. Again only one of the

two possible diastereomeric C-H insertion products was observed by 1H NMR. Based on

analogy to 127, it is believed that 131 possesses a relative stereochemical configuration

wherein the tetrahydrofuranyl oxygen and the proton α to the carbonyl group are anti.

OH

OOOH +

129

OO

OO

N2

130

119 128

OO

O

131

Scheme 3.8

DCC, DMAP

CH2Cl2 (100%)

p-ABSA, DBU

CH3CN (34%)

Rh2(OAc)4

CH2Cl2 (36%)

O

O

3.3.1.6 Cyclohexenyldiazoacetate.

Based on successes with 130 and recognizing that a cyclic olefin would be a

preferred substrate we next prepared 134 (Scheme 3.9). To this end, the

vinyldiazocarboxylate functionality was prepared via the two step procedure developed

by Padwa and co-workers.11 Thus, treatment of diazoacetate 941 with LDA and

cyclohexene furnished alcohol 133 which could, in turn, be dehydrated to 134 upon

exposure to POCl3. Intramolecular C-H insertion of 134 in the presence of Rh2(OAc)4

furnished the desired spirolactone 135. As with 127 and 131, only one of the two

possible C-H insertion isomers was observed by 1H NMR and again by analogy to 127

Page 152: Abstract - John L. Wood

128

we have assigned the relative stereochemistry such that the tetrahydrofuranyl oxygen and

the proton α to the carbonyl group are anti.

OO

N2

133

OO

O

134

Scheme 3.9

LDA, THF

(87%)

Rh2(OAc)4

CH2Cl2 (51%)

94

OO

N2

OO

N2

132

O

+

135

POCl3, pyridine

(81%)

O

O

O

OH

As mentioned in Chapters 1 and 2, it was supposed that syringolide-like

molecules with an amino functionality at the terminus of the side chain could be used as

molecular probes in affinity chromatography for the isolation of the receptor protein in

soybean provided these derivatives retained their biological activity and could bind to

their receptor. Of particular interest with regard to 135 was the possibility of unmasking

the requisite ketone via ozonolysis since an aldehyde functionality would be obtained at

the end of the side chain. This aldehyde could be oxidized to the corresponding

carboxylic acid or used to incorporate an amino group, both of which would be useful in

the synthesis of a syringolide analog suitable for affinity chromatography. Unfortunately,

attempts to produce the desired β-keto-η-aldo side chain via oxidative cleavage13 did not

furnish the expected spirolactone 136 but its corresponding β-elimination derivative 137

which could not be characterized since it was labile and did not survive purification (flash

Page 153: Abstract - John L. Wood

129

chromatography, HPLC) (Scheme 3.10). These results indicated that the cyclohexenyl

side chain would be difficult to derivatize to the required β-keto-η-aldo side chain and

the approach was abandoned.

OO

O

O

136

H

O

1. O3, CH2Cl2

2. Me2S

OO

O

135

OO

OOH

OH

137

Scheme 3.10

3.4 C-H Insertion: 2,5-Dihydrofurfuryl Esters.

3.4.1 Studies with 2,5-Dihydrofurfuryl Esters.

Dihydrofurfuryl esters (112) were chosen for the second set of model studies

since dihydroxylation of the resident olefin could furnish the requisite trans diol. The

diazoacetoacetate, diazoacetate, 3-methoxyphenyldiazoacetate and 4-methoxyphenyl-

diazoacetate side chains were chosen for these experiments.

3.4.1.1 Diazoacetoacetate.

Once again the diazoacetoacetate side chain (103) was tried first (Scheme 3.11)

since it most closely resembled that required for the synthesis of 97. Thus, 2,5-

dihydrofurfuryl alcohol (138)14 was treated with diketene (139) to furnish acetoacetate

140. Diazo transfer reaction on acetoacetate 140 produced diazoacetoacetate 141 which

Page 154: Abstract - John L. Wood

130

was treated with two different rhodium(II) catalysts: Rh2(OAc)4 and Rh2(tfa)4. The

experiments were unsuccessful and the desired spirolactone 142 was not obtained, instead

an intractable mixture of compounds was produced.

Scheme 3.11

140

OO

OO

N2

O OO

O

O

141 142

MsN3, Et3N

CH3CN (82%)

Rh2(L)4

CH2Cl2X

138

OOH

O O

O

OO

139

DMAP, THF

(93%)+

3.4.1.2 2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate.

The reactivity of the 2-diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate side chain

(105) was explored again as an alternative to the diazoacetoacetate chain (103). To this

end, 141 was treated with TBSOTf and Et3N to furnish 143 (Scheme 3.12). Diazo

decomposition of 143 furnished the desired spirolactone 144 but unfortunately, just as

118, it is unstable and decomposed to an intractable mixture of compounds before it

could be fully characterized.

Page 155: Abstract - John L. Wood

131

Scheme 3.12

TBSOTf, Et3N

CH2Cl2 (98%)

OO

N2

O

141

OO

ON2

OTBS

143

O

OO

O

TBSO

144

Rh2(OAc)4

CH2Cl2 (13%)

3.4.1.3 Diazoacetate.

The diazoacetate side chain (104) was tested (Scheme 3.13) since Doyle and

Dyatkin1 had shown that the corresponding tetrahydrofurfuryl ester (94) undergoes the

desired C-H insertion reaction to furnish spirolactone 95 (Scheme 3.1). Deacylation of

diazoacetoacetate 141 under basic conditions produced diazoacetate 145 which was

treated with two different rhodium(II) catalysts: Rh2(OAc)4 and Rh2(cap)4. The

experiments were unsuccessful and the desired spirolactone 146 was not obtained, instead

an intractable mixture of compounds was produced.

OO

N2

OO

O

145 146

Rh2(L)4

CH2Cl2X

O

Scheme 3.13

OO

N2

O

141

O LiOH, H2O

CH3CN (52%)

Page 156: Abstract - John L. Wood

132

3.4.1.4 3-Methoxyphenyldiazoacetate.

After the previous unsuccessful experiments, the 3-methoxyphenylacetate chain

(109) was tested (Scheme 3.14) since, as discussed in section 3.3.1.4, this had proven to

be a good side chain. To this end, 138 was acylated with 124 to furnish ester 147. Diazo

transfer reaction on 147 provided 3-methoxyphenyldiazoacetate 148 which, upon

treatment with Rh2(OAc)4, produced the desired spirolactone 149 in very good yield.

Only one of the two possible C-H insertion isomers was observed and single-crystal X-

ray analysis established the illustrated the relative stereochemical configuration where the

2,5-dihydrofuranyl oxygen and the proton α to the carbonyl group are anti to each other.

OH

O+

DCC, DMAP

CH2Cl2 (87%)

147

OO

OO

N2

148

p-ABSA, DBU

CH3CN (78%)

124

Rh2(OAc)4

CH2Cl2 (73%)

Scheme 3.14

MeO

OO

O

149

H

OMe

O

O

OMe

OMe

138

OOH

Page 157: Abstract - John L. Wood

133

3.4.1.5 4-Methoxyphenyldiazoacetate.

The 4-methoxyphenylacetate side chain (110) was tested as an alternative to the

3-methoxyphenylacetate (Scheme 3.15). To this end, 138 was acylated with 150 to

furnish ester 151. Diazo transfer reaction on 151 provided 4-methoxyphenyldiazoacetate

152. In contrast to 147, diazo transfer produced only 43% of the desired product (60%

based on recovered 151). Diazo decomposition of 152 with Rh2(OAc)4 furnished the

desired spirolactone 153 in good yield and again as a single diastereomeric product.

Single-crystal X-ray analysis established the illustrated relative stereochemical

configuration wherein the 2,5-dihydrofuranyl oxygen and the proton α to the carbonyl

group are anti.

OH

O+

DCC, DMAP

CH2Cl2 (95%)

151

OO

OO

N2

152

p-ABSA, DBU

CH3CN (43%)

150

Rh2(OAc)4

CH2Cl2 (63%)

Scheme 3.15

OO

O

153

H

O

O

138

OOH

MeO

OMe

OMe

MeO

Page 158: Abstract - John L. Wood

134

3.5 C-H Insertion: 1,4-Anhydroarabinityl Esters.

3.5.1 Studies with 2,3-di-O-Protected 1,4-Anhydroarabinityl Esters.

Model systems based on 1,4-anhydroarabinitol (98) (Figure 3.3) highly resemble

the trans diol required for the real system (97). Thus, a series of 2,3-di-O-protected 1,4-

arabinitol ethers were used for model studies. These include the TBS-diprotected 154,

benzyl-diprotected 155 and methyl-diprotected 156. All the experiments are outlined

below.

OHO

98

HO OH

OHO

154

TBSO OTBS

OHO

155

BnO OBn

OHO

156

MeO OMe

OO

97cHO OH

O

N2

O

Figure 3.3 2,3-di-O-1,4-Arabinitol (98) and Derivatives.

3.5.1.1 Masked Diols: 2,3-di-O-(t-Butyldimethylsilyl)-1,4-anhydro-DL-arabinityl

Esters.

The TBS-diprotected model system was selected since the TBS protecting group

is generally easy to install and remove. Preparation of the several TBS-diprotected

substrates commenced with 2,3-di-O-(t-butyldimethylsilyl)-1,4-anhydro-DL-arabinitol

(154) which is readily available from 5-O-benzoyl-1,4-anhydro-DL-arabinitol (157)15 via

Page 159: Abstract - John L. Wood

135

treatment with TBSCl and imidazole16 followed by debenzoylation to 154 under basic

conditions (Scheme 3.16).

Scheme 3.16

157

OHO

OO

O

OO

O

Imidazole, TBSCl

DMF

NaOMe, MeOH

(59%, two steps)

158

154

OTBSOH

OTBS

TBSOHO

TBSO

3.5.1.1.1 Diazoacetoacetate.

As in previous studies, the diazoacetoacetate side chain (103) was tried first

(Scheme 3.17) since it most resembled that required one for the preparation of 97. Thus,

alcohol 154 was treated with diketene (139) to furnish acetoacetate 159. Diazo transfer

reaction on acetoacetate 159 produced diazoacetoacetate 160 which was treated with

Rh2(OAc)4. The reaction was unsuccessful and the desired spirolactone 161 was not

obtained, instead an intractable mixture of compounds was produced.

Page 160: Abstract - John L. Wood

136

OHO

154

OTBSTBSO

Scheme 3.17

OO

O

161

Rh2(OAc)4

CH2Cl2X

OO

139

DMAP, THF

(84%)+ OO

O

159

OTBSTBSO

O

OO

O

160

OTBSTBSO

O

N2

p-ABSA, Et3N

CH3CN (90%) OTBSOTBS

O

3.5.1.1.2 2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate.

Based on previous successes with α,β-unsaturated diazo substrates (i.e.: 130 and

134) and knowing that methyl 2-diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate

undergoes O-H insertion when treated with Rh2(OAc)4,10 the reactivity of the 2-diazo-3-

[(t-butyldimethylsilyl)oxy]-3-butenoate side chain (105) was explored as an alternative to

the diazoacetoacetate chain (103). To this end, 160 was treated with TBSOTf and Et3N

to furnish 162 quantitatively (Scheme 3.18). Diazo decomposition of 162 did not

produce the desired spirolactone 163, instead an intractable mixture of compounds was

produced.

Page 161: Abstract - John L. Wood

137

Scheme 3.18

OO

O

163

Rh2(OAc)4

CH2Cl2X

OO

O

162

OTBSTBSO

TBSO

N2

OTBSOTBS

TBSO

OO

O

160

OTBSTBSO

O

N2

TBSOTf, Et3N

CH2Cl2 (100%)

3.5.1.1.3 Diazoacetate.

Again based the work by Doyle and Dyatkin1 we explored the reactivity of the

diazoacetate side chain (104). Thus, deacylation of diazoacetoacetate 160 with LiOH

produced diazoacetate 164 which was treated with two different rhodium(II) catalysts:

Rh2(OAc)4 and Rh2(cap)4 (Scheme 3.19). The desired spirolactone 165 was obtained only

in the presence of the Rh2(OAc)4 catalyst.

OO

O

165

OO

O

164

OTBSTBSO

N2

OO

O

160

OTBSTBSO

O

N2

LiOH, H2O

CH3CN (82%)

OTBSTBSO

Scheme 3.19

Rh2(OAc)4

CH2Cl2 (69%)

Page 162: Abstract - John L. Wood

138

3.5.1.1.4 3-Methoxyphenyldiazoacetate.

To explore the effects of a less stabilized carbenoid, we turned again to the 3-

methoxyphenylacetate side chain (109). To this end, 154 was acylated with 124 to

furnish ester 166 (Scheme 3.20). Diazo transfer reaction on 166 provided 3-

methoxyphenyldiazoacetate 167 which, upon treatment with Rh2(OAc)4 and produced the

desired spirolactone 168. Only one of the two possible C-H insertion isomers was

observed and single-crystal X-ray analysis established the illustrated relative

stereochemical configuration wherein the tetrahydrofuranyl oxygen and the proton α to

the carbonyl group are anti.

OH

O+

DCC, DMAP

CH2Cl2 (100%)

p-ABSA, DBU

CH3CN (67%)

124

Rh2(OAc)4

CH2Cl2 (36%)

Scheme 3.20

MeO

168

OHO

154

OTBSTBSO

OO

166

OTBSTBSO

O

MeO

OO

167

OTBSTBSO

O

MeON2

OO

O

HMeO OTBSOTBS

Page 163: Abstract - John L. Wood

139

3.5.1.2 Masked Diols: 1,4-Anhydro-2,3-di-O-benzyl-D-arabinityl Esters.

The benzyl-diprotected model system was selected since the benzyl protecting

group is easy to remove and the required common intermediate 1,4-anhydro-2,3-di-O-

benzyl-D-arabinitol (155) is readily available on multigram scale.17

3.5.1.2.1 Diazoacetoacetate.

Based on its resemblance to 97, the diazoacetoacetate derived substrate was

explored first (Scheme 3.21). Thus, alcohol 155 was treated with diketene (139) to

furnish acetoacetate 169. Diazo transfer reaction on acetoacetate 169 produced

diazoacetoacetate 170 which was treated with Rh2(OAc)4. The reaction was unsuccessful

and the desired spirolactone 171 was not obtained. An intractable mixture of compounds

was produced instead.

OHO

155

OBnBnO

Scheme 3.21

OO

O

171

Rh2(OAc)4

CH2Cl2X

OO

139

DMAP, THF

(94%)+ OO

O

169

OBnBnO

O

OO

O

170

OBnBnO

O

N2

p-ABSA, Et3N

CH3CN (89%)O OBn OBn

Page 164: Abstract - John L. Wood

140

Scheme 3.22

Rh2(OAc)4

CH2Cl2X

OO

O

172

OBnBnO

TBSO

N2

OO

O

170

OBnBnO

O

N2

TBSOTf, Et3N

CH2Cl2 (93%)

OO

O

173

TBSO OBn OBn

3.5.1.2.2 2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate.

As before, the 2-diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate side chain (105)

was explored as an alternative to the diazoacetoacetate. To this end, 170 was treated with

TBSOTf and Et3N to furnish 172 (Scheme 3.22). Diazo decomposition of 170 did not

produce the desired spirolactone 173 and resulted in an intractable mixture of products.

OO

O

175

OO

O

174

OBnBnO

N2

OO

O

170

OBnBnO

O

N2

LiOH, H2O

CH3CN (84%)

OBnBnO

Scheme 3.23

Rh2(OAc)4

CH2Cl2 (7%)

Page 165: Abstract - John L. Wood

141

3.5.1.2.3 Diazoacetate.

Turning to a potentially more promising substrate, diazoacetoacetate 170 was

exposed to deacylation conditions to produce diazoacetate 174 (Scheme 3.23). Although

treatment of 174 with Rh2(OAc)4 furnished the desired spirolactone 175,18 the yield was

quite low (7%).

OH

O+

DCC, DMAP

CH2Cl2 (100%)

p-ABSA, DBU

CH3CN (79%)

124

Rh2(OAc)4

CH2Cl2 (15%)

Scheme 3.24

MeO

178

OHO

155

OBnBnO

OO

176

OBnBnO

O

MeO

OO

177

OBnBnO

O

MeON2

OO

O

HMeO OBnOBn

3.5.1.2.4 3-Methoxyphenyldiazoacetate.

In accord with previous studies, the 3-methoxyphenylacetate side chain (109) was

explored next (Scheme 3.24). To this end, 155 was acylated with 124 to furnish ester

176. Diazo transfer reaction on 176 provided 3-methoxyphenyldiazoacetate 177 which,

upon treatment with Rh2(OAc)4, produced the desired spirolactone 178. Only one of the

two possible C-H insertion isomers was observed by 1H NMR. Based on analogy to 127,

Page 166: Abstract - John L. Wood

142

149, 153 and 168 (structures secured by X-ray analysis) we have tentatively assigned 178

as possessing an anti relationship between the tetrahydrofuranyl oxygen and the proton α

to the lactone carbonyl.

Scheme 3.25

157

OO

O

OO

O48% wt aq HBF4, TMSCHN2

CH2Cl2, hexanes

NaOMe, MeOH

(29%, two steps)

179

OHO

156

MeO OMeOMe

OH

MeO

HO

3.5.1.3 Masked Diols: 1,4-Anhydro-2,3-di-O-methyl-DL-arabinityl Esters.

The methyl-diprotected model system was selected to see if the bulk of the TBS

and benzyl protecting groups of the previous model systems was interfering with the C-H

insertion reaction. However, it was not considered as a precursor for the real system

since the methyl ethers would be difficult to remove. In order to obtain the common

intermediate 1,4-anhydro-2,3-di-O-methyl-DL-arabinitol (156), 5-O-benzoyl-1,4-

anhydro-DL-arabinitol (157)15 was treated with TMSCHN2 and HBF419 to produce 179

which was debenzoylated under basic conditions to furnish 156 (Scheme 3.25).

Page 167: Abstract - John L. Wood

143

3.5.1.3.1 Diazoacetoacetate.

The diazoacetoacetate side chain (103) was tried first (Scheme 3.26) since it most

closely resembled that required for the synthesis of 97. Thus, alcohol 156 was treated

with diketene (139) to furnish acetoacetate 180. Diazo transfer reaction on acetoacetate

180 produced diazoacetoacetate 181 which was treated with Rh2(OAc)4. The reaction

was unsuccessful and the desired spirolactone 182 was not obtained, an intractable

mixture of compounds was produced instead.

OHO

156

OMeMeO

Scheme 3.26

OO

O

182

Rh2(OAc)4

CH2Cl2X

OO

139

DMAP, THF

(95%)+ OO

O

180

OMeMeO

O

OO

O

181

OMeMeO

O

N2

p-ABSA, Et3N

CH3CN (78%) OMeOOMe

3.5.1.3.2 2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate.

As before, the 2-diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate side chain (105)

was explored next. Thus, 181 was treated with TBSOTf and Et3N to furnish 183

(Scheme 3.27). Diazo decomposition of 183 did not produce the desired spirolactone 184

and resulted instead in an intractable mixture of compounds.

Page 168: Abstract - John L. Wood

144

Scheme 3.27

OO

O

184

Rh2(OAc)4

CH2Cl2X

OO

O

183

OMeMeO

TBSO

N2

OMeTBSO

OO

O

181

OMeMeO

O

N2

TBSOTf, Et3N

CH2Cl2 (87%)

OMe

3.5.1.3.3 Diazoacetate.

Turning again to a potentially more promising diazo substrate, diazoacetoacetate

181 was deacylated under basic conditions to produce diazoacetate 185. Treatment of

185 with two different rhodium(II) catalysts: Rh2(OAc)4 and Rh2(cap)4 furnished the

desired spirolactone 186 only in the presence of the former (Scheme 3.28).

OO

O

186

OO

O

185

OMeMeO

N2

OO

O

181

OMeMeO

O

N2

LiOH, H2O

CH3CN (68%)

OMeMeO

Scheme 3.28

Rh2(OAc)4

CH2Cl2 (54%)

Page 169: Abstract - John L. Wood

145

3.5.1.3.4 3-Methoxyphenyldiazoacetate.

The final substrate in this series was the 3-methoxyphenyldiazoacetate derivative

188 (Scheme 3.29). This material was prepared by acylation of 156 with 124 to furnish

ester 187. Diazo transfer reaction on 187 provided 3-methoxyphenyldiazoacetate 188

which was treated with Rh2(OAc)4. Unlike its TBS (167) and benzyl (177) counterparts,

188 did not furnish the desired spirolactone 189. Instead, an intractable mixture of

compounds was produced.

OH

O+

DCC, DMAP

CH2Cl2 (75%)

p-ABSA, DBU

CH3CN (32%)

124

Scheme 3.29

MeO

189

OHO

156

OMeMeO

OO

187

OMeMeO

O

MeO

OO

188

OMeMeO

O

MeON2

OO

O

HMeO OMeOMe

Rh2(OAc)4

CH2Cl2X

Page 170: Abstract - John L. Wood

146

3.5.2 Unmasked Diols: 1,4-Anhydroarabinityl Esters.

The final set of model systems were based on unprotected 1,4-anhydroarabinitol

(98) and highly resemble the trans diol required for the real system (97). Only the

diazoacetoacetate and the 3-methoxyphenyldiazoacetate side chains were tested since

other model systems were difficult to prepare. The experiments are outlined below.

3.5.2.1 Diazoacetoacetate.

The diazoacetoacetate side chain (103) was tried first (Scheme 3.30) since it most

closely resembled that required for the synthesis of 97. Thus, 1,4-anhydro-D-arabinitol

(98)20 was treated with diketene (139) to furnish acetoacetate 190. Diazoacetoacetate 194

was obtained via a three step procedure that involved diol protection to produce 192,

diazo transfer reaction to give diazoacetoacetate 193 and diol deprotection to furnish 194.

Diazo decomposition of 194 with Rh2(OAc)4 did not yield the desired spirolactone 195,

instead an intractable mixture of compounds was produced.

Page 171: Abstract - John L. Wood

147

OHO

98

OHHO

Scheme 3.30

OO

O

195

Rh2(OAc)4

CH2Cl2X

OO

139

DMAP, THF

(34%)+ OO

O

190

OHHO

O

OO

O

194

OHHO

O

N2

p-ABSA, Et3N

CH3CN

OHO OH

OO

O

192

OO

O

MeO OMe

OO

O

193

OO

O

MeO OMe

N2

OMe

191

POCl3, THF

p-TsOH, MeOH

(91%, three steps)

3.5.2.2 3-Methoxyphenyldiazoacetate.

Given that the 3-methoxyphenylacetate derivatives were among the best model

systems examined, we explored the analogous 1,4-anhydroarabinityl substrate (Scheme

3.31). To this end, 166 was treated with 48% wt aq HBF416 to furnish diol 196.

3-Methoxyphenyldiazoacetate 199 was obtained via a three step procedure that involved

diol protection to produce 197, diazo transfer reaction to give 3-methoxyphenyl-

Page 172: Abstract - John L. Wood

148

diazoacetate 198 and diol deprotection to furnish 199. Diazo decomposition of 199 with

either Rh2(OAc)4 or Rh2(tfa)4 did not yield the desired spirolactone 200, instead an

intractable mixture of compounds was produced.

Scheme 3.31

OO

O

200

Rh2(L)4

CH2Cl2X OH OH

OO

O

197

OOMeO OMe

OMe

191

POCl3, THF

p-TsOH, MeOH

(44%, three steps)

p-ABSA, DBU

CH3CN

OO

166

OTBSTBSO

O 48% wt aq HBF4

CH3CN (93%) OO

196

OHHO

O

OMe OMe

OMe

OO

O

198

OOMeO OMe

OMe

N2OO

O

199

HO

OMe

N2

OH

MeO

Page 173: Abstract - John L. Wood

149

3.6 C-H Insertion: Stereochemistry.

All of the C-H insertion products analyzed by X-ray crystallography were shown

to possess the same relative stereochemistry (i.e. the polihydrofuranyl oxygen and the

proton α to the lactone carbonyl were always oriented anti about the lactone ring) (Figure

3.4). Although this relative configuration is opposite to that needed for the synthesis of

the syringolides (cf. 3 to 168), the potential epimerizability of the α-center renders the

stereochemical outcome secondary in importance compared to the formation of the C-C

bond.

OO

O

127

H

OMe

OO

O

149

H

OMe

OO

O

153

H

MeO

168

OO

O

HMeO OTBSOTBS

O

O

OO

H

OHHO

Syringolide 3 (3)

Figure 3.4 Spirolactones Analyzed by X-ray Crystallography.

Based on the observed relative stereochemical configuration of all the C-H

insertion products analyzed by X-ray crystallography and in the fact that whenever two

diastereomers could be formed in the C-H insertion reaction only was observed, it is

believed that 131, 135 and 178 have the same relative stereochemical configuration as the

Page 174: Abstract - John L. Wood

150

C-H insertion products analyzed by X-ray crystallography: with the tetrahydrofuranyl

oxygen and the proton α to the carbonyl group anti to each other (Figure 3.5).

OO

O

131

H

OO

O

135

H

178

OO

O

HMeO OBn OBn

Figure 3.5 Proposed Relative Stereochemical Configuration for C-H Insertion Products

131, 135 and 178

It is unclear wether the observed stereochemistry of the C-H insertion products

arises trough a kinetic or thermodynamic process. The C-H insertion mechanism

described by Taber et al.20 is highly speculative21 and more information regarding this

mechanism is needed before it can be used to explain the experimental outcome.

3.7 Conclusions.

The desired C-H insertion products could not be isolated in any of the model

systems where the side chain could be readily modified to that required for the synthesis

of syringolides. These model side chains include the diazoacetoacetate and the 2-diazo-

3-[(t-butyldimethylsilyl)oxy]-3-butenoate. As discussed in section 3.3.1.6, ozonolysis of

135 did not furnish spirolactone 136 but its corresponding β-elimination derivative 137

(Scheme 3.32). This β-elimination could be favored by two factors:

a) The anti relationship between the proton α to the carbonyl group and the

tetrahydrofuranyl oxygen.

Page 175: Abstract - John L. Wood

151

b) The increased acidity of this proton due to the 3-oxo functionality.

OO

OHO

OO

O

135

H

136

1. O3, CH2Cl2

2. Me2S

OO

OO

H

137

Scheme 3.33

HO

HO

Thus, the β-elimination process could limit the utility of the C-H insertion route

for the syringolide synthesis since formation or unmasking the β-keto functionality could

make the α proton acidic enough to eliminate and, as described in Chapter 2, the

formation of syringolides from their butenolide precursors is usually problematic and

low-yielding.

The diazoacetate model systems are also limited by the fact that attempts of

derivatization of the corresponding spirolactones to the side chain required for the real

system could easily result in decomposition of the spirolactone system by β-elimination.

The 3- and 4-methoxyphenylacetate side chains proved to be excellent moieties

for the C-H insertion reaction working in most of the experiments where they were used.

Unfortunately derivatization to the real system would be difficult.

A model system where the C-H insertion reaction worked and the product could

be easily derivatized to the real system was never found. However, a highly

stereospecific synthesis of spirolactones was achieved and this methodology could

potentially be employed in the assembly of other synthetically useful compounds.

Page 176: Abstract - John L. Wood

152

3.8 Experimental Section.

3.8.1 Materials and Methods.

Unless stated otherwise, reactions were performed in flame dried glassware under

a nitrogen atmosphere, using freshly distilled solvents. Diethyl ether (Et2O) and

tetrahydrofuran (THF) were distilled from sodium/benzophenone ketyl. Methylene

chloride (CH2Cl2) and triethylamine (Et3N) were distilled from calcium hydride. All

other commercially obtained reagents were used as received.

Unless stated otherwise, all reactions were magnetically stirred and monitored by

thin-layer chromatography (TLC) using E. Merck silica gel 60 F254 precoated plates (0.25

mm). Column or flash chromatography was performed with the indicated solvents using

silica gel (230-400 mesh) purchased from Bodman. In general, the chromatography

guidelines reported by Still et al.23 were followed. When reactions were adsorbed onto

silica gel, the amount of silica gel used was equal to two times the weight of the reagents.

All melting points were obtained on a Thomas Hoover capillary melting point

apparatus and are uncorrected. Infrared spectra were recorded on a Midac M1200 FTIR.

1H and 13C NMR spectra were recorded on a Bruker AM-500, Bruker Avance DPX-500

or Bruker Avance DPX-400 spectrometer. Chemical shifts are reported relative to

internal chloroform (1H, δ 7.26 ppm; 13C, δ 77.2 ppm),24 Me4Si (1H, δ 0.00 ppm) or

acetone (1H, δ 2.05 ppm; 13C, δ 29.8 ppm).24 High resolution mass spectra were

performed at the University of Illinois Mass Spectrometry Center. High performance

liquid chromatography (HPLC) was performed on a Waters 510 solvent delivery system

using a Rainin Microsorb 80-199-C5 column, or a Rainin Dynamax SD-200 solvent

Page 177: Abstract - John L. Wood

153

delivery system with a Rainin Microsorb 80-120-C5 column. Optical rotations were

measured on a Perkin Elmer 341 polarimeter. Single-crystal X-ray analyses were

performed by Susan DeGala of Yale University.

For purposes of this work, in any given reaction the number of equivalents of a

reactant A is equal to the number of mmol of A used per mmol of the limiting reagent B

employed. The phrase: “was allowed to warm to room temperature” should be taken to

mean that no more cooling agent (ice or dry-ice) was added to the insulating cooling bath.

3.8.2 Preparative Procedures.

Preparation of Diazoacetoacetate 115.

OO

N2

O

115

O

Diazoacetoacetate 115. Triethylamine (8.8 mL, 63.14 mmol, 3.04 equiv) was

added dropwise to a stirred (0 °C) solution of acetoacetate 114 (3.862 g, 20.74 mmol, 1

equiv) and p-ABSA (5.532 g, 23.03 mmol, 1.11 equiv) in CH3CN (52 mL). After

allowing to warm to room temperature and stirring overnight, the reaction mixture was

concentrated in vacuo, triturated with 1:1 Et2O:petroleum ether (104 mL), filtered and

reconcentrated to a yellow oil. Silica gel chromatography employing 6:4 hexanes:EtOAc

as eluant furnished 115 (3.857 g, 88% yield) as a yellow oil. An analytical sample

(yellow oil) was obtained by selecting fractions from the flash chromatography: FTIR

(thin film/NaCl) 2976 (m), 2955 (m), 2874 (m), 2142 (s), 1717 (s), 1658 (s), 1451 (w),

Page 178: Abstract - John L. Wood

154

1386 (m), 1366 (s), 1341 (s), 1313 (s), 1250 (s), 1158 (s), 1073 (s) cm-1; 1H NMR (500

MHz, CDCl3) δ 4.20 (dd, J=10.7, 2.8 Hz, 1H), 4.14-4.08 (m, 2H), 3.79 (dd, J=14.6, 7.3

Hz, 1H), 3.72 (dd, J=14.7, 7.0 Hz, 1H), 2.40 (s, 3H), 1.96 (m, 1H), 1.88 (m, 2H), 1.56

(m, 1H); 13C NMR (125 MHz, CDCl3) δ 189.9, 161.3, 76.3, 68.5, 67.0, 28.2, 27.9, 25.7;

HRMS (FAB) m/z 213.0876 [calcd for C9H13N2O4 (M+H) 213.0875].

Preparation of TBS-enol ether 117.

OO

N2

OTBS

117

O

TBS-enol ether 117. TBSOTf (860 µL, 3.74 mmol, 1.12 equiv) was added dropwise to a

stirred (0 °C) solution of diazoacetoacetate 115 (663 mg, 3.12 mmol, 1 equiv) and

triethylamine (660 µL, 4.74 mmol, 1.52 equiv) in CH2Cl2 (8 mL). After allowing to

warm to room temperature and stirring for 2.5 h, the reaction mixture was diluted with

petroleum ether (32 mL) and washed with 1:1 saturated aqueous NaHCO3:water (2 X 32

mL) and brine (32 mL). The aqueous washings were extracted with petroleum ether (32

mL) and the combined organic phases were dried over MgSO4, filtered and concentrated

in vacuo to furnish 117 (1.020 g, 100% yield) as an orange oil. Typically this material

was used without purification due to its instability. However, an analytical sample

(orange oil) was prepared by flash column chromatography employing 90:10:1

hexanes:EtOAc:Et3N as eluant: FTIR (thin film/NaCl) 2656 (s), 2932 (s), 2884 (m),

2859 (s), 2103 (s), 1713 (s), 1636 (w), 1609 (m), 1472 (m), 1463 (m), 1389 (s), 1364 (s),

1348 (s), 1259 (s), 1080 (s), 1013 (s), 1003 (s), 840 (s), 830 (s), 813 (s), 784 (s) cm-1; 1H

Page 179: Abstract - John L. Wood

155

NMR (500 MHz, CDCl3) δ 5.00 (d, J=2.1 Hz, 1H), 4.24 (d, J=2.1 Hz, 1H), 4.24-4.21 (m,

1H), 4.19-4.14 (m, 2H), 3.86 (m, 1H), 3.79 (m, 1H), 2.04-1.98 (m, 1H), 1.93-1.89 (m,

2H), 1.68-1.61 (m, 1H), 0.91 (s, 9H), 0.22 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 164.1,

140.7, 90.6, 76.5, 68.5, 66.6, 28.0, 25.8, 25.6, 18.1, -4.7; HRMS (EI) m/z 326.1662

[calcd for C15H26N2O4Si (M+) 326.1662].

Preparation of Malonate 121.

121

OO OMe

O O

Malonate 121. To a stirred (0 °C) solution of tetrahydrofurfuryl alcohol (1 ml,

10.32 mmol, 1 equiv) and pyridine (1.25 mL, 15.46 mmol, 1.5 equiv) in CH2Cl2 (55 mL)

was added dropwise over a 1 h period (syringe pump) a solution of methyl malonyl

chloride (1.2 mL, 11.19 mmol, 1.08 equiv) in CH2Cl2 (20 mL). The reaction mixture was

stirred at 0 °C for 30 min and then washed with water (20 mL) and brine (20 mL). The

aqueous washings were extracted with CH2Cl2 (20 mL) and the combined organic phases

were dried over MgSO4, filtered and concentrated in vacuo to furnish 121 (2.004 g, 96%

yield) as a yellow oil. Typically this material was used without purification. However,

an analytically pure sample (colorless oil) was prepared by flash column chromatography

employing 6:4 hexanes:EtOAc as eluant: FTIR (thin film/NaCl) 2955 (m), 2876 (m),

1753 (s), 1737 (s), 1438 (m), 1412 (m), 1333 (m), 1276 (m), 1200 (m), 1154 (s), 1088

(m), 1026 (s), 921 (w) cm-1; 1H NMR (500 MHz, CDCl3) δ 4.17 (dd, J=11.0, 3.4 Hz,

1H), 4.07 (ddd, J=13.5, 6.7, 3.0 Hz, 1H), 4.03 (dd, J=11.0, 6.4 Hz, 1H), 3.84-3.80 (m,

Page 180: Abstract - John L. Wood

156

1H), 3.76-3.71 (m, 1H), 3.69 (s, 3H), 3.38 (s, 2H), 1.99-1.91 (m, 1H), 1.90-1.81 (m, 2H),

1.60-1.53 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 166.9, 166.5, 76.2, 68.5, 67.4, 52.5,

41.2, 27.9, 25.7; HRMS (EI) m/z 203.0920 [calcd for C9H15O5 (M+H) 203.0919].

Preparation of Diazomalonate 122.

OO

N2

OMe

O

122

O

Diazomalonate 122. Triethylamine (3.8 mL, 27.26 mmol, 2.99 equiv) was added

dropwise to a stirred (0 °C) solution of malonate 121(1.843 g, 9.11 mmol, 1 equiv) and p-

ABSA (2.411 g, 10.04 mmol, 1.10 equiv) in CH3CN (25 mL). After allowing to warm to

room temperature and stirring overnight, the reaction mixture was concentrated in vacuo,

triturated with 1:1 Et2O:petroleum ether (50 mL), filtered and reconcentrated to a yellow

oil. Silica gel chromatography employing 6:4 hexanes:EtOAc as eluant furnished 122

(1.406 g, 68% yield) as a yellow oil. An analytical sample (yellow oil) was obtained by

selecting fractions from the flash chromatography: FTIR (thin film/NaCl) 2965 (s), 2875

(m), 2137 (s), 1761 (s), 1738 (s), 1694 (s), 1438 (s), 1387 (s), 1325 (s), 1237 (s), 1183 (s),

1081 (s), 1019 (m), 992 (m), 923 (w), 761 (s) cm-1; 1H NMR (500 MHz, CDCl3) δ 4.27

(dd, J=11.0, 3.4 Hz, 1H), 4.21-4.14 (m, 2H), 3.87 (dd, J=15.1, 7.0 Hz, 1H), 3.83 (s, 3H),

3.79 (dd, J=14.3, 7.3 Hz, 1H), 2.01 (m, 1H), 1.90 (m, 2H), 1.65 (m, 1H); 13C NMR (125

MHz, CDCl3) δ 161.3, 160.7, 76.2, 68.4, 67.1, 52.4, 27.8, 25.6; HRMS (EI) m/z

229.0825 [calcd for C9H13N2O5 (M+H) 229.0824].

Page 181: Abstract - John L. Wood

157

Preparation of 3-Methoxyphenylacetate 125.

125

OO

O

OMe

3-Methoxyphenylacetate 125. To a stirred (0 °C) solution of tetrahydrofurfuryl

alcohol (1 mL, 10.32 mmol, 1 equiv), 3-methoxyphenylacetic acid (1.927 g, 11.60 mmol,

1.12 equiv) and DMAP (14 mg, 0.11 mmol, 1.1% equiv) in CH2Cl2 (10 mL) was added

DCC (2.466 g, 11.95 mmol, 1.15 equiv). After allowing to warm to room temperature

and stirring for 4 h, the resulting white precipitate was removed by filtration through a

cotton plug. The filtrate was concentrated in vacuo and the residue taken in CH3CN (10

mL), filtered through a cotton plug and reconcentrated; this procedure was repeated using

acetone (10 mL) and a reddish oil was recovered. Silica gel chromatography employing

3:1 hexanes:EtOAc as eluant furnished 125 (2.479 g, 96% yield) as a yellow oil. An

analytical sample (yellowish oil) was obtained by selecting fractions from the flash

chromatography: FTIR (thin film/NaCl) 3053 (w), 2949 (s), 2874 (s), 2837 (s), 1737 (s),

1662 (w), 1601 (s), 1586 (s), 1491 (s), 1455 (s), 1437 (s), 1262 (s), 1151 (s) cm-1; 1H

NMR (500 MHz, CDCl3) δ 7.19 (t, J=7.6 Hz, 1H), 6.84 (d, J=7.7 Hz, 1H), 6.82 (d, J=2.2

Hz, 1H), 6.77 (dd, J=8.4, 2.0 Hz, 1H), 4.14 (dd, J=11.5, 3.4 Hz, 1H), 4.07 (ddd, J=13.5,

7.1, 3.1 Hz, 1H), 3.82-3.78 (m, 1H), 3.74 (s, 3H), 3.76-3.71 (m, 1H), 3.60 (s, 2H), 1.95-

1.88 (m, 1H), 1.85-1.79 (m, 2H), 1.56-1.49 (m, 1H); 13C NMR (125 MHz, CDCl3) δ

171.3, 159.8, 135.4, 129.5, 121.6, 114.9, 112.8, 76.5, 68.4, 66.8, 55.2, 41.3, 28.0, 25.7;

HRMS (EI) m/z 250.1222 [calcd for C14H18O4 (M+) 250.1205].

Page 182: Abstract - John L. Wood

158

Preparation of 3-Methoxyphenyldiazoacetate 126.

OO

N2

126

O

OMe

3-Methoxyphenyldiazoacetate 126. DBU (0.9 mL, 6.02 mmol, 1.98 equiv) was

added dropwise to a stirred (0 °C) solution of 3-methoxyphenylacetate 125 (760 mg, 3.04

mmol, 1 equiv) and p-ABSA (1.103 g, 4.59 mmol, 1.51 equiv) in CH3CN (9 mL). After

allowing to warm to room temperature and stirring overnight, the reaction mixture was

treated with saturated aqueous NH4Cl (9 mL) and extracted with CH2Cl2 (2 X 18 mL).

The combined organic phases were dried over MgSO4, filtered and concentrated in vacuo

to furnish an orange oil. Silica gel chromatography employing 6:4 hexanes:EtOAc as

eluant furnished 126 (681 mg, 81% yield) as an orange oil. An analytical sample (orange

oil) was obtained by a second flash chromatography using 9:1 hexanes:EtOAc as eluant:

FTIR (thin film/NaCl) 3086 (w), 2951 (s), 2872 (s), 2838 (m), 2091 (s), 1704 (s), 1599

(s), 1578 (s), 1494 (s), 1294 (s), 1251 (s), 1180 (s), 1152 (s), 1035 (s) cm-1; 1H NMR

(500 MHz, CDCl3, Me4Si) δ 7.27 (t, J=7.8 Hz, 1H), 7.16 (s, 1H), 6.97 (d, J=7.8 Hz, 1H),

6.72 (d, J=8.6 Hz, 1H), 4.30 (dd, J=10.7, 3.5 Hz, 1H), 4.25-4.16 (m, 2H), 3.88 (dd,

J=14.9, 7.6 Hz, 1H), 3.82-3.77 (m, 1H), 3.80 (s, 3H), 2.02 (m, 1H), 1.95-1.88 (m, 2H),

1.67 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 165.1, 160.2, 130.0, 127.1, 116.1, 111.7,

109.9, 76.6, 68.7, 66.9, 55.4, 28.1, 25.9; HRMS (EI) m/z 276.1110 [calcd for

C14H16N2O4 (M+) 276.1110].

Page 183: Abstract - John L. Wood

159

Preparation of Spirolactone 127.

OO

O

127

H

OMe

Spirolactone 127. To a suspension of Rh2(OAc)4 (9.7 mg, 0.02 mmol, 0.9%

equiv) in CH2Cl2 (45 mL) at reflux was added dropwise (over a 10 h period via syringe

pump) a solution of 3-methoxyphenyldiazoacetate 126 (680 mg, 2.46 mmol, 1 equiv) in

CH2Cl2 (12 mL). After allowing to cool to room temperature and concentrating in vacuo,

the resultant green oil was chromatographed on silica employing 2:3 hexanes:EtOAc as

eluant to furnish 127 (522 mg, 85% yield) as a white solid. Recrystallization of 127 from

heptane produced crystals suitable for a single-crystal X-ray analysis which established

the illustrated relative stereochemical configuration.25 An analytical sample (white solid)

was obtained by a second flash chromatography using 6:4 hexanes:EtOAc as eluant: mp

118-119 °C; FTIR (thin film/NaCl) 2972 (m), 2950 (m), 2884 (m), 2839 (w), 1777 (s),

1610 (m), 1585 (m), 1490 (m), 1457 (m), 1441 (m), 1372 (m), 1293 (m), 1266 (m), 1233

(m), 1161 (m), 1117 (s), 1034 (s), 1051 (s), 959 (m), 785 (m), 701 (m) cm-1; 1H NMR

(500 MHz, CDCl3, Me4Si) δ 7.26 (t, J=8.0 Hz, 1H), 6.89-6.84 (m, 3H), 4.33 (d, J=10.1

Hz, 1H), 4.26 (d, J=10.2 Hz, 1H), 3.80 (s, 3H), 3.72 (app. dt, J=8.5, 6.9 Hz, 1H), 3.67 (s,

1H), 3.33 (app. td, J=7.9, 6.3 Hz, 1H), 2.09 (ddd, J=13.0, 8.1, 6.2 Hz, 1H), 1.98 (ddd,

J=13.0, 8.0, 7.6 Hz, 1H), 1.75 (m, 1H), 1.50 (m, 1H); 13C NMR (125 MHz, CDCl3) δ

Page 184: Abstract - John L. Wood

160

175.7, 159.5, 133.3, 129.2, 123.4, 116.6, 113.6, 87.7, 76.3, 69.1, 55.8, 55.4, 31.8, 25.6;

HRMS (EI) m/z 248.1045 [calcd for C4H16O4 (M+) 248.1048].

Preparation of Vinylacetate 129.

129

OO

O

Vinylacetate 129. To a stirred (0 °C) solution of tetrahydrofurfuryl alcohol (1

mL, 10.32 mmol, 1 equiv), vinylacetic acid (0.98 mL, 11.53 mmol, 1.12 equiv) and

DMAP (14 mg, 0.12 mmol, 0.01 equiv) in CH2Cl2 (10 mL) was added DCC (2.494 g,

12.09 mmol, 1.17 equiv). After allowing to warm to room temperature and stirring for 4

h, the resulting white precipitate was removed by filtration through a cotton plug. The

filtrate was concentrated in vacuo and the residue taken in CH3CN (10 mL), filtered

through a cotton plug and reconcentrated; this procedure was repeated using acetone (10

mL) and a yellowish oil was recovered. Silica gel chromatography employing 3:1

hexanes:EtOAc as eluant furnished 129 (1.767 g, 100% yield) as a colorless oil. An

analytical sample (colorless oil) was obtained by selecting fractions from the flash

chromatography: FTIR (thin film/NaCl) 2976 (m), 2953 (m), 2874 (m), 1739 (s), 1641

(w), 1451 (w), 1426 (w), 1405 (w), 1340 (m), 1324 (m), 1291 (m), 1254 (m), 1173 (s),

1089 (m), 1023 (m), 994 (m), 922 (m) cm-1; 1H NMR (500 MHz, CDCl3) δ 5.91-5.83

(m, 1H), 5.12 (m, 1H), 5.09 (m, 1H), 4.14 (dd, J=11.0, 3.5 Hz, 1H), 4.06 (ddd, J=13.8,

7.0, 3.5 Hz, 1H), 3.95 (dd, J=11.1, 6.5 Hz, 1H), 3.82 (m, 1H), 3.73 (dd, J=11.0, 7.8 Hz,

1H), 3.08 (dt, J=10.5, 1.2 Hz, 2H), 1.97-1.89 (m, 1H), 1.89-1.79 (m, 2H), 1.58-1.51 (m,

Page 185: Abstract - John L. Wood

161

1H); 13C NMR (125 MHz, CDCl3) δ 171.4, 130.2, 118.5, 76.4, 68.4, 66.6, 38.9, 28.0,

25.6; HRMS (EI) m/z 171.1024 [calcd for C9H15O3 (M+H) 171.1021].

Preparation of Vinyldiazoacetate 130.

OO

N2

130

O

Vinyldiazoacetate 130. DBU (1 mL, 6.69 mmol, 1.74 equiv) was added

dropwise to a stirred (0 °C) solution of vinylacetate 129 (654 mg, 3.84 mmol, 1 equiv)

and p-ABSA (1.154 g, 4.80 mmol, 1.25 equiv) in CH3CN (10 mL). After allowing to

warm to room temperature and stirring for 4.5 h, the reaction mixture was treated with

saturated aqueous NH4Cl (10 mL) and extracted with CH2Cl2 (2 X 20 mL). The

combined organic phases were dried over MgSO4, filtered and concentrated in vacuo to

furnish a red oil. Silica gel chromatography employing 4:1 hexanes:EtOAc as eluant

furnished 130 (257 mg, 34% yield) as a red oil which was used without further

purification.

Page 186: Abstract - John L. Wood

162

Preparation of Spirolactone 131.

OO

O

131

Spirolactone 131. To a suspension of Rh2(OAc)4 (5.5 mg, 0.01 mmol, 1.0%

equiv) in CH2Cl2 (25 mL) at reflux was added dropwise (over a 10 h period via syringe

pump) a solution of vinyldiazoacetate 130 (253 mg, 1.29 mmol, 1 equiv) in CH2Cl2 (5

mL). After allowing to cool to room temperature and concentrating in vacuo, the

resultant brown oil was chromatographed on silica employing 6:4 hexanes:EtOAc as

eluant to furnish 131 (79 mg, 36% yield) as a colorless oil. An analytical sample

(colorless oil) was obtained by a second flash chromatography using 7:3 hexanes:EtOAc

as eluant: FTIR (thin film/NaCl) 3081 (w), 2980 (m), 2955 (m), 2875 (m), 1773 (s),

1642 (w), 1461 (m), 1370 (m), 1256 (m), 1147 (m), 1111 (m), 1092 (m), 1021 (s), 992

(m), 928 (m), 909 (m), 887 (m), 809 (m) cm-1; 1H NMR (500 MHz, CDCl3) δ 5.79 (ddd,

J=17.3, 10.1, 8.5 Hz, 1H), 5.38 (dd, J=10.5, 1.7 Hz, 1H), 5.30 (d, J=17.2 Hz, 1H), 4.22

(d, J=9.1 Hz, 1H), 4.08 (d, J=9.1 Hz, 1H), 3.87-3.79 (m, 2H), 3.06 (d, J=9.3 Hz, 1H),

2.03-1.85 (m, 4H); 13C NMR (125 MHz, CDCl3) δ 175.7, 128.5, 122.5, 87.5, 76.3, 69.0,

53.7, 31.7, 25.9; HRMS (EI) m/z 168.0790 [calcd for C9H12O3 (M+) 168.0786].

Page 187: Abstract - John L. Wood

163

Preparation of Alcohol 133.

133

OO

N2

O

OH

Alcohol 133. A solution of LDA was prepared in a jacketed addition funnel by

adding 2.5 M n-BuLi in hexanes (7.8 mL, 19.50 mmol, 1.20 equiv) to a (-78 °C) solution

of diisopropylamine (2.6 mL, 18.55 mmol, 1.14 equiv) in THF (20 mL). This cold

solution was added dropwise over a 20 min period to a stirred (-78 °C) solution of

diazoacetate 94 (2.769 g, 16.27 mmol, 1 equiv) and cyclohexanone (1.7 mL, 16.40 mmol,

1.01 equiv) in THF (15 mL). The reaction mixture was stirred at -78 °C for 70 min and

then quenched by adding NH4Cl (10 mL, sat. aqueous). The mixture was allowed to

warm to room temperature and partitioned between NH4Cl (30 mL, sat. aqueous) and

Et2O (3 X 30 mL). The organic extracts were washed with NH4Cl (30 mL, sat. aqueous)

and brine (30 mL) and then they were combined, dried over MgSO4, filtered and

concentrated in vacuo. The resultant red oil was chromatographed on silica employing

6:4 hexanes:EtOAc as eluant to furnish 133 (3.814 g, 87% yield) as a yellow oil which

solidified upon refrigeration and was used without further purification.

Page 188: Abstract - John L. Wood

164

Preparation of Cyclohexenyldiazoacetate 134.

OO

N2

134

O

Cyclohexenyldiazoacetate 134. POCl3 (0.9 mL, 9.66 mmol, 4.35 equiv) was

added dropwise to a stirred (-5 °C) solution of alcohol 133 (596 mg, 2.22 mmol, 1 equiv)

in pyridine (9 mL). The reaction mixture was stirred at -5 °C for 3 h, filtered and diluted

with pentane (10 mL). Ice-cold water (10 mL) was added (this was done carefully since

an exothermic reaction occurs upon addition), the phases were separated and the aqueous

one was extracted with pentane (10 mL). The organic extracts were washed with water

(10 mL) and then combined, dried over MgSO4, filtered and concentrated in vacuo. In

order to remove remaining pyridine, the residue was taken in heptane (4 X 100 mL) and

concentrated in vacuo furnishing 134 (449 mg, 81% yield) as a red oil which was used

without purification. An analytical sample (red oil) was obtained by flash

chromatography employing 9:1 hexanes:EtOAc as eluant: FTIR (thin film/NaCl) 2937

(m), 2862 (m), 2078 (s), 1706 (s), 1604 (w), 1448 (m), 1320 (m), 1310 (m), 1270 (m),

1249 (m), 1160 (s), 1083 (m), 1024 (m) cm-1; 1H NMR (500 MHz, CDCl3) δ 6.06 (m,

1H), 4.23-4.12 (m, 3H), 3.89-3.84 (m, 1H), 3.81-3.76 (m, 1H), 2.17-1.57 (m, 12H); 13C

NMR (125 MHz, CDCl3) δ 166.0, 124.0, 120.0, 76.7, 68.7, 66.5, 46.3, 28.1, 26.4, 25.9,

22.7, 22.0; HRMS (EI) m/z 250.1315 [calcd for C13H18N2O3 (M+) 250.1317].

Page 189: Abstract - John L. Wood

165

Preparation of Spirolactone 135.

OO

O

135

Spirolactone 135. To a suspension of Rh2(OAc)4 (23.6 mg, 0.05 mmol, 1.0%

equiv) in CH2Cl2 (110 mL) at reflux was added dropwise (over a 10 h period via syringe

pump) a solution of cyclohexenyldiazoacetate 134 (1.354 g, 5.41 mmol, 1 equiv) in

CH2Cl2 (30 mL). After allowing to cool to room temperature and concentrating in vacuo,

the resultant purple oil was chromatographed on silica employing 6:4 hexanes:EtOAc as

eluant to furnish 135 (612 mg, 51% yield) as a colorless oil. An analytical sample

(colorless oil) was obtained by a second flash chromatography using 3:1 hexanes:EtOAc

as eluant: FTIR (thin film/NaCl) 2930 (m), 2885 (m), 2857 (m), 1773 (s), 1459 (w),

1447 (w), 1368 (w), 1268 (w), 1146 (m), 1110 (m), 1032 (m), 977 (w) cm-1; 1H NMR

(500 MHz, CDCl3) δ 5.60 (m, 1H), 4.23 (d, J=9.5 Hz, 1H), 4.07 (d, J=9.2 Hz, 1H), 3.83

(m, 2H), 3.01 (s, 1H), 2.19-2.02 (m, 5H), 1.98-1.86 (m, 3H), 1.68-1.53 (m, 4H); 13C

NMR (125 MHz, CDCl3) δ 175.7, 130.5, 129.9, 88.1, 76.6, 68.9, 57.1, 33.0, 27.4, 25.8,

25.7, 23.1, 22.1; HRMS (EI) m/z 222.1251 [calcd for C13H18O3 (M+) 222.1256].

Page 190: Abstract - John L. Wood

166

Preparation of Acetoacetate 140.

140

OO

O O

Acetoacetate 140. Diketene (0.8 mL, 10.37 mmol, 1.34 equiv) was added

dropwise to a stirred (0 °C) solution of 2,5-dihydrofurfuryl alcohol (774 mg, 7.73 mmol,

1 equiv) and DMAP (93 mg, 0.76 mmol, 0.1 equiv) in THF (5 mL). After removing the

cooling bath and stirring at room temperature for 1 h, the reaction mixture was

concentrated in vacuo. The resultant red oil was chromatographed on silica employing

1:1 hexanes:EtOAc as eluant to furnish 140 (1.323 g, 93% yield) as a yellow oil. An

analytical sample (yellow oil) was prepared by a second flash column chromatography

followed by HPLC employing 6:4 hexanes:EtOAc as eluant in both cases: FTIR (thin

film/NaCl) 2954 (w), 2856 (m), 1744 (s), 1717 (s), 1649 (w), 1412 (m), 1359 (m), 1315

(m), 1264 (m), 1175 (m), 1152 (m), 1087 (m), 1035 (m) cm-1; 1H NMR (500 MHz,

CDCl3, Me4Si) δ 6.03 (m, 1H), 5.75 (m, 1H), 5.03 (m, 1H), 4.73-4.68 (m, 1H), 4.67-4.63

(m, 1H), 4.24 (dd, J=10.9, 3.4 Hz, 1H), 4.17 (dd, J=11.1, 6.0 Hz, 1H), 3.49 (s, 1H), 2.27

(s, 3H); 13C NMR (125 MHz, CDCl3) δ 200.4, 167.1, 129.4, 125.6, 84.1, 75.8, 67.1,

50.1, 30.3; HRMS (EI) m/z 185.0814 [calcd for C9H13O4 (M+H) 185.0814].

Page 191: Abstract - John L. Wood

167

Preparation of Diazoacetoacetate 141.

OO

N2

O

141

O

Diazoacetoacetate 141. Triethylamine (1.5 mL, 10.76 mmol, 1.50 equiv) was

added dropwise to a stirred (0 °C) solution of acetoacetate 140 (1.320 g, 7.17 mmol, 1

equiv) and methanesulfonyl azide (1.082 g, 8.93 mmol, 1.25 equiv) in CH3CN (14 mL).

After allowing to warm to room temperature and stirring overnight, the reaction mixture

was diluted with 10% aq NaOH (14 mL) and extracted with Et2O (3 X 28 mL). The

combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo.

The resultant orange oil was chromatographed on silica employing 6:4 hexanes:EtOAc as

eluant to furnish 141 (1.241 g, 82% yield) as a yellow oil. An analytical sample (yellow

oil) was prepared by HPLC employing 3:1 hexanes:EtOAc as eluant: FTIR (thin

film/NaCl) 2954 (w), 2855 (m), 2142 (s), 1717 (s), 1656 (s), 1384 (s), 1366 (s), 1312 (s),

1249 (s), 1157 (s), 1073 (s), 966 (m), 742 (m) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si)

δ 6.07 (m, 1H), 5.77 (m, 1H), 5.07 (m, 1H), 4.67 (m, 2H), 4.33 (dd, J=11.7, 3.2 Hz, 1H),

4.29 (dd, J=12.0, 4.9 Hz, 1H), 2.47 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 189.8, 161.2,

129.3, 125.3, 84.0, 75.7, 66.6, 28.1; HRMS (EI) m/z 211.0714 [calcd for C9H11N2O4

(M+H) 211.0719].

Page 192: Abstract - John L. Wood

168

Preparation of TBS-enol ether 143.

OO

N2

OTBS

143

O

TBS-enol ether 143. TBSOTf (850 µL, 3.70 mmol, 1.21 equiv) was added

dropwise to a stirred (0 °C) solution of diazoacetoacetate 141 (645 mg, 3.07 mmol, 1

equiv) and triethylamine (650 µL, 4.66 mmol, 1.52 equiv) in CH2Cl2 (8 mL). After

allowing to warm to room temperature and stirring for 2.5 h, the reaction mixture was

diluted with petroleum ether (32 mL) and washed with 1:1 saturated aqueous

NaHCO3:water (2 X 32 mL) and brine (32 mL). The aqueous washings were extracted

with petroleum ether (32 mL) and the combined organic phases were dried over MgSO4,

filtered and concentrated in vacuo to furnish 143 (974 mg, 98% yield) as an orange oil.

Typically this material was used without purification due to its instability. However, an

analytical sample (orange oil) was prepared by flash column chromatography employing

90:10:1 hexanes:EtOAc:Et3N as eluant (HRMS could not be obtained due to the lability

of the compound): FTIR (thin film/NaCl) 2956 (s), 2932 (s), 2886 (m), 2858 (s), 2104

(s), 1713 (s), 1609 (m), 1472 (m), 1464 (m), 1387 (s), 1347 (s), 1258 (s), 1220 (m), 1123

(s), 1097 (s), 1080 (s), 1013 (s), 1003 (s), 847 (s), 831 (s), 811 (s), 784 (s) cm-1; 1H

NMR (400 MHz, CDCl3, TMS) δ 6.03 (m, 1H), 5.75 (m, 1H), 5.04 (m, 1H), 4.99 (d,

J=1.8 Hz, 1H), 4.67 (m, 2H), 4.27 (d, J=4.1 Hz, 2H), 4.24 (d, J=1.9 Hz, 1H), 0.91 (s,

9H), 0.22 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 164.2, 140.8, 129.2, 125.7, 90.5, 84.3,

75.9, 66.3, 25.7, 18.2, -4.6, -4.7.

Page 193: Abstract - John L. Wood

169

Preparation of Diazoacetate 145.

OO

N2

145

O

Diazoacetate 145. To a stirred solution of diazoacetoacetate 141 (409 mg, 1.95

mmol, 1 equiv) in CH3CN (30 mL) was added a solution of LiOH monohydrate (253 mg,

6.02 mmol, 3.10 equiv) in water (10 mL). The reaction mixture was stirred at room

temperature for 7 h, diluted with water (40 mL) and extracted with Et2O (4 X 10 mL).

The combined organic extracts were dried over MgSO4, filtered and concentrated in

vacuo. The residue contained water, so it was taken in CH2Cl2 (20 mL), dried over

MgSO4, filtered and reconcentrated. The resultant yellow oil was chromatographed on

silica employing 3:1 hexanes:EtOAc as eluant to furnish 145 (187 mg, 57% yield) as a

yellow oil. An analytical sample (yellow oil) was prepared by flash column

chromatography employing 4:1 hexanes:EtOAc as eluant followed by HPLC using 3:1

hexanes:EtOAc as eluant: FTIR (thin film/NaCl) 3096 (w), 2952 (w), 2855 (m), 2114

(s), 1694 (s), 1621 (w), 1437 (w), 1394 (s), 1360 (s), 1239 (s), 1187 (s), 1117 (m), 1087

(s), 1036 (m), 1001 (m), 739 (m) cm-1; 1H NMR (500 MHz, CDCl3) δ 5.96 (m, 1H),

5.67 (m, 1H), 4.94 (m, 1H), 4.75 (br s, 1H), 4.65-4.60 (m, 1H), 4.59-4.55 (m, 1H), 4.17

(dd, J=11.5, 3.5 Hz, 1H), 4.11 (dd, J=11.4, 5.6 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ

129.1, 125.6, 84.3, 75.7, 66.4, 46.2; HRMS (EI) m/z 169.0615 [calcd for C7H9N2O3

(M+H) 169.0613].

Page 194: Abstract - John L. Wood

170

Preparation of 3-Methoxyphenylacetate 147.

147

OO

O

OMe

3-Methoxyphenylacetate 147. To a stirred (0 °C) solution of 2,5-dihydrofurfuryl

alcohol (651 mg, 6.50 mmol, 1 equiv), 3-methoxyphenylacetic acid (1.189 g, 7.15 mmol,

1.10 equiv) and DMAP (11 mg, 0.09 mmol, 1.4% equiv) in CH2Cl2 (7 mL) was added

DCC (1.447 g, 7.01 mmol, 1.08 equiv). After allowing to warm to room temperature and

stirring for 3 h, the resulting white precipitate was removed by filtration through a cotton

plug. The filtrate was concentrated in vacuo and the residue taken in CH3CN (7 mL),

filtered through a cotton plug and reconcentrated; this procedure was repeated using

acetone (7 mL) and a yellow oil was recovered. Silica gel chromatography employing

3:1 hexanes:EtOAc as eluant furnished 147 (1.403 g, 87% yield) as a yellowish oil. An

analytical sample (colorless oil) was obtained by HPLC employing 8:3 hexanes:EtOAc as

eluant: FTIR (thin film/NaCl) 2999 (w), 2950 (s), 2852 (s), 1736 (s), 1601 (s), 1586 (s),

1491 (s), 1455 (s), 1437 (s), 1263 (s), 1151 (s), 1087 (s), 1050 (s), 1014 (s) cm-1; 1H

NMR (500 MHz, CDCl3, Me4Si) δ 7.21 (t, J=7.9 Hz, 1H), 6.85 (d, J=7.8 Hz, 1H), 6.83

(s, 1H), 6.80 (dd, J=8.3, 2.0 Hz, 1H), 5.93 (m, 1H), 5.68 (m, 1H), 4.98 (m, 1H), 4.59 (m,

2H), 4.16 (s, 1H), 4.15 (d, J=1.6 Hz, 1H), 3.78 (s, 3H), 3.61 (s, 2H); 13C NMR (125

MHz, CDCl3) δ 171.3, 159.8, 135.5, 129.5, 129.0, 125.7, 121.8, 115.1, 112.8, 84.3, 75.6,

66.5, 55.2, 41.4; HRMS (EI) m/z 249.1123 [calcd for C9H15O5 (M+H) 249.1127].

Page 195: Abstract - John L. Wood

171

Preparation of 3-Methoxyphenyldiazoacetate 148.

OO

N2

148

O

OMe

3-Methoxyphenyldiazoacetate 148. DBU (800 µL, 5.35 mmol, 1.12 equiv) was

added dropwise to a stirred (0 °C) solution of 3-methoxyphenylacetate 147 (1.190 g, 4.79

mmol, 1 equiv) and p-ABSA (1.444 g, 6.01 mmol, 1.25 equiv) in CH3CN (12.5 mL).

After allowing to warm to room temperature and stirring overnight, the reaction mixture

was treated with saturated aqueous NH4Cl (25 mL) and extracted with CH2Cl2 (2 X 25

mL). The combined organic phases were dried over MgSO4, filtered and concentrated in

vacuo to furnish a red semisolid. Silica gel chromatography employing 4:1

hexanes:EtOAc as eluant furnished 148 (1.023 g, 78% yield) as an orange oil. An

analytical sample (orange oil) was obtained by HPLC using 4:1 hexanes:EtOAc as eluant:

FTIR (thin film/NaCl) 3000 (w), 2951 (m), 2852 (m), 2088 (s), 1704 (s), 1600 (s), 1578

(s), 1494 (s), 1465 (m), 1453 (m), 1253 (s), 1180 (m), 1152 (s), 1087 (s), 1035 (s) cm-1;

1H NMR (500 MHz, CDCl3, Me4Si) δ 7.27 (t, J=7.5 Hz, 1H), 7.15 (t, J=1.9 Hz, 1H),

6.97 (ddd, J=7.9, 2.0, 1.1 Hz, 1H), 6.72 (dd, J=8.4, 2.3 Hz, 1H), 6.04 (m, 1H), 5.78 (m,

1H), 5.08 (m, 1H), 4.73-4.63 (m, 2H), 4.33 (d, J=4.1 Hz, 2H), 3.81 (s, 3H); 13C NMR

(125 MHz, CDCl3) δ 165.0, 160.2, 129.9, 129.3, 127.0, 125.7, 116.1, 111.6, 109.9, 84.4,

75.9, 66.5, 55.4; HRMS (EI) m/z 274.0957 [calcd for C14H14N2O4 (M+) 274.0954].

Page 196: Abstract - John L. Wood

172

Preparation of Spirolactone 149.

OO

O

149

H

OMe

Spirolactone 149. To a suspension of Rh2(OAc)4 (26.1 mg, 0.06 mmol, 1.0%

equiv) in CH2Cl2 (115 mL) at reflux was added dropwise (over a 11 h period via syringe

pump) a solution of 3-methoxyphenyldiazoacetate 148 (1.579 g, 5.76 mmol, 1 equiv) in

CH2Cl2 (30 mL). After allowing to cool to room temperature and concentrating in vacuo,

the resultant green solid was chromatographed on silica employing 1:1 hexanes:EtOAc as

eluant to furnish 149 (1.031 g, 73% yield) as a white solid. Recrystallization of 149 from

heptane produced crystals suitable for a single-crystal X-ray analysis which established

the illustrated relative stereochemical configuration.25 An analytical sample (white solid)

was obtained by a second flash chromatography using 6:4 hexanes:EtOAc as eluant: mp

109-110 °C; FTIR (thin film/NaCl) 3097 (w), 3057 (w), 3004 (m), 2947 (m), 2896 (m),

2857 (m), 1778 (s), 1610 (m), 1602 (m), 1585 (m), 1491 (m), 1457 (m), 1438 (m), 1371

(m), 1293 (m), 1254 (s), 1232 (m), 1120 (m), 1085 (m), 1015 (s), 959 (m), 824 (m), 784

(m), 740 (m), 721 (m), 699 (m) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si) δ 7.23 (t,

J=7.9 Hz, 1H), 6.85 (dd, J=8.2, 2.4 Hz, 1H), 6.82 (d, J=7.9 Hz, 1H), 6.80 (d, J=1.7 Hz,

1H), 6.02 (d, J=6.0 Hz, 1H), 5.76 (m, 1H), 4.46 (d, J=14.2 Hz, 1H), 4.42 (d, J=9.7 Hz,

1H), 4.39 (d, J=10.0 Hz, 1H), 3.87 (dd, J=14.5, 2.8 Hz, 1H), 3.79 (s, 3H), 3.75 (s, 1H);

13C NMR (125 MHz, CDCl3) δ 175.0, 159.3, 132.7, 132.5, 129.0, 125.3, 123.3, 116.5,

Page 197: Abstract - John L. Wood

173

113.5, 95.4, 76.1, 75.1, 55.4, 55.2; HRMS (EI) m/z 246.0893 [calcd for C14H14O4 (M+)

246.0892].

Preparation of 4-Methoxyphenylacetate 151.

151

OO

OOMe

4-Methoxyphenylacetate 151. To a stirred (0 °C) solution of 2,5-dihydrofurfuryl

alcohol (636 mg, 6.35 mmol, 1 equiv), 4-methoxyphenylacetic acid (1.163 g, 7.00 mmol,

1.10 equiv) and DMAP (9 mg, 0.07 mmol, 1.2% equiv) in CH2Cl2 (7 mL) was added

DCC (1.457 g, 7.06 mmol, 1.11 equiv). After allowing to warm to room temperature and

stirring for 3 h, the resulting white precipitate was removed by filtration through a cotton

plug. The filtrate was concentrated in vacuo and the residue taken in CH3CN (7 mL),

filtered through a cotton plug and reconcentrated; this procedure was repeated using

acetone (7 mL) and a yellow oil was recovered. Silica gel chromatography employing

3:1 hexanes:EtOAc as eluant furnished 151 (1.498 g, 95% yield) as a colorless oil. An

analytical sample (colorless oil) was obtained by HPLC employing 3:1 hexanes:EtOAc as

eluant: FTIR (thin film/NaCl) 3035 (w), 2998 (w), 2952 (m), 2903 (m), 2852 (m), 1736

(s), 1613 (m), 1585 (m), 1513 (s), 1464 (m), 1442 (m), 1301 (s), 1248 (s), 1156 (s), 1087

(s), 1033 (s), 821 (m) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si) δ 7.19 (d, J=8.8 Hz,

2H), 6.84 (d, J=8.5 Hz, 2H), 5.93 (m, 1H), 5.68 (m, 1H), 4.99 (m, 1H), 4.60 (m, 2H),

4.15 (d, J=3.7 Hz, 1H), 4.14 (d, J=4.9 Hz, 1H), 3.77 (s, 3H), 3.58 (s, 2H); 13C NMR (125

Page 198: Abstract - John L. Wood

174

MHz, CDCl3) δ 171.7, 158.8, 130.4, 129.0, 126.1, 125.8, 114.0, 84.2, 75.6, 66.4, 55.3,

40.4; HRMS (EI) m/z 248.1054 [calcd for C14H16O4 (M+) 248.1049].

Preparation of 4-Methoxyphenyldiazoacetate 152.

OO

N2

152

OOMe

4-Methoxyphenyldiazoacetate 152. DBU (850 µL, 5.68 mmol, 1.12 equiv) was

added dropwise to a stirred (0 °C) solution of 4-methoxyphenylacetate 151 (1.264 g, 5.09

mmol, 1 equiv) and p-ABSA (1.527 g, 6.36 mmol, 1.25 equiv) in CH3CN (12.5 mL).

After allowing to warm to room temperature and stirring for 5 days, the reaction mixture

was treated with saturated aqueous NH4Cl (25 mL) and extracted with CH2Cl2 (2 X 25

mL). The combined organic phases were dried over MgSO4, filtered and concentrated in

vacuo to furnish a red semisolid. Silica gel chromatography employing 4:1

hexanes:EtOAc as eluant furnished two compounds: 152 (597 mg, 43% yield, eluted

first) as an orange solid and the starting material, 151, (365 mg, 29% yield, eluted

second) as a red oil (colored due to the presence of 152 in the sample). An analytical

sample of 152 (orange solid) was obtained by HPLC using 4:1 hexanes:EtOAc as eluant:

mp 64-65 °C; FTIR (thin film/NaCl) 2999 (w), 2953 (m), 2895 (m), 2851 (m), 2085 (s),

1707 (s), 1608 (m), 1575 (m), 1513 (s), 1463 (m), 1443 (m), 1296 (s), 1254 (s), 1162 (s),

1087 (s), 1027 (s), 831 (s) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si) δ 7.37 (d, J=8.9

Hz, 2H), 6.93 (d, J=9.0 Hz, 2H), 6.03 (m, 1H), 5.78 (m, 1H), 5.07 (m, 1H), 4.72-4.63 (m,

2H), 4.33 (d, J=4.3 Hz, 1H), 4.32 (d, J=4.1 Hz, 1H), 3.80 (s, 3H); 13C NMR (125 MHz,

Page 199: Abstract - John L. Wood

175

CDCl3) δ 165.7, 158.2, 129.2, 126.1, 125.8, 117.0, 114.8, 84.4, 75.9, 66.5, 55.5; HRMS

(EI) m/z 274.0949 [calcd for C14H14N2O5 (M+) 274.0954].

Preparation of Spirolactone 153.

OO

O

153

H

MeO

Spirolactone 153. To a suspension of Rh2(OAc)4 (7.8 mg, 0.02 mmol, 1.0%

equiv) in CH2Cl2 (15 mL) at reflux was added dropwise (over a 10 h period via syringe

pump) a solution of 4-methoxyphenyldiazoacetate 152 (471 mg, 1.72 mmol, 1 equiv) in

CH2Cl2 (30 mL). After allowing to cool to room temperature and concentrating in vacuo,

the resultant green solid was chromatographed on silica employing 6:4 hexanes:EtOAc as

eluant to furnish 153 (266 mg, 63% yield) as a white solid. Recrystallization of 153 from

heptane produced crystals suitable for a single-crystal X-ray analysis which established

the illustrated relative stereochemical configuration.25 An analytical sample (white solid)

was obtained by selecting fractions from the flash chromatography: mp 115-116 °C;

FTIR (thin film/NaCl) 3001 (w), 2953 (w), 2904 (w), 2859 (w), 2840 (w), 1775 (s), 1614

(m), 1585 (w), 1516 (s), 1463 (m), 1371 (w), 1291 (m), 1251 (s), 1182 (m), 1117 (m),

1084 (m), 1015 (s), 929 (w), 830 (m), 743 (m), 719 (m) cm-1; 1H NMR (500 MHz,

CDCl3, Me4Si) δ 7.15 (d, J=9.2 Hz, 2H), 6.85 (d, J=8.5 Hz, 2H), 5.98 (dt, J=6.2, 1.6 Hz,

1H), 5.74 (dt, J=6.5, 2.5 Hz, 1H), 4.47 (dt, J=13.4, 2.1 Hz, 1H), 4.41 (d, J=9.5 Hz, 1H),

4.37 (d, J=9.5 Hz, 1H), 3.82 (ddd, J=13.3, 2.3, 1.8 Hz, 1H), 3.79 (s, 3H), 3.72 (s, 1H);

Page 200: Abstract - John L. Wood

176

13C NMR (125 MHz, CDCl3) δ 175.5, 159.3, 132.6, 131.9, 125.3, 123.1, 113.7, 95.3,

76.0, 75.0, 55.3, 54.6; HRMS (EI) m/z 246.0896 [calcd for C14H14O4 (M+) 246.0892].

Preparation of Benzoate 158 and Alcohol 154.

OHO

154

TBSO OTBS

OO

O

158

OTBSTBSO

Benzoate 158 and Alcohol 154. To a stirred (0 °C) mixture of diol 157 (1.786 g,

7.50 mmol, 1 equiv) and imidazole (2.456 g, 36.08 mmol, 4.81 equiv) in DMF (15 mL)

was added TBSCl (3.026 g, 20.08 mmol, 2.68 equiv). After allowing to warm to room

temperature and stirring for 24 h, the reaction mixture was diluted with petroleum ether

(60 mL) and washed with saturated aqueous NaHCO3 (30 mL) and brine (30 mL). The

aqueous washings were extracted with petroleum ether (60 mL) and the organic phases

were combined, dried over MgSO4, filtered and concentrated in vacuo to furnish benzoate

158 as a colorless oil which was used without purification. However, an analytical

sample (colorless oil) was obtained by flash chromatography using 19:1 hexanes:EtOAc

as eluant: FTIR (thin film/NaCl) 2955 (s), 2930 (s), 2886 (m), 2858 (s), 1726 (s), 1603

(w), 1472 (m), 1463 (m), 1452 (m), 1272 (s), 1260 (s), 1114 (s), 1094 (s), 1027 (m), 1015

(m), 837 (s), 778 (s), 711 (s) cm-1; 1H NMR (400 MHz, CDCl3) δ 8.07 (dd, J=8.3, 1.3

Hz, 2H), 7.54 (tt, J=7.5, 1.3 Hz, 1H), 7.22 (t, J=7.5 Hz, 2H), 4.47 (dd, J=11.3, 5.7 Hz,

1H), 4.40 (dd, J=11.1, 6.9 Hz, 1H), 4.11-4.06 (m, 3H), 4.03 (dd, J=9.1, 3.5 Hz, 1H), 3.84

(d, J=9.0 Hz, 1H), 0.90 (s, 9H), 0.88 (s, 9H), 0.09 (s, 6H), 0.08 (s, 6H); 13C NMR (100

Page 201: Abstract - John L. Wood

177

MHz, CDCl3) δ 166.4, 133.1, 130.2, 129.8, 128.4, 84.4, 80.2, 78.9, 74.6, 65.3, 25.9, 25.8,

18.1, 18.0, -4.4, -4.5, -4.6, -4.7; HRMS (FAB) m/z 467.2650 [calcd for C24H43O5Si2

(M+H) 467.2647].

To a stirred solution of the crude benzoate 158 in MeOH (38 mL) was added

NaOMe (632 mg, 11.70 mmol, 1.56 equiv). The reaction mixture was stirred at room

temperature overnight, neutralized with AcOH and concentrated in vacuo. The resultant

white semisolid was adsorbed on to silica gel and chromatographed employing 4:1

hexanes:EtOAc as eluant to furnish 154 (1.598 g, 59% yield, 2 steps) as a colorless oil.

An analytical sample (colorless oil) was obtained by a second flash chromatography

using 85:15 hexanes:EtOAc as eluant: FTIR (thin film/NaCl) 3465 (br w), 2954 (s), 2930

(s), 2887 (m), 2858 (s), 1472 (m), 1463 (m), 1257 (s), 1118 (s), 1102 (s), 1044 (m), 1015

(m), 837 (s), 777 (s) cm-1; 1H NMR (400 MHz, CDCl3) δ 3.98 (s, 2H), 3.91 (dd, J=9.0,

2.9 Hz, 1H), 3.83 (br s, 1H), 3.75 (d, J=9.2 Hz, 1H), 3.71 (dd, J=11.7, 3.1 Hz, 1H), 3.65

(dd, J=11.6, 4.6 Hz, 1H), 2.70 (br s, 1H), 0.86 (s, 9H), 0.84 (s, 9H), 0.06 (s, 3H), 0.05 (s,

6H), 0.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 87.5, 79.6, 79.0, 74.0, 62.8, 25.8, 18.0,

17.9, -4.5, -4.6, -4.7, -4.8; HRMS (FAB) m/z 363.2388 [calcd for C17H39O4Si2 (M+H)

363.2387].

Page 202: Abstract - John L. Wood

178

Preparation of Acetoacetate 159.

OO

O

159

OTBSTBSO

O

Acetoacetate 159. Diketene (0.3 mL, 3.89 mmol, 1.04 equiv) was added

dropwise to a stirred (0 °C) solution of alcohol 154 (1.357 g, 3.74 mmol, 1 equiv) and

DMAP (7 mg, 0.06 mmol, 1.5% equiv) in THF (8 mL). After removing the cooling bath

and stirring at room temperature for 3 h, the reaction mixture was concentrated in vacuo.

The resultant orange oil was chromatographed on silica employing 9:1 hexanes:EtOAc as

eluant to furnish 159 (1.409 g, 84% yield) as a colorless oil. An analytical sample

(colorless oil) was obtained by selecting fractions from the flash chromatography: FTIR

(thin film/NaCl) 2955 (m), 2930 (m), 2886 (m), 2858 (m), 1748 (m), 1722 (m), 1656 (w),

1650 (w), 1632 (w), 1472 (m), 1464 (m), 1361 (m), 1316 (m), 1258 (s), 1151 (m), 1113

(s), 1086 (m), 1014 (m), 913 (m), 837 (s), 811 (m), 777 (s) cm-1; 1H NMR (500 MHz,

CDCl3) δ 4.29 (dd, J=11.0, 5.1 Hz, 1H), 4.21 (dd, J=11.3, 7.4 Hz, 1H), 4.04-4.03 (m,

1H), 3.99 (dd, J=9.4, 3.7 Hz, 1H), 3.96-3.92 (m, 2H), 3.79 (d, J=9.0 Hz, 1H), 3.49 (s,

2H), 2.27 (s, 3H), 0.88 (s, 18H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H); 13C

NMR (100 MHz, CDCl3) δ 200.4, 167.0, 84.0, 80.0, 78.7, 74.6, 65.7, 50.0, 30.3, 25.8,

25.7, 18.0, -4.5, -4.6, -4.7, -4.8; HRMS (EI) m/z 447.2599 [calcd for C21H43O6Si2

(M+H) 447.2598].

Page 203: Abstract - John L. Wood

179

Preparation of Diazoacetoacetate 160.

OO

O

160

OTBSTBSO

O

N2

Diazoacetoacetate 160. Triethylamine (400 µL, 2.87 mmol, 3.05 equiv) was

added dropwise to a stirred (0 °C) solution of acetoacetate 159 (421 mg, 0.94 mmol, 1

equiv) and p-ABSA (275 mg, 1.14 mmol, 1.21 equiv) in CH3CN (5 mL). After allowing

to warm to room temperature and stirring overnight, the reaction mixture was

concentrated in vacuo, triturated with 1:1 Et2O:petroleum ether (10 mL), filtered and

reconcentrated to a yellow oil. Silica gel chromatography employing 9:1 hexanes:EtOAc

as eluant furnished 160 (401 mg, 90% yield) as a yellow oil. An analytical sample

(yellow oil) was obtained by selecting fractions from the flash chromatography: FTIR

(thin film/NaCl) 2953 (s), 2930 (s), 2886 (m), 2858 (m), 2138 (s), 1721 (s), 1663 (s),

1472 (m), 1463 (m), 1364 (m), 1314 (s), 1251 (s), 1156 (m), 1113 (s), 1078 (s), 1069 (s),

1013 (m), 915 (w), 837 (s), 811 (m), 777 (s) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si)

δ 4.34 (dd, J=11.3, 5.6 Hz, 1H), 4.31 (dd, J=11.1, 6.7 Hz, 1H), 4.05-4.03 (m, 1H), 3.98

(dd, J=9.2, 3.7 Hz, 1H), 3.96-3.93 (m, 2H), 3.78 (d, J=9.1 Hz, 1H), 2.47 (s, 3H), 0.87 (s,

9H), 0.86 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H); 13C NMR (100

MHz, CDCl3) δ 190.3, 161.2, 84.1, 80.0, 78.6, 74.7, 65.5, 28.5, 25.8, 25.7, 18.0, -4.5, -

4.6, -4.7, -4.8; HRMS (EI) m/z 473.2501 [calcd for C21H41N2O6Si2 (M+H) 473.2503].

Page 204: Abstract - John L. Wood

180

Preparation of TBS-enol ether 162.

OO

O

162

OTBSTBSO

TBSO

N2

TBS-enol ether 162. TBSOTf (105 µL, 0.46 mmol, 2.06 equiv) was added

dropwise to a stirred (0 °C) solution of diazoacetoacetate 160 (105 mg, 0.22 mmol, 1

equiv) and triethylamine (100 µL, 0.72 mmol, 3.23 equiv) in CH2Cl2 (2.5 mL). After

allowing to warm to room temperature and stirring for 2.5 h, the reaction mixture was

diluted with petroleum ether (10 mL) and washed with 1:1 saturated aqueous

NaHCO3:water (2 X 10 mL) and brine (10 mL). The aqueous washings were extracted

with petroleum ether (10 mL) and the combined organic phases were dried over MgSO4,

filtered and concentrated in vacuo to furnish 162 (130 mg, 100% yield) as an orange oil.

Typically this material was used without purification due to its instability. However, an

analytical sample (orange oil) was prepared by flash column chromatography employing

95:5:1 hexanes:EtOAc:Et3N as eluant: FTIR (thin film/NaCl) 2955 (m), 2930 (m), 2886

(m), 2859 (m), 2103 (s), 1715 (s), 1609 (w), 1472 (m), 1463 (m), 1388 (m), 1362 (m),

1343 (m), 1257 (s), 1112 (s), 1079 (s), 1013 (m), 1005 (m), 913 (w), 837 (s), 811 (s), 778

(s), 745 (w) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si) δ 5.01 (d, J=2.1 Hz, 1H), 4.29 (d,

J=6.3 Hz, 2H), 4.24 (d, J=2.1 Hz, 1H), 4.04 (m, 1H), 3.98 (dd, J=9.3, 3.7 Hz, 1H), 3.96-

3.94 (m, 2H), 3.78 (dd, J=9.1, 1.2 Hz, 1H), 0.91 (s, 9H), 0.88 (s, 9H), 0.87 (s, 9H), 0.21

(s, 6H), 0.08 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H); 13C NMR (100 MHz,

CDCl3) δ 164.0, 140.8, 90.8, 84.1, 79.9, 78.8, 74.6, 64.9, 25.9, 25.8, 25.7, 18.3, 18.1,

Page 205: Abstract - John L. Wood

181

18.0, -4.5, -4.6, -4.7; HRMS (FAB) m/z 587.3370 [calcd for C27H55N2O6Si3 (M+H)

587.3368].

Preparation of Diazoacetate 164.

OO

O

164

OTBSTBSO

N2

Diazoacetate 164. To a stirred solution of diazoacetoacetate 160 (187 mg, 0.40

mmol, 1 equiv) in CH3CN (6 mL) was added a solution of LiOH monohydrate (50 mg,

1.19 mmol, 3.01 equiv) in water (2 mL). The reaction mixture was stirred at room

temperature for 6.5 h, diluted with water (8 mL) and extracted with Et2O (4 X 2.5 mL).

The combined organic extracts were dried over MgSO4, filtered and concentrated in

vacuo. The residue contained water, so it was taken in CH2Cl2 (10 mL), dried over

MgSO4, filtered and reconcentrated. The resultant yellow oil was chromatographed on

silica employing 9:1 hexanes:EtOAc as eluant to furnish 164 (139 mg, 82% yield) as a

yellow oil. An analytical sample (yellow oil) was obtained by selecting fractions from

the flash chromatography: FTIR (thin film/NaCl) 2955 (m), 2930 (m), 2887 (m), 2859

(m), 2111 (s), 1701 (s), 1472 (m), 1463 (m), 1389 (m), 1362 (m), 1339 (m), 1254 (m),

1183 (m), 1152 (w), 1113 (s), 1084 (m), 1027 (m), 1014 (m), 913 (w), 836 (s), 811 (m),

776 (s), 740 (m) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si) δ 4.80 (br s, 1H), 4.31 (dd,

J=11.0, 5.6 Hz, 1H), 4.23 (dd, J=11.1, 7.4 Hz, 1H), 4.04-4.03 (m, 1H), 3.99 (dd, J=9.3,

3.6 Hz, 1H), 3.96-3.93 (m, 2H), 3.79 (d, J=9.6 Hz, 1H), 0.89 (s, 9H), 0.88 (s, 9H), 0.10

Page 206: Abstract - John L. Wood

182

(s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 84.3,

80.0, 79.0, 74.6, 65.1, 46.4, 25.9, 25.8, 18.0, -4.5, -4.6, -4.7, -4.8; HRMS (FAB) m/z

431.2398 [calcd for C19H39N2O5Si2 (M+H) 431.2398].

Preparation of Spirolactone 165.

OO

O

165

OTBSTBSO

Spirolactone 165. To a suspension of Rh2(OAc)4 (1.5 mg, 0.003 mmol, 1.2%

equiv) in CH2Cl2 (5 mL) at reflux was added dropwise (over a 10 h period via syringe

pump) a solution of diazoacetate 164 (125 mg, 0.29 mmol, 1 equiv) in CH2Cl2 (5 mL).

After allowing to cool to room temperature and concentrating in vacuo, the resultant

green oil was chromatographed on silica employing 9:1 hexanes:EtOAc as eluant to

furnish 165 (81 mg, 69% yield) as a yellowish oil. An analytical sample (yellowish oil)

was obtained by selecting fractions from the flash chromatography: FTIR (thin

film/NaCl) 2954 (m), 2930 (m), 2886 (w), 2858 (m), 1788 (s), 1472 (w), 1463 (w), 1256

(m), 1201 (w), 1174 (w), 1112 (s), 1077 (m), 1013 (s), 911 (w), 854 (m), 837 (s), 777 (s)

cm-1; 1H NMR (500 MHz, CDCl3, Me4Si) δ 4.33 (s, 2H), 4.08 (m, 2H), 3.92 (d, J=1.1

Hz, 1H), 3.76 (m, 1H), 2.82 (d, J=18.4 Hz, 1H), 2.56 (d, J=18.3 Hz, 1H), 0.90 (s, 9H),

0.89 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H); 13C NMR (100 MHz,

CDCl3) δ 175.4, 88.7, 81.0, 78.3, 77.0, 74.6, 36.1, 25.8, 25.7, 18.0, 17.9, -4.3, -4.6, -4.7, -

4.8; HRMS (EI) m/z 403.2340 [calcd for C14H27N2O4Si (M+H) 403.2336].

Page 207: Abstract - John L. Wood

183

Preparation of 3-Methoxyphenylacetate 166.

OO

166

OTBSTBSO

O

MeO

3-Methoxyphenylacetate 166. To a stirred (0 °C) solution of alcohol 154 (525

mg, 1.45 mmol, 1 equiv), 3-methoxyphenylacetic acid (265 mg, 1.59 mmol, 1.10 equiv)

and DMAP (2 mg, 0.02 mmol, 1.1% equiv) in CH2Cl2 (5 mL) was added DCC (350 mg,

1.70 mmol, 1.17 equiv). After allowing to warm to room temperature and stirring for 4 h,

the resulting white precipitate was removed by filtration through a cotton plug. The

filtrate was concentrated in vacuo and the residue taken in CH3CN (5 mL), filtered

through a cotton plug and reconcentrated; this procedure was repeated using acetone (5

mL) and a yellow oil was recovered. Silica gel chromatography employing 9:1

hexanes:EtOAc as eluant furnished 166 (739 mg, 100% yield) as a colorless oil. An

analytical sample (colorless oil) was obtained by selecting fractions from the flash

chromatography: FTIR (thin film/NaCl) 2954 (s), 2930 (s), 2886 (m), 2858 (s), 1742 (s),

1601 (m), 1586 (m), 1492 (m), 1471 (m), 1464 (m), 1260 (s), 1150 (s), 1112 (s), 1090 (s),

1014 (s), 837 (s), 777 (s) cm-1; 1H NMR (400 MHz, CDCl3, Me4Si) δ 7.23 (t, J=7.8 Hz,

1H), 6.87 (d, J=7.6 Hz, 1H), 6.84 (s, 1H), 6.80 (dd, J=8.3, 2.2 Hz, 1H), 4.25 (dd, J=11.2,

5.5 Hz, 1H), 4.17 (dd, J=11.0, 7.1 Hz, 1H), 4.04 (m, 1H), 3.99 (dd, J=9.1, 3.5 Hz, 1H),

3.96-3.91 (m, 2H), 3.79 (s, 3H), 3.79-3.78 (m, 1H), 3.64 (s, 2H), 0.88 (s, 18H), 0.08 (s,

3H), 0.07 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 171.3,

159.8, 135.4, 129.7, 121.8, 115.0, 112.9, 84.1, 79.9, 78.7, 75.5, 65.2, 55.3, 41.3, 25.9,

Page 208: Abstract - John L. Wood

184

25.8, 18.0, 17.9, -4.5, -4.6, -4.7, -4.8; HRMS (FAB) m/z 511.2912 [calcd for

C26H47O6Si2 (M+H) 511.2911].

Preparation of 3-Methoxyphenyldiazoacetate 167.

OO

167

OTBSTBSO

O

MeON2

3-Methoxyphenyldiazoacetate 167. DBU (110 µL, 0.74 mmol, 1.24 equiv) was

added dropwise to a stirred (0 °C) solution of 3-methoxyphenylacetate 166 (303 mg, 0.59

mmol, 1 equiv) and p-ABSA (216 mg, 0.90 mmol, 1.52 equiv) in CH3CN (5 mL). After

allowing to warm to room temperature and stirring for 48 h, the reaction mixture was

treated with saturated aqueous NH4Cl (5 mL) and extracted with CH2Cl2 (2 X 5 mL).

The combined organic phases were dried over MgSO4, filtered and concentrated in vacuo

to furnish an orange oil. Silica gel chromatography employing 95:5 hexanes:EtOAc as

eluant furnished 167 (213 mg, 67% yield) as an orange oil. An analytical sample (orange

oil) was obtained by a second flash chromatography using 95:5 hexanes:EtOAc as eluant:

FTIR (thin film/NaCl) 2955 (s), 2930 (s), 2886 (m), 2858 (m), 2087 (s), 1710 (s), 1600

(m), 1579 (m), 1495 (m), 1471 (m), 1464 (m), 1256 (s), 1150 (m), 1113 (s), 1088 (m),

1034 (m), 913 (w), 838 (s), 811 (m), 777 (s) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si)

δ 7.28 (t, J=8.1 Hz, 1H), 7.16 (t, J=2.0 Hz, 1H), 6.99 (ddd, J=7.9, 1.8, 0.9 Hz, 1H), 6.73

(ddd, J=8.4, 2.5, 1.0 Hz, 1H), 4.39 (dd, J=11.0, 5.9 Hz, 1H), 4.36 (dd, J=11.1, 6.2 Hz,

1H), 4.07 (m, 1H), 4.03-4.00 (m, 3H), 3.81 (s, 3H), 3.80 (dd, J=9.5, 1.6 Hz, 1H), 0.90 (s,

Page 209: Abstract - John L. Wood

185

9H), 0.88 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H); 13C NMR (100

MHz, CDCl3) δ 164.7, 160.2, 130.0, 127.0, 116.2, 111.7, 109.8, 84.1, 79.9, 78.8, 74.6,

65.0, 55.4, 25.9, 25.8, 18.1, 18.0, -4.5, -4.6, -4.7; HRMS (FAB) m/z 537.2814 [calcd for

C26H45N2O6Si2 (M+H) 537.2816].

Preparation of Spirolactone 168.

168

OO

O

HMeO OTBSOTBS

Spirolactone 168. To a suspension of Rh2(OAc)4 (1.2 mg, 0.003 mmol, 0.9%

equiv) in CH2Cl2 (10 mL) at reflux was added dropwise (over a 10 h period via syringe

pump) a solution of 3-methoxyphenyldiazoacetate 167 (164 mg, 0.31 mmol, 1 equiv) in

CH2Cl2 (30 mL). After allowing to cool to room temperature and concentrating in vacuo,

the resultant brown oil was chromatographed on silica employing 9:1 hexanes:EtOAc as

eluant to furnish 168 (56 mg, 36% yield) as a yellowish oil. Recrystallization of 168

from heptane produced crystals suitable for a single-crystal X-ray analysis which

established the illustrated relative stereochemical configuration.25 An analytical sample

(white solid) was obtained by HPLC employing 9:1 hexanes:EtOAc as eluant: mp 75-76

°C; FTIR (thin film/NaCl) 2953 (m), 2930 (m), 2886 (m), 2857 (m), 1787 (s), 1602 (w),

1586 (w), 1490 (w), 1470 (m), 1464 (m), 1252 (m), 1158 (m), 1125 (m), 1031 (m), 906

(m), 838 (s), 778 (s), 697 (m) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si) δ 7.26 (t, J=7.9

Hz, 1H), 6.90-6.85 (m, 3H), 4.35 (d, J=9.6 Hz, 1H), 4.31 (d, J=10.7 Hz, 1H), 4.16 (s,

Page 210: Abstract - John L. Wood

186

1H), 4.01 (d, J=6.3 Hz, 1H), 3.79 (s, 3H), 3.77 (q, J=6.2 Hz, 1H), 3.42 (dd, J=8.6, 6.4 Hz,

1H), 3.39 (dd, J=8.7, 6.3 Hz, 1H), 0.98 (s, 9H), 0.79 (s, 9H), 0.18 (s, 3H), 0.16 (s, 3H), -

0.06 (s, 3H), -0.16 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 176.3, 159.6, 134.2, 129.4,

123.5, 116.4, 114.0, 89.4, 79.4, 76.1, 74.1, 71.6, 55.4, 50.4, 26.1, 25.9, 18.1, 18.0, -3.7, -

4.4, -4.5, -4.6; HRMS m/z 508.2686 [calcd for C26H44O6Si2 (M+) 508.2676].

Preparation of (+)-Acetoacetate 169.

OO

O

169

OBnBnO

O

(+)-Acetoacetate 169. Diketene (1 mL, 12.97 mmol, 1.52 equiv) was added

dropwise to a stirred (0 °C) solution of alcohol 155 (2.673 g, 8.50 mmol, 1 equiv) and

DMAP (12 mg, 0.10 mmol, 1.2% equiv) in THF (9 mL). After removing the cooling

bath and stirring at room temperature for 3 h, the reaction mixture was concentrated in

vacuo. The resultant yellow oil was chromatographed on silica employing 7:3

hexanes:EtOAc as eluant to furnish 169 (3.192 g, 94% yield) as a yellow oil. An

analytical sample (yellowish oil) was prepared by flash column chromatography followed

by HPLC employing 7:3 hexanes:EtOAc as eluant in both cases: [α]D20 +15.04° (c 1.35,

CHCl3); FTIR (thin film/NaCl) 3088 (w), 3063 (w), 3030 (m), 3005 (w), 2919 (m), 2866

(m), 1744 (s), 1716 (s), 1649 (m), 1631 (m), 1496 (m), 1453 (m), 1408 (m), 1359 (m),

1314 (m), 1260 (m), 1150 (s), 1091 (s), 1027 (s), 738 (s), 698 (s) cm-1; 1H NMR (500

MHz, CDCl3, Me4Si) δ 7.36-7.30 (m, 10H), 4.54 (s, 2H), 4.51 (d, J=12.0 Hz, 1H), 4.47

Page 211: Abstract - John L. Wood

187

(d, J=12.2 Hz, 1H), 4.31 (dd, J=11.6, 4.8 Hz, 1H), 4.24 (dd, J=11.5, 6.7 Hz, 1H), 4.10-

4.07 (m, 2H), 4.04 (d, J=11.2 Hz, 1H), 3.94 (dd, J=10.1, 4.5 Hz, 1H), 3.91 (d, J=2.2 Hz,

1H), 3.42 (s, 2H), 2.21 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 200.2, 167.0, 137.7,

137.6, 128.6, 128.1, 128.0, 127.8, 84.4, 82.9, 81.4, 72.0, 71.8, 71.5, 65.1, 49.9, 30.1;

HRMS (FAB) m/z 399.1807 [calcd for C23H27O6 (M+H) 399.1808].

Preparation of (+)-Diazoacetoacetate 170.

OO

O

170

OBnBnO

O

N2

(+)-Diazoacetoacetate 170. Triethylamine (3.6 mL, 25.83 mmol, 3.15 equiv)

was added dropwise to a stirred (0 °C) solution of acetoacetate 169 (3.266 g, 8.20 mmol,

1 equiv) and p-ABSA (2.347 g, 9.77 mmol, 1.19 equiv) in CH3CN (25 mL). After

allowing to warm to room temperature and stirring overnight, the reaction mixture was

concentrated in vacuo, triturated with 1:1 Et2O:petroleum ether (50 mL), filtered and

reconcentrated to a yellow oil. Silica gel chromatography employing 7:3 hexanes:EtOAc

as eluant furnished 170 (3.103 g, 89% yield) as a yellow oil. An analytical sample

(yellowish oil) was obtained by selecting fractions from the flash chromatography:

[α]D20 +20.96° (c 1.04, CHCl3); FTIR (thin film/NaCl) 3088 (w), 3063 (w), 3030 (w),

3006 (w), 2922 (w), 2866 (w), 2141 (s), 1717 (s), 1657 (s), 1496 (w), 1454 (m), 1364

(m), 1312 (s), 1250 (m), 1208 (w), 1157 (m), 1076 (s), 1027 (m), 965 (m), 740 (m), 699

(m) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si) δ 7.38-7.29 (m, 10H), 4.56 (d, J=11.8

Page 212: Abstract - John L. Wood

188

Hz, 1H), 4.54 (d, J=11.9 Hz, 1H), 4.50 (d, J=11.8 Hz, 1H), 4.47 (d, J=12.2 Hz, 1H), 4.38

(dd, J=11.2, 4.4 Hz, 1H), 4.33 (dd, J=11.3, 6.4 Hz, 1H), 4.09 (m, 2H), 4.05 (d, J=10.3

Hz, 1H), 3.94 (dd, J=10.1, 4.3 Hz, 1H), 3.90 (d, J=3.1 Hz, 1H), 2.45 (s, 3H); 13C NMR

(125 MHz, CDCl3) δ 190.0, 161.2, 137.6, 137.4, 128.6, 128.1, 128.0, 127.8, 84.3, 82.6,

81.5, 72.0, 71.8, 71.5, 64.8, 28.4; HRMS (FAB) m/z 425.1712 [calcd for C23H25N2O6

(M+H) 425.1713].

Preparation of (+)-TBS-enol ether 172.

OO

O

172

OBnBnO

TBSO

N2

(+)-TBS-enol ether 172. TBSOTf (205 µL, 0.89 mmol, 1.21 equiv) was added

dropwise to a stirred (0 °C) solution of diazoacetoacetate 170 (314 mg, 0.74 mmol, 1

equiv) and triethylamine (160 µL, 1.15 mmol, 1.55 equiv) in CH2Cl2 (2 mL). After

allowing to warm to room temperature and stirring for 2.5 h, the reaction mixture was

diluted with petroleum ether (8 mL) and washed with 1:1 saturated aqueous

NaHCO3:water (2 X 8 mL) and brine (8 mL). The aqueous washings were extracted with

petroleum ether (8 mL) and the combined organic phases were dried over MgSO4,

filtered and concentrated in vacuo to furnish 172 (370 mg, 93% yield) as an orange oil.

Typically this material was used without purification due to its instability. However, an

analytical sample (orange oil) was prepared by flash column chromatography employing

85:15:1 hexanes:EtOAc:Et3N as eluant: [α]D20 +5.00° (c 0.98, CHCl3); FTIR (thin

Page 213: Abstract - John L. Wood

189

film/NaCl) 3088 (w), 3064 (w), 3031 (w), 2955 (m), 2930 (m), 2885 (m), 2859 (m), 2104

(s), 1711 (s), 1607 (w), 1471 (m), 1463 (m), 1454 (m), 1389 (m), 1346 (m), 1258 (m),

1082 (s), 839 (m), 811 (m), 784 (m), 740 (m), 698 (m) cm-1; 1H NMR (400 MHz,

CDCl3, Me4Si) δ 7.36-7.29 (m, 10H), 5.01 (m, 1H), 4.52 (d, J=11.7 Hz, 1H), 4.51 (s,

2H), 4.47 (d, J=12.3 Hz, 1H), 4.31 (d, J=5.6 Hz, 2H), 4.24 (m, 1H), 4.12-4.07 (m, 2H),

4.03 (d, J=10.0 Hz, 1H), 3.97-3.91 (m, 2H), 0.91 (s, 9H), 0.22 (s, 6H); 13C NMR (100

MHz, CDCl3) δ 163.9, 140.7, 137.7, 137.5, 128.6, 128.1, 128.0, 127.8, 127.7, 90.6, 84.4,

82.8, 81.5, 71.9, 71.8, 71.5, 64.5, 25.7, 18.2, -4.7; HRMS (FAB) m/z 539.2579 [calcd for

C29H39N2O6Si (M+) 539.2577].

Preparation of (+)-Diazoacetate 174.

OO

O

174

OBnBnO

N2

(+)-Diazoacetate 174. To a stirred solution of diazoacetoacetate 170 (556 mg,

1.31 mmol, 1 equiv) in CH3CN (21 mL) was added a solution of LiOH monohydrate (168

mg, 4.00 mmol, 3.06 equiv) in water (7 mL). The reaction mixture was stirred at room

temperature for 10 h, diluted with water (28 mL) and extracted with Et2O (4 X 10 mL).

The combined organic extracts were dried over MgSO4, filtered and concentrated in

vacuo. The residue contained water, so it was taken in CH2Cl2 (20 mL), dried over

MgSO4, filtered and reconcentrated. The resultant yellow oil was chromatographed on

silica employing 3:1 hexanes:EtOAc as eluant to furnish 174 (422 mg, 84% yield) as a

Page 214: Abstract - John L. Wood

190

yellow oil. An analytical sample (yellow oil) was prepared by a second flash column

chromatography employing 3:1 hexanes:EtOAc as eluant: [α]D20 +12.45° (c 1.02,

CHCl3); FTIR (thin film/NaCl) 3109 (w), 3089 (w), 3064 (w), 3030 (w), 2918 (m), 2866

(m), 2111 (s), 1694 (s), 1496 (m), 1454 (m), 1393 (s), 1366 (s), 1241 (s), 1187 (s), 1094

(s), 1028 (s), 739 (s), 699 (s) cm-1; 1H NMR (400 MHz, CDCl3, Me4Si) δ 7.37-7.27 (m,

10H), 4.74 (br s, 1H), 4.53 (s, 2H), 4.51 (d, J=10.7 Hz, 1H), 4.46 (d, J=11.8 Hz, 1H),

4.32 (dd, J=11.6, 5.0 Hz, 1H), 4.26 (dd, J=11.4, 6.6 Hz, 1H), 4.10-4.06 (m, 2H), 4.04 (d,

J=10.1 Hz, 1H), 3.94 (dd, J=10.1, 4.3 Hz, 1H), 3.90 (d, J=3.2 Hz, 1H); 13C NMR (100

MHz, CDCl3) δ 137.6, 137.5, 128.6, 128.5, 128.0, 127.9, 127.8, 84.3, 82.7, 81.6, 71.9,

71.7, 71.4, 64.6, 46.4; HRMS (EI) m/z 382.1527 [calcd for C14H27N2O4Si (M+)

382.1529].

Preparation of (+)-Spirolactone 175.

OO

O

175

OBnBnO

(+)-Spirolactone 175. To a suspension of Rh2(OAc)4 (9.4 mg, 0.02 mmol, 0.6%

equiv) in CH2Cl2 (70 mL) at reflux was added dropwise (over a 10 h period via syringe

pump) a solution of diazoacetate 174 (1.340 g, 3.50 mmol, 1 equiv) in CH2Cl2 (18 mL).

After allowing to cool to room temperature and concentrating in vacuo, the resultant

green oil was purified by flash column chromatography followed by HPLC employing

3:1 hexanes:EtOAc as eluant in both cases. This furnished 175 (93 mg, 7% yield) as a

white solid. Spectroscopic data for this material was identical to that reported in the

Page 215: Abstract - John L. Wood

191

literature,18 except for the δ 2.95, 2.56 AB-q in the 1H NMR; for this resonance we found

a coupling constant of 18.0 Hz (lit.: 8.5 Hz): [α]D20 +33.11° (c 0.97, CHCl3).

Preparation of (+)-3-Methoxyphenylacetate 176.

OO

176

OBnBnO

O

MeO

(+)-3-Methoxyphenylacetate 176. To a stirred (0 °C) solution of alcohol 155

(1.177 g, 3.74 mmol, 1 equiv), 3-methoxyphenylacetic acid (685 mg, 4.12 mmol, 1.10

equiv) and DMAP (46 mg, 0.38 mmol, 0.10 equiv) in CH2Cl2 (10 mL) was added DCC

(897 mg g, 4.35 mmol, 1.16 equiv). After allowing to warm to room temperature and

stirring for 4 h, the resulting white precipitate was removed by filtration through a cotton

plug. The filtrate was concentrated in vacuo and the residue taken in CH3CN (10 mL),

filtered through a cotton plug and reconcentrated; this procedure was repeated using

acetone (10 mL) and a reddish oil was recovered. Silica gel chromatography employing

3:1 hexanes:EtOAc as eluant furnished 176 (1.732 g, 100% yield) as a yellowish oil. An

analytical sample (yellowish oil) was obtained by selecting fractions from the flash

chromatography: [α]D20 +4.02° (c 1.37, CHCl3); FTIR (thin film/NaCl) 3087 (w), 3032

(m), 3030 (m), 3003 (m), 2940 (m), 2919 (m), 2868 (m), 2836 (m), 1739 (s), 1601 (s),

1589 (m), 1492 (s), 1454 (s), 1437 (m), 1261 (s), 1208 (m), 1150 (s), 1091s, 1050 (s),

1027 (s), 739 (s), 698 (s) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si) δ 7.36-7.26 (m,

10H), 7.20 (t, J=7.9 Hz, 1H), 6.84 (d, J=7.9 Hz, 1H), 6.83 (s, 1H), 6.78 (dd, J=7.9, 2.7

Page 216: Abstract - John L. Wood

192

Hz, 1H), 4.50 (d, J=12.0 Hz, 1H), 4.46 (d, J=11.9 Hz, 1H), 4.45 (s, 2H), 4.25 (dd, J=11.1,

5.2 Hz, 1H), 4.20 (dd, J=11.3, 6.4 Hz, 1H), 4.09-4.06 (m, 2H), 4.02 (d, J=10.6 Hz, 1H),

3.94 (dd, J=9.7, 4.5 Hz, 1H), 3.87 (d, J=3.1 Hz, 1H), 3.75 (s, 3H), 3.60 (s, 2H); 13C NMR

(125 MHz, CDCl3) δ 171.2, 159.9, 137.8, 137.7, 135.4, 129.6, 128.6, 128.1, 128.0, 127.8,

121.8, 115.1, 112.9, 84.6, 83.0, 81.5, 72.0, 71.7, 71.5, 64.8, 55.3, 41.3; HRMS (EI) m/z

462.2050 [calcd for C28H30O6 (M+) 462.2042].

Preparation of (+)-3-Methoxyphenyldiazoacetate 177.

OO

177

OBnBnO

O

MeON2

(+)-3-Methoxyphenyldiazoacetate 177. DBU (180 µL, 1.20 mmol, 2.04 equiv)

was added dropwise to a stirred (0 °C) solution of 3-methoxyphenylacetate 176 (273 mg,

0.59 mmol, 1 equiv) and p-ABSA (215 mg, 0.89 mmol, 1.52 equiv) in CH3CN (5 mL) .

After allowing to warm to room temperature and stirring for 7 h, the reaction mixture was

treated with saturated aqueous NH4Cl (5 mL) and extracted with CH2Cl2 (2 X 10 mL).

The combined organic phases were dried over MgSO4, filtered and concentrated in vacuo

to furnish an orange oil. Silica gel chromatography employing 3:1 hexanes:EtOAc as

eluant furnished 177 (228 mg, 79% yield) as an orange oil. An analytical sample (orange

oil) was obtained by a second flash chromatography using 4:1 hexanes:EtOAc as eluant:

[α]D20 +4.39° (c 1.03, CHCl3); FTIR (thin film/NaCl) 3086 (w), 3062 (w), 3030 (w),

3003 (w), 2935 (m), 2865 (w), 2840 (w), 2089 (s), 1704 (s), 1599 (m), 1586 (m), 1578

Page 217: Abstract - John L. Wood

193

(m), 1495 (m), 1453 (m), 1435 (m), 1254 (s), 1179 (m), 1151 (m), 1092 (m), 1034 (m),

737 (m), 698 (m) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si) δ 7.36-7.25 (m, 11H), 7.14

(t, J=2.1 Hz, 1H), 6.96 (dd, J=7.9, 1.0 Hz, 1H), 6.73 (dd, J=8.5, 2.6 Hz, 1H), 4.54 (s, 2H),

4.53 (d, J=11.8 Hz, 1H), 4.49 (d, J=11.7 Hz, 1H), 4.39 (d, J=5.7 Hz, 2H), 4.14 (app. td,

J=5.6, 3.8 Hz, 1H), 4.10 (m, 1H), 4.05 (d, J=10.5 Hz, 1H), 3.97-3.94 (m, 2H), 3.81 (s,

3H); 13C NMR (125 MHz, CDCl3) δ 164.8, 160.2, 137.8, 137.6, 130.0, 128.6, 128.1,

128.0, 127.8, 127.7, 127.0, 116.1, 111.7, 109.8, 84.5, 82.9, 81.6, 72.0, 71.8, 71.5, 64.6,

55.3; HRMS (FAB) m/z 489.2026 [calcd for C28H29N2O6 (M+H) 489.2026].

Preparation of (-)-Spirolactone 178.

178

OO

O

HMeO OBnOBn

(-)-Spirolactone 178. To a suspension of Rh2(OAc)4 (3.2 mg, 0.007 mmol, 0.5%

equiv) in CH2Cl2 (20 mL) at reflux was added dropwise (over a 10 h period via syringe

pump) a solution of 3-methoxyphenyldiazoacetate 177 (655 mg, 1.34 mmol, 1 equiv) in

CH2Cl2 (5 mL). After allowing to cool to room temperature and concentrating in vacuo,

the resultant brown oil was purified by flash column chromatography followed by HPLC

employing 3:1 hexanes:EtOAc as eluant in both cases. This furnished 178 (93 mg, 15%

yield) as a white oil: [α]D20 -47.11° (c 0.55, CHCl3); FTIR (thin film/NaCl) 3086 (w),

3062 (w), 3030 (m), 3003 (w), 2942 (m), 2916 (m), 2888 (m), 2836 (m), 1778 (s), 1601

(m), 1585 (m), 1491 (m), 1454 (m), 1436 (m), 1369 (m), 1248 (m), 1158 (m), 1124 (m),

Page 218: Abstract - John L. Wood

194

1095 (m), 1025 (s), 914 (w), 780 (m), 739 (m), 698 (m) cm-1; 1H NMR (400 MHz,

CDCl3, Me4Si) δ 7.41-7.30 (m, 8H), 7.25-7.18 (m, 3H), 6.90-6.86 (m, 2H), 6.84 (d, J=1.5

Hz, 1H), 4.80 (d, J=11.8 Hz, 1H), 4.62 (d, J=11.7 Hz, 1H), 4.34 (d, J=11.7 Hz, 1H), 4.30

(d, J=9.9 Hz, 1H), 4.29 (d, J=11.5 Hz, 1H), 4.22 (s, 1H), 4.20 (d, J=10.1 Hz, 1H), 3.97

(d, J=4.9 Hz, 1H), 3.78 (q, J=5.6 Hz, 1H), 3.72 (s, 3H), 3.55 (dd, J=9.5, 4.9 Hz, 1H), 3.25

(dd, J=9.4, 6.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 176.2, 159.4, 137.3, 137.2,

133.7, 129.3, 128.8, 128.7, 128.4, 128.3, 128.1, 128.0, 123.8, 116.6, 114.0, 89.2, 83.6,

81.7, 74.4, 72.9, 72.4, 70.4, 55.3, 50.7; HRMS m/z 460.1895 [calcd for C28H28O6 (M+)

460.1886].

Preparation of Benzoate 179 and Alcohol 156.

OO

O

179

OHO

156

MeO OMeOMeMeO

Benzoate 179 and Alcohol 156. To a stirred (0 °C) mixture of diol 157 (5.009 g,

21.02 mmol, 1 equiv), 48% wt aq HBF4 (7.709 g, 42.14 mmol, 2.00 equiv) and CH2Cl2

(84 mL) was added dropwise in 4 portions separated by 20 min intervals 2 N TMSCHN2

in hexanes (2 X 21 mL and 2 X 11 mL, 128 mmol, 6.09 equiv). The reaction mixture

was stirred at 0 °C for 30 min, diluted with water (84 mL) and extracted with CH2Cl2 (2

X 84 mL). The organic phases were washed with water (84 mL) and then combined,

dried over MgSO4, filtered and concentrated in vacuo to furnish benzoate 179 as a yellow

oil (5.062 g) which was used without purification. However, an analytical sample

Page 219: Abstract - John L. Wood

195

(colorless oil) was obtained by flash chromatography using 3:1 hexanes:EtOAc as eluant:

FTIR (thin film/NaCl) 2984 (m), 2934 (m), 2092 (m), 2826 (m), 1721 (s), 1602 (w), 1584

(w), 1452 (m), 1315 (m), 1274 (s), 1113 (s), 1071 (m), 1027 (m), 957 (w), 858 (w), 714

(s) cm-1; 1H NMR (400 MHz, CDCl3, Me4Si) δ 8.08 (d, J=7.2 Hz, 2H), 7.56 (t, J=7.4

Hz, 1H), 7.43 (t, J=7.6 Hz, 2H), 4.48 (dd, J=11.6, 5.0 Hz, 1H), 4.43 (dd, J=11.7, 6.3 Hz,

1H), 4.12 (m, 1H), 4.05 (d, J=10.1 Hz, 1H), 3.91 (dd, J=10.0, 4.0 Hz, 1H), 3.86 (d, J=4.2

Hz, 1H), 3.75 (d, J=3.5 Hz, 1H), 3.42 (s, 3H), 3.37 (s, 3H); 13C NMR (100 MHz, CDCl3)

δ 166.4, 133.1, 130.0, 129.8, 128.4, 86.5, 84.7, 81.5, 71.4, 64.9, 57.7, 56.9; HRMS (EI)

m/z 267.1227 [calcd for C14H19O5 (M+H) 267.1232].

To a stirred solution of benzoate 179 (5.062 g, 19.01 mmol, 1 equiv) in MeOH (5

mL) was added NaOMe (1.078 g, 19.96 mmol, 1.05 equiv). The reaction mixture was

stirred at room temperature for 8 h, neutralized with AcOH and concentrated in vacuo.

The resultant white semisolid was adsorbed on to silica gel and chromatographed

employing 1:3 hexanes:EtOAc as eluant to furnish 156 (985 mg, 29% yield, 2 steps) as a

yellowish oil. An analytical sample (colorless oil) was obtained by selecting fractions

from the flash chromatography: FTIR (thin film/NaCl) 3448 (br m), 2981 (m), 2932 (m),

2902 (m), 2826 (m), 1461 (m), 1389 (w), 1339 (w), 1194 (m), 1112 (s), 1056 (m), 978

(w), 953 (w), 852 (w) cm-1; 1H NMR (500 MHz, CDCl3) δ 3.96 (d, J=10.1 Hz, 1H),

3.85 (q, J=3.8 Hz, 1H), 3.81 (dd, J=9.9, 3.9 Hz, 1H), 3.78 (d, J=3.7 Hz, 1H), 3.75 (dd,

J=12.0, 3.6 Hz, 1H), 3.69 (d, J=2.9 Hz, 1H), 3.66 (dd, J=11.8, 5.0 Hz, 1H), 3.38 (s, 3H),

3.34 (s, 3H), 2.49 (br s, 1H); 13C NMR (100 MHz, CDCl3) δ 85.6, 84.6, 84.5, 71.3, 63.0,

57.7, 56.8; HRMS (EI) m/z 162.0891 [calcd for C14H14O4 (M+) 162.0892].

Page 220: Abstract - John L. Wood

196

Preparation of Acetoacetate 180.

OO

O

180

OMeMeO

O

Acetoacetate 180. Diketene (1 mL, 12.97 mmol, 1.53 equiv) was added

dropwise to a stirred (0 °C) solution of alcohol 156 (1.375 g, 8.48 mmol, 1 equiv) and

DMAP (12 mg, 0.10 mmol, 1.2% equiv) in THF (17 mL). After removing the cooling

bath and stirring at room temperature for 1 h, the reaction mixture was concentrated in

vacuo. The resultant yellow oil was chromatographed on silica employing 1:1

hexanes:EtOAc as eluant to furnish 180 (1.984 g, 95% yield) as a yellow oil. An

analytical sample (yellowish oil) was prepared by a second flash column chromatography

employing 1:1 hexanes:EtOAc as eluant: FTIR (thin film/NaCl) 2984 (w), 2936 (m),

2905 (m), 2828 (w), 1746 (s), 1717 (s), 1650 (w), 1458 (m), 1412 (m), 1361 (m), 1316

(m), 1265 (m), 1191 (m), 1152 (m), 1112 (s), 1037 (m) cm-1; 1H NMR (400 MHz,

CDCl3) δ 4.33 (dd, J=11.5, 4.5 Hz, 1H), 4.23 (dd, J=11.6, 6.8 Hz, 1H), 4.01-3.96 (m,

2H), 3.87 (dd, J=10.1, 4.1 Hz, 1H), 3.82-3.81 (m, 1H), 3.62 (d, J=3.6 Hz, 1H), 3.50 (s,

2H), 3.40 (s, 3H), 3.35 (s, 3H), 2.27 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 200.5,

167.0, 86.1, 84.4, 81.2, 71.4, 65.1, 57.6, 56.9, 49.9, 30.2; HRMS (EI) m/z 246.1103

[calcd for C11H18O6 (M+) 246.1103].

Page 221: Abstract - John L. Wood

197

Preparation of Diazoacetoacetate 181.

OO

O

181

OMeMeO

O

N2

Diazoacetoacetate 181. Triethylamine (3.2 mL, 22.96 mmol, 3.01 equiv) was

added dropwise to a stirred (0 °C) solution of acetoacetate 180 (1.881 g, 7.64 mmol, 1

equiv) and p-ABSA (2.110 g, 8.78 mmol, 1.15 equiv) in CH3CN (20 mL). After

allowing to warm to room temperature and stirring overnight, the reaction mixture was

concentrated in vacuo, triturated with 1:1 Et2O:petroleum ether (40 mL), filtered and

reconcentrated to an orange oil. Silica gel chromatography employing 6:4

hexanes:EtOAc as eluant furnished 181 (1.613 g, 78% yield) as a yellow oil. An

analytical sample (yellow oil) was obtained by a second flash chromatography using 6:4

hexanes:EtOAc as eluant: FTIR (thin film/NaCl) 2984 (w), 2932 (m), 2902 (m), 2825

(w), 2142 (s), 1717 (s), 1657 (s), 1457 (w), 1365 (m), 1312 (s), 1249 (m), 1195 (w), 1156

(m), 1106 (m), 1074 (s), 965 (w) cm-1; 1H NMR (500 MHz, CDCl3) δ 4.40 (dd, J=11.8,

4.4 Hz, 1H), 4.35 (dd, J=11.7, 6.0 Hz, 1H), 4.02-3.97 (m, 2H), 3.86 (dd, J=10.0, 4.0 Hz,

1H), 3.82-3.81 (m, 1H), 3.62 (d, J=3.3 Hz, 1H), 3.40 (s, 3H), 3.34 (s, 3H), 2.48 (s, 3H);

13C NMR (100 MHz, CDCl3) δ 190.0, 161.1, 86.4, 84.3, 81.3, 71.2, 64.8, 57.6, 56.8,

28.2; HRMS (EI) m/z 273.1098 [calcd for C11H17N2O6 (M+H) 273.1087].

Page 222: Abstract - John L. Wood

198

Preparation of TBS-enol ether 183.

OO

O

183

OMeMeO

TBSO

N2

TBS-enol ether 183. TBSOTf (290 µL, 1.26 mmol, 1.22 equiv) was added

dropwise to a stirred (0 °C) solution of diazoacetoacetate 181 (282 mg, 1.04 mmol, 1

equiv) and triethylamine (220 µL, 1.58 mmol, 1.52 equiv) in CH2Cl2 (2.5 mL). After

allowing to warm to room temperature and stirring for 2.5 h, the reaction mixture was

diluted with petroleum ether (10 mL) and washed with 1:1 saturated aqueous

NaHCO3:water (2 X 10 mL) and brine (10 mL). The aqueous washings were extracted

with petroleum ether (10 mL) and the combined organic phases were dried over MgSO4,

filtered and concentrated in vacuo to furnish 183 (350 mg, 87% yield) as an orange oil.

Typically this material was used without purification due to its instability. However, an

analytical sample (orange oil) was prepared by flash column chromatography employing

85:15:1 hexanes:EtOAc:Et3N as eluant: FTIR (thin film/NaCl) 2955 (m), 2932 (s), 2898

(m), 2859 (m), 2824 (m), 2104 (s), 1712 (s), 1635 (w), 1609 (m), 1471 (m), 1463 (m),

1388 (m), 1345 (s), 1258 (m), 1083 (s), 1003 (m), 839 (s), 784 (m), 744 (m) cm-1; 1H

NMR (400 MHz, CDCl3, Me4Si) δ 5.01 (d, J=2.2 Hz, 1H), 4.32 (d, J=5.4 Hz, 2H), 4.25

(d, J=2.2 Hz, 1H), 4.01-3.97 (m, 2H), 3.87 (dd, J=10.0, 4.0 Hz, 1H), 3.87-3.81 (m, 1H),

3.64 (d, J=3.2 Hz, 1H), 3.39 (s, 3H), 3.35 (s, 3H), 0.92 (s, 9H), 0.22 (s, 6H); 13C NMR

(100 MHz, CDCl3) δ 164.0, 140.7, 90.6, 86.5, 84.7, 81.4, 71.3, 64.5, 57.6, 56.9, 25.7,

Page 223: Abstract - John L. Wood

199

18.2, -4.7; HRMS (CI, isobutane) m/z 387.1950 [calcd for C17H31N2O6Si (M+H)

387.1951].

Preparation of Diazoacetate 185.

OO

O

185

OMeMeO

N2

Diazoacetate 185. To a stirred solution of diazoacetoacetate 181 (430 mg, 1.58

mmol, 1 equiv) in CH3CN (24 mL) was added a solution of LiOH monohydrate (201 mg,

4.79 mmol, 3.03 equiv) in water (8 mL). The reaction mixture was stirred at room

temperature for 5 h, diluted with water (32 mL) and extracted with Et2O (4 X 10 mL).

The combined organic extracts were dried over MgSO4, filtered and concentrated in

vacuo. The residue contained water, so it was taken in CH2Cl2 (40 mL), dried over

MgSO4, filtered and reconcentrated. The resultant yellow oil was chromatographed on

silica employing 7:3 hexanes:EtOAc as eluant to furnish 185 (246 mg, 68% yield) as a

yellow oil. An analytical sample (yellow oil) was obtained by selecting fractions from

the flash chromatography: FTIR (thin film/NaCl) 3095 (w), 2984 (w), 2934 (m), 2903

(m), 2826 (w), 2112 (s), 1694 (s), 1458 (m), 1371 (m), 1341 (m), 1240 (m), 1186 (m),

1110 (m), 1036 (m), 953 (w) cm-1; 1H NMR (400 MHz, CDCl3) δ 4.80 (br s, 1H), 4.29

(dd, J=11.5, 4.8 Hz, 1H), 4.22 (dd, J=11.4, 6.8 Hz, 1H), 3.98-3.92 (m, 2H), 3.84 (dd,

J=10.0, 4.4 Hz, 1H), 3.79 (d, J=4.0 Hz, 1H), 3.58 (d, J=3.3 Hz, 1H), 3.36 (s, 3H), 3.32 (s,

Page 224: Abstract - John L. Wood

200

3H); 13C NMR (100 MHz, CDCl3) δ 86.4, 84.6, 81.5, 71.3, 64.7, 57.6, 56.9, 46.5; HRMS

(EI) m/z 230.0900 [calcd for C9H14N2O5 (M+) 230.0903].

Preparation of Spirolactone 186.

OO

O

186

OMeMeO

Spirolactone 186. To a suspension of Rh2(OAc)4 (4.5 mg, 0.01 mmol, 1.0%

equiv) in CH2Cl2 (20 mL) at reflux was added dropwise (over a 10 h period via syringe

pump) a solution of diazoacetate 185 (231 mg, 1.00 mmol, 1 equiv) in CH2Cl2 (5 mL).

After allowing to cool to room temperature and concentrating in vacuo, the resultant

yellow oil was chromatographed on silica employing 1:1 hexanes:EtOAc as eluant to

furnish 186 (110 mg, 54% yield) as a colorless oil. An analytical sample (colorless oil)

was obtained by a second flash chromatography using 1:1 hexanes:EtOAc as eluant:

FTIR (thin film/NaCl) 2987 (w), 2939 (m), 2905 (m), 2831 (m), 1782 (s), 1463 (m), 1403

(w), 1374 (m), 1260 (m), 1176 (m), 1102 (s), 1077 (m), 1037 (m), 1015 (s), 967 (m), 857

(m) cm-1; 1H NMR (500 MHz, CDCl3, Me4Si) δ 4.31 (d, J=10.4 Hz, 1H), 4.28 (d,

J=10.1 Hz, 1H), 4.07 (dd, J=10.3, 5.1 Hz, 1H), 3.92-3.89 (m, 2H), 3.60 (d, J=1.5 Hz,

1H), 3.47 (s, 3H), 3.37 (s, 3H), 2.95 (d, J=18.5 Hz, 1H), 2.51 (d, J=18.0 Hz, 1H); 13C

NMR (100 MHz, CDCl3) δ 175.3, 87.5, 86.5, 83.2, 76.2, 70.6, 58.3, 57.3, 34.8; HRMS

(EI) m/z 202.0840 [calcd for C9H14O5 (M+) 202.0841].

Page 225: Abstract - John L. Wood

201

Preparation of 3-Methoxyphenylacetate 187.

OO

187

OMeMeO

O

MeO

3-Methoxyphenylacetate 187. To a stirred (0 °C) solution of alcohol 156 (306

mg, 1.89 mmol, 1 equiv), 3-methoxyphenylacetic acid (356 mg, 2.14 mmol, 1.14 equiv)

and DMAP (3 mg, 0.02 mmol, 1.3% equiv) in CH2Cl2 (5 mL) was added DCC (432 mg,

2.09 mmol, 1.11 equiv). After allowing to warm to room temperature and stirring for 4 h,

the resulting white precipitate was removed by filtration through a cotton plug. The

filtrate was concentrated in vacuo and the residue taken in CH3CN (5 mL), filtered

through a cotton plug and reconcentrated; this procedure was repeated using acetone (5

mL) and a red oil was recovered. Silica gel chromatography employing 6:4

hexanes:EtOAc as eluant furnished 187 (442 g, 75% yield) as a colorless oil. An

analytical sample (colorless oil) was obtained by selecting fractions from the flash

chromatography: FTIR (thin film/NaCl) 3053 (w), 2982 (m), 2936 (m), 2833 (m), 1738

(s), 1601 (m), 1586 (m), 1492 (m), 1456 (m), 1439 (m), 1262 (s), 1193 (m), 1151 (s),

1111 (s), 1050 (m), 953 (m), 858 (m), 773 (m), 720 (m), 692 (m) cm-1; 1H NMR (500

MHz, CDCl3, Me4Si) δ 7.23 (t, J=7.9 Hz, 1H), 6.87 (d, J=7.6 Hz, 1H), 6.84 (s, 1H), 6.80

(dd, J=8.3, 2.3 Hz, 1H), 4.25 (dd, J=11.5, 5.2 Hz, 1H), 4.19 (dd, J=11.5, 6.7 Hz, 1H),

3.99-3.94 (m, 2H), 3.86 (dd, J=10.0, 4.1 Hz, 1H), 3.80-3.79 (m, 1H), 3.79 (s, 3H), 3.64

(s, 2H), 3.56 (d, J=3.3 Hz, 1H), 3.33 (s, 3H), 3.32 (s, 3H); 13C NMR (100 MHz, CDCl3)

Page 226: Abstract - John L. Wood

202

δ 171.2, 156.7, 135.3, 129.5, 121.6, 121.7, 114.9, 112.7, 86.2, 84.5, 81.2, 71.2, 64.8, 57.5,

56.8, 55.2, 41.2; HRMS (EI) m/z 310.1419 [calcd for C16H22O6 (M+) 310.1416].

Preparation of 3-Methoxyphenyldiazoacetate 188.

OO

188

OMeMeO

O

MeON2

3-Methoxyphenyldiazoacetate 188. DBU (215 µL, 1.44 mmol, 1.10 equiv) was

added dropwise to a stirred (0 °C) solution of 3-methoxyphenylacetate 187 (406 mg, 1.31

mmol, 1 equiv) and p-ABSA (397 mg, 1.65 mmol, 1.26 equiv) in CH3CN (5 mL). After

allowing to warm to room temperature and stirring overnight, the reaction mixture was

treated with saturated aqueous NH4Cl (10 mL) and extracted with CH2Cl2 (2 X 10 mL).

The combined organic phases were dried over MgSO4, filtered and concentrated in vacuo

to furnish an orange oil. Silica gel chromatography employing 3:1 hexanes:EtOAc as

eluant furnished 188 (141 mg, 32% yield) as an orange oil. An analytical sample (orange

oil) was obtained by selecting fractions from the flash chromatography: FTIR (thin

film/NaCl) 2984 (m), 2934 (m), 2904 (m), 2830 (m), 2092 (s), 1705 (s), 1600 (s), 1578

(m), 1494 (m), 1454 (m), 1437 (m), 1348 (m), 1294 (m), 1255 (s), 1182 (m), 1152 (s),

1112 (s), 1036 (s), 956 (w), 860 (m), 775 (m), 738 (m), 688 (m) cm-1; 1H NMR (500

MHz, CDCl3, Me4Si) δ 7.28 (t, J=8.0 Hz, 1H), 7.16 (s, 1H), 6.98 (dd, J=7.9, 1.0 Hz, 1H),

6.23 (dd, J=8.3, 2.0 Hz, 1H), 4.39 (d, J=5.8 Hz, 2H), 4.05-4.03 (m, 1H), 4.01 (d, J=10.8

Hz, 1H), 3.88 (dd, J=10.1, 4.4 Hz, 1H), 3.83-3.82 (m, 1H), 3.81 (s, 3H), 3.67 (d, J=3.4

Page 227: Abstract - John L. Wood

203

Hz, 1H), 3.40 (s, 3H), 3.35 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 164.8, 160.1, 129.9,

126.9, 116.0, 111.6, 109.7, 86.5, 84.6, 81.5, 71.3, 64.7, 57.6, 56.9, 55.3; HRMS (EI) m/z

336.1318 [calcd for C16H20N2O6 (M+) 336.1321].

Preparation of (+)-Acetoacetate 190.

OO

O

190

OHHO

O

(+)-Acetoacetate 190. Diketene (1.1 mL, 14.26 mmol, 1.04 equiv) was added

dropwise to a stirred (0 °C) solution of triol 98 (1.840 g, 13.72 mmol, 1 equiv) and

DMAP (17 mg, 0.14 mmol, 1.0% equiv) in THF (28 mL). After removing the cooling

bath and stirring at room temperature for 3 h, the reaction mixture was concentrated in

vacuo. The resultant yellow oil was chromatographed on silica employing 99:1

EtOAc:AcOH as eluant to furnish 190 (1.025 g, 34% yield) as a yellow oil. An analytical

sample (yellowish oil) was prepared by flash column chromatography employing 95:5

CH2Cl2:MeOH as eluant: [α]D20 +21.98° (c 0.41, MeOH); FTIR (thin film/NaCl) 3418

(br m), 2928 (w), 1741 (s), 1711 (s), 1412 (m), 1362 (m), 1317 (m), 1274 (m), 1154 (m),

1090 (m), 1058 (m), 1034 (m), 1008 (m), 978 (m) cm-1; 1H NMR (500 MHz, CDCl3) δ

4.40 (dd, J=11.7, 5.0 Hz, 1H), 4.36 (dd, J=10.3, 4.8 Hz, 1H), 4.22 (m, 1H), 4.11 (m, 1H),

4.02 (dd, J=10.1, 4.4 Hz, 1H), 3.94 (q, J=4.7 Hz, 1H), 3.88 (dd, J=10.0, 2.2 Hz, 1H), 3.55

(d, J=2.2 Hz, 1H), 2.28 (s, 3H), 1.96 (br s, 2H); 13C NMR (125 MHz, acetone-d6) δ

Page 228: Abstract - John L. Wood

204

201.1, 167.8, 84.1, 79.9, 78.5, 74.3, 66.0, 50.2, 30.0; HRMS (EI) m/z 219.0869 [calcd for

C9H15O6 (M+H) 219.0869].

Preparation of (+)-Diazoacetoacetate 194.

OO

O

194

OHHO

O

N2

(+)-Diazoacetoacetate 194. Diol protection: 2-Methoxypropene (1.6 mL, 16.71

mmol, 3.98 equiv) was added dropwise to a stirred solution of diol 190 (917 mg, 4.20

mmol, 1 equiv) and POCl3 (ca. 1 µL, 0.01 mmol, 0.3% equiv) in THF (10 mL) The

reaction mixture was stirred at room temperature for 1 h, quenched by adding

triethylamine and concentrated in vacuo to a turbid yellow oil which was used without

purification.

Diazo transfer: Triethylamine (1.8 mL, 12.91 mmol, 3.07 equiv) was added

dropwise to a stirred (0 °C) solution of the crude product of the previous reaction and p-

ABSA (1.244 g, 5.18 mmol, 1.23 equiv) in CH3CN (10 mL). After allowing to warm to

room temperature and stirring for 1 h, the reaction mixture was concentrated in vacuo,

triturated with 1:1 Et2O:petroleum ether (20 mL), filtered and reconcentrated to a yellow

oil which was used without purification.

Diol deprotection: To a solution of the crude product of the previous reaction in

MeOH (20 mL) was added p-TsOH monohydrate (81 mg, 0.43 mmol, 0.10 equiv). The

reaction mixture was stirred at room temperature for 15 min, quenched by adding

Page 229: Abstract - John L. Wood

205

triethylamine and concentrated in vacuo to a yellow oil. Silica gel chromatography

employing EtOAc as eluant furnished 194 (938 mg, 91% yield) as a yellow oil. An

analytical sample (yellowish oil) was obtained by a second flash chromatography using

13:1 CH2Cl2:MeOH as eluant: [α]D20 +21.97° (c 0.58, MeOH); FTIR (thin film/NaCl)

3413 (br m), 2928 (w), 2147 (s), 1718 (s), 1652 (m), 1368 (m), 1317 (s), 1251 (m), 1156

(m), 1072 (s), 969 (m) cm-1; 1H NMR (400 MHz, CDCl3) δ 4.45 (d, J=5.3 Hz, 2H), 4.25

(m, 1H), 4.09-4.04 (m, 2H), 3.98 (q, J=4.8 Hz, 1H), 3.88 (dd, J=10.0, 2.1 Hz, 1H), 2.48

(s, 3H), 1.70 (br s, 2H); 13C NMR (100 MHz, acetone-d6) δ 189.8, 161.9, 84.2, 79.8,

78.4, 74.4, 66.0, 28.2; HRMS (EI) m/z 245.0775 [calcd for C9H13N2O6 (M+H)

245.0774].

Preparation of 3-Methoxyphenylacetate 196.

OO

196

OHHO

O

MeO

3-Methoxyphenylacetate 196. To a stirred solution of TBS-ether 166 (238 mg,

0.47 mmol, 1 equiv) in CH3CN (5 mL) was added 48% wt aq HBF4 (350 mg, 1.91 mmol,

4.11 equiv). The reaction mixture was stirred at room temperature for 30 min, diluted

with EtOAc (5 mL) and washed with saturated aqueous NaHCO3 (5 mL) and water (5

mL). The aqueous washings were extracted with EtOAc (5 mL) and the combined

organic phases were dried over MgSO4, filtered and concentrated in vacuo to a white

Page 230: Abstract - John L. Wood

206

semisolid. Silica gel chromatography employing 1:3 hexanes:EtOAc as eluant furnished

196 (122 mg, 93% yield) as a white oil: FTIR (thin film/NaCl) 3428 (br m), 2941 (m),

2837 (w), 1734 (s), 1601 (m), 1586 (m), 1492 (m), 1455 (m), 1438 (m), 1264 (s), 1152

(s), 1090 (m), 1051 (s), 1009 (m), 874 (m), 774 (m), 720 (w), 692 (m) cm-1; 1H NMR

(500 MHz, CDCl3) δ 7.25 (t, J=7.7 Hz, 1H), 6.87 (d, J=7.5 Hz, 1H), 6.85-6.82 (m, 2H),

4.31 (d, J=4.4 Hz, 1H), 4.15 (m, 1H), 4.00 (dd, J=9.8, 4.3 Hz, 1H), 3.99-3.97 (m, 1H),

3.91 (q, J=4.4 Hz, 1H), 3.83 (dd, J=9.9, 2.3 Hz, 1H), 3.81 (s, 3H), 3.65 (s, 2H), 1.81 (br s,

2H); 13C NMR (100 MHz, acetone-d6) δ 171.6, 160.5, 136.6, 130.0, 122.2, 115.6, 113.0,

84.0, 79.7, 78.3, 74.2, 65.7, 55.3, 41.2; HRMS (EI) m/z 282.1101 [calcd for C14H18O6

(M+) 282.1103].

Preparation of 3-Methoxyphenyldiazoacetate 199.

OO

O

199HO

N2

OH

MeO

3-Methoxyphenyldiazoacetate 199. Diol protection: 2-Methoxypropene (2 X

1.3 mL, 27.15 mmol, 7.98 equiv) was added dropwise in 2 portions separated by a 2 h

interval to a stirred solution of diol 196 (960 mg, 3.40 mmol, 1 equiv) and POCl3 (ca. 1

µL, 0.01 mmol, 0.3% equiv) in THF (10 mL). The reaction mixture was stirred at room

temperature for 2 h, quenched by adding triethylamine and concentrated in vacuo to a

colorless oil which was used without purification.

Page 231: Abstract - John L. Wood

207

Diazo transfer: DBU (0.65 mL, 4.35 mmol, 1.28 equiv) was added dropwise to a

stirred (0 °C) solution of the crude product of the previous reaction and p-ABSA (1.262

g, 5.25 mmol, 1.55 equiv) in CH3CN (10 mL). After allowing to warm to room

temperature and stirring for 48 h, the reaction mixture was concentrated in vacuo and the

residue triturated with 1:1 Et2O:petroleum ether (20 mL), filtered and reconcentrated to

an orange oil which was used without purification.

Diol deprotection: To a solution of the crude product of the previous reaction in

MeOH (20 mL) was added p-TsOH monohydrate (69 mg, 0.36 mmol, 0.11 equiv). The

reaction mixture was stirred at room temperature for 30 min, quenched by adding

triethylamine and concentrated in vacuo to an orange oil. Silica gel chromatography

employing 95:15 CH2Cl2:MeOH as eluant furnished 199 (462 mg, 44% yield) as an

orange oil. An analytical sample (orange oil) was obtained by HPLC using 1:3

hexanes:EtOAc as eluant: FTIR (thin film/NaCl) 3418 (br m), 2941 (w), 2837 (w), 2091

(s), 1698 (s), 1600 (m), 1578 (m), 1494 (m), 1453 (m), 1352 (m), 1295 (m), 1255 (s),

1180 (m), 1152 (m), 1089 (m), 1030 (s), 866 (m), 774 (m), 738 (m), 687 (m) cm-1; 1H

NMR (500 MHz, acetone-d6) δ 7.32 (t, J=8.1 Hz, 1H), 7.22 (t, J=2.0 Hz, 1H), 7.04 (ddd,

J=7.9, 1.7, 0.8 Hz, 1H), 6.78 (ddd, J=8.1, 2.5, 0.7 Hz, 1H), 4.46 (d, J=4.1 Hz, 1H), 4.40

(d, J=5.9 Hz, 2H), 4.24 (d, J=3.8 Hz, 1H), 4.17 (m, 1H), 4.05 (m, 1H), 3.98-3.94 (m, 2H),

3.81 (s, 3H), 3.79 (dd, J=9.6, 2.4 Hz, 1H); 13C NMR (100 MHz, acetone-d6) δ 165.1,

160.9, 130.6, 127.8, 116.5, 111.9, 110.4, 84.2, 79.7, 78.3, 74.3, 65.7, 55.4; HRMS (EI)

m/z 308.1004 [calcd for C14H16N2O6 (M+) 308.1008].

Page 232: Abstract - John L. Wood

208

3.9 References.

(1) Doyle, M. P.; Dyatkin, A. B. J. Org. Chem. 1995, 60, 3035-3038.

(2) Acylation of alcohols using a carboxylic acid, DCC and DMAP were

performed following the procedure by Neises and Steglich or Hassner and Alexanian:

(a) Neises, B.; Steglich, W. Angew. Chem. Int. Ed. Engl. 1978, 7, 522-523. (b) Hassner,

A.; Alexanian, V. Tetrahedron Lett. 1978, 19, 4475-4478.

(3) Acylation of alcohols using diketene and DMAP were performed following

the procedure by Nudelman et al.9:

(4) Diazo transfer reactions using mesyl azide (MsN3) were performed following

the procedure by Taber et al.: Taber, D. F.; Ruckle, R. E., Jr.; Hennessy, M. J. J. Org.

Chem. 1986, 51, 4077-4078.

(5) Diazo transfer reactions using p-ABSA were performed following the

procedure by Baum et al.: Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D.

Synth. Commun. 1987, 17, 1709-1716.

(6) Intramolecular C-H insertion reactions were performed following the

procedure by Doyle and Dyatkin.1

Page 233: Abstract - John L. Wood

209

(7) Diazoacetates were obtained from the corresponding diazoacetoacetates

following the procedure by Doyle and Dyatkin.1

(8) 2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoates were obtained from the

corresponding diazoacetoacetates following the procedure by Davies et al.: Davies, H.

M. L.; Houser, J. H.; Thornley, C. J. Org. Chem. 1995, 60, 7529-7534.

(9) Nudelman, A.; Kelner, R.; Broida, N.; Gottlieb, H. E. Synthesis 1989, 387-

388.

(10) Wood, J. L.; Moniz, G. A.; Pflum, D. A.; Stoltz, B. M.; Holubec, A. A.;

Dietrich, H.-J. J. Am. Chem. Soc. 1999, 121, 1748-1746.

(11) Malonyl acylation was performed via a modified literature procedure: Box,

V. G. S.; Marinovic, N.; Yiannikouros, G. P. Heterocycles 1991, 32, 245-251

(12) (a) Padwa, A.; Kulkarni, Y. S.; Zhang, Z. J. Org. Chem. 1990, 55, 4144-

4153. (b) Pelliciari, R.; Natalini, B.; Sadeghpour, B. M.; Marinozzi, M.; Snyder, J. P.;

Williamson, B. L.; Kuethe, J. T.; Padwa, A. J. Am. Chem. Soc. 1996, 118, 1-12.

(13) Ozonolysis was performed following the method by Bunelle et al.: Bunelle,

W. H.; Rafferty, M. A.; Hodges, S. L. J. Org. Chem. 1987, 52, 1603-1605.

Page 234: Abstract - John L. Wood

210

(14) Masamune, T.; Matsue, H.; Murase, H. Bull. Chem. Soc. Jpn. 1979, 52, 127-

134.

(15) Fujioka, H.; Kitagawa, H.; Kondo, M.; Kita, Y. Heterocycles 1994, 37, 743-

746.

(16) Disilylation of 157 and deprotection of 166 were effected following the

procedures by Crotti et al.: Crotti, P.; Di Bussolo, V.; Favero, L. Gozzi, C.; Pineschi, M.

Tetrahedron: Asymmetry 1997, 8, 1611-1621.

(17) Nicotra, F.; Panza, L.; Russo, G.; Zucchelli, L.. J. Org. Chem. 1992, 57,

2154-2158.

(18) Mukai, C.; Moharram, S. M.; Azukizawa, S.; Hanaoka, M. J. Org. Chem.

1997, 62, 8095-8103.

(19) Methylation was performed following the method by Aoyama and Shioiri:

Aoyama, T.; Shioiri, T. Tetrahedron Lett. 1990, 31, 5507-5508.

(20) Benneck, J. A.; Gray, G. R. J. Org. Chem. 1987, 42, 892-897.

(21) Taber, D. F.; You, K. K.; Rheingold, A. L. J. Am. Chem. Soc. 1996, 118,

547-556.

Page 235: Abstract - John L. Wood

211

(22) Padwa, A.; Austin, D. J. Angew. Chem. Int. Ed. Engl. 1994, 33, 1797-1815.

(23) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.

(24) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512-

7515.

(25) The atomic coordinates for this structure have been deposited with the

Cambridge Crystallographic Data Centre.

Page 236: Abstract - John L. Wood

212

Appendix 3

Spectra Relevant to Chapter 3.

Page 237: Abstract - John L. Wood

213 21

3

8 6 4 2 0 ppm

Figure A.3.1 1H NMR (500 MHz, CDCl3) of Compound 115.

OO

N2

O

115

O

Page 238: Abstract - John L. Wood

214 21

4

200

150

100

50PP

M

Figu

re A

.3.3

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

115.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.2

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

115.

Page 239: Abstract - John L. Wood

215 21

5

8 6 4 2 0 ppm

Figure A.3.4 1H NMR (500 MHz, CDCl3) of Compound 117.

OO

N2

OTBS

117

O

Page 240: Abstract - John L. Wood

216 21

6

200

150

100

500

PPM

Figu

re A

.3.6

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

117.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.5

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

117.

Page 241: Abstract - John L. Wood

217 21

7

8 6 4 2 0 ppm

Figure A.3.7 1H NMR (500 MHz, CDCl3) of Compound 121.

121

OO OMe

O O

Page 242: Abstract - John L. Wood

218 21

8

200

150

100

50PP

M

Figu

re A

.3.9

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

121.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.8

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

121.

Page 243: Abstract - John L. Wood

219 21

9

8 6 4 2 0 ppm

Figure A.3.10 1H NMR (500 MHz, CDCl3) of Compound 122.

OO

N2

OMe

O

122

O

Page 244: Abstract - John L. Wood

220 22

0

200

150

100

50PP

M

Figu

re A

.3.1

2 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 12

2.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.1

1 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

122.

Page 245: Abstract - John L. Wood

221 22

1

8 6 4 2 0 ppm

Figure A.3.13 1H NMR (500 MHz, CDCl3) of Compound 125.

125

OO

O

OMe

Page 246: Abstract - John L. Wood

222 22

2

200

150

100

50PP

M

Figu

re A

.3.1

5 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 12

5.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.1

4 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

125.

Page 247: Abstract - John L. Wood

223 22

3

8 6 4 2 0 ppm

Figure A.3.16 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 126.

OO

N2

126

O

OMe

Page 248: Abstract - John L. Wood

224 22

4

200

150

100

50PP

M

Figu

re A

.3.1

8 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 12

6.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.1

7 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

126.

Page 249: Abstract - John L. Wood

225 22

5

8 6 4 2 0 ppm

Figure A.3.19 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 127.

OO

O

127

H

OMe

Page 250: Abstract - John L. Wood

226 22

6

200

150

100

50PP

M

Figu

re A

.3.2

1 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 12

7.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.2

0 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

127.

Page 251: Abstract - John L. Wood

227 22

7

8 6 4 2 0 ppm

Figure A.3.22 1H NMR (500 MHz, CDCl3) of Compound 129.

129

OO

O

Page 252: Abstract - John L. Wood

228 22

8

200

150

100

50PP

M

Figu

re A

.3.2

4 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 12

9.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.2

3 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

129.

Page 253: Abstract - John L. Wood

229 22

9

8 6 4 2 0 ppm

Figure A.3.25 1H NMR (500 MHz, CDCl3) of Compound 131.

OO

O

131

Page 254: Abstract - John L. Wood

230 23

0

200

150

100

50PP

M

Figu

re A

.3.2

7 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 13

1.

7580859095

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.2

6 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

131.

Page 255: Abstract - John L. Wood

231 23

1

8 6 4 2 0 ppm

Figure A.3.28 1H NMR (500 MHz, CDCl3) of Compound 134.

OO

N2

134

O

Page 256: Abstract - John L. Wood

232 23

2

200

150

100

50PP

M

Figu

re A

.3.3

0 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 13

4.

20406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.2

9 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

134.

Page 257: Abstract - John L. Wood

233 23

3

8 6 4 2 0 ppm

Figure A.3.31 1H NMR (500 MHz, CDCl3) of Compound 135.

OO

O

135

Page 258: Abstract - John L. Wood

234 23

4

200

150

100

50PP

M

Figu

re A

.3.3

3 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 13

5.

20406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.3

2 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

135.

Page 259: Abstract - John L. Wood

235 23

5

8 6 4 2 0 ppm

Figure A.3.34 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 140.

140

OO

O O

Page 260: Abstract - John L. Wood

236 23

6

200

150

100

50PP

M

Figu

re A

.3.3

6 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 14

0.

20406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.3

5 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

140.

Page 261: Abstract - John L. Wood

237 23

7

8 6 4 2 0 ppm

Figure A.3.37 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 141.

OO

N2

O

141

O

Page 262: Abstract - John L. Wood

238 23

8

200

150

100

50PP

M

Figu

re A

.3.3

9 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 14

1.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.3

8 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

141.

Page 263: Abstract - John L. Wood

239 23

9

8 6 4 2 0 ppm

Figure A.3.40 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 143.

OO

N2

OTBS

143

O

Page 264: Abstract - John L. Wood

240 24

0

200

150

100

50PP

M

Figu

re A

.3.4

2 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 14

3.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.4

1 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

143.

Page 265: Abstract - John L. Wood

241 24

1

8 6 4 2 0 ppm

Figure A.3.43 1H NMR (500 MHz, CDCl3) of Compound 145.

OO

N2

145

O

Page 266: Abstract - John L. Wood

242 24

2

200

150

100

50PP

M

Figu

re A

.3.4

5 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 14

5.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Figu

re A

.3.4

4 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

145.

Page 267: Abstract - John L. Wood

243 24

3

8 6 4 2 0 ppm

Figure A.3.46 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 147.

147

OO

O

OMe

Page 268: Abstract - John L. Wood

244 24

4

200

150

100

50PP

M

Figu

re A

.3.4

8 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 14

7.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.4

7 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

147.

Page 269: Abstract - John L. Wood

245 24

5

8 6 4 2 0 ppm

Figure A.3.49 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 148.

OO

N2

148

O

OMe

Page 270: Abstract - John L. Wood

246 24

6

200

150

100

500

PPM

Figu

re A

.3.5

1 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 14

8.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.5

0 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

148.

Page 271: Abstract - John L. Wood

247 24

7

8 6 4 2 0 ppm

Figure A.3.52 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 149.

OO

O

149

H

OMe

Page 272: Abstract - John L. Wood

248 24

8

200

150

100

500

PPM

Figu

re A

.3.5

4 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 14

9.

5055606570758085

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.5

3 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

149.

Page 273: Abstract - John L. Wood

249 24

9

8 6 4 2 0 ppm

Figure A.3.55 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 151.

151

OO

OOMe

Page 274: Abstract - John L. Wood

250 25

0

200

150

100

50PP

M

Figu

re A

.3.5

7 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 15

1.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.5

6 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

151.

Page 275: Abstract - John L. Wood

251 25

1

8 6 4 2 0 ppm

Figure A.3.58 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 152.

OO

N2

152

OOMe

Page 276: Abstract - John L. Wood

252 25

2

200

150

100

500

PPM

Figu

re A

.3.6

0 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 15

2.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.5

9 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

152.

Page 277: Abstract - John L. Wood

253 25

3

8 6 4 2 0 ppm

Figure A.3.61 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 153.

OO

O

153

H

MeO

Page 278: Abstract - John L. Wood

254 25

4

200

150

100

500

PPM

Figu

re A

.3.6

3 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 15

3.

30405060708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.6

2 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

153.

Page 279: Abstract - John L. Wood

255 25

5

8 6 4 2 0 ppm

Figure A.3.64 1H NMR (400 MHz, CDCl3) of Compound 158.

OO

O

158

OTBSTBSO

Page 280: Abstract - John L. Wood

256 25

6

200

150

100

500

PPM

Figu

re A

.3.6

6 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 15

8.

Figu

re A

.3.6

5 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

158.

60708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 281: Abstract - John L. Wood

257 25

7

8 6 4 2 0 ppm

Figure A.3.67 1H NMR (400 MHz, CDCl3) of Compound 154.

OHO

154

TBSO OTBS

Page 282: Abstract - John L. Wood

258 25

8

200

150

100

500

PPM

Figu

re A

.3.6

9 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 15

4.

Figu

re A

.3.6

8 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

154.

708090100

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 283: Abstract - John L. Wood

259 25

9

8 6 4 2 0 ppm

Figure A.3.70 1H NMR (500 MHz, CDCl3) of Compound 159.

OO

O

159

OTBSTBSO

O

Page 284: Abstract - John L. Wood

260 26

0

200

150

100

500

PPM

Figu

re A

.3.7

2 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 15

9.

Figu

re A

.3.7

1 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

159.

708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 285: Abstract - John L. Wood

261 26

1

8 6 4 2 0 ppm

Figure A.3.73 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 160.

OO

O

160

OTBSTBSO

O

N2

Page 286: Abstract - John L. Wood

262 26

2

200

150

100

500

PPM

Figu

re A

.3.7

5 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 16

0.

5060708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.7

4 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

160.

Page 287: Abstract - John L. Wood

263 26

3

8 6 4 2 0 ppm

Figure A.3.76 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 162.

OO

O

162

OTBSTBSO

TBSO

N2

Page 288: Abstract - John L. Wood

264 26

4

200

150

100

500

PPM

Figu

re A

.3.7

8 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 16

2.

707580859095100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.7

7 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

162.

Page 289: Abstract - John L. Wood

265 26

5

8 6 4 2 0 ppm

Figure A.3.79 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 164.

OO

O

164

OTBSTBSO

N2

Page 290: Abstract - John L. Wood

266 26

6

200

150

100

500

PPM

Figu

re A

.3.8

1 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 16

4.

65707580859095100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.8

0 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

164.

Page 291: Abstract - John L. Wood

267 26

7

8 6 4 2 0 ppm

Figure A.3.82 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 165.

OO

O

165

OTBSTBSO

Page 292: Abstract - John L. Wood

268 26

8

200

150

100

500

PPM

Figu

re A

.3.8

4 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 16

5.

5060708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.8

3 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

165.

Page 293: Abstract - John L. Wood

269 26

9

8 6 4 2 0 ppm

Figure A.3.85 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 166.

OO

166

OTBSTBSO

O

MeO

Page 294: Abstract - John L. Wood

270 27

0

200

150

100

500

PPM

Figu

re A

.3.8

7 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 16

6.

Figu

re A

.3.8

6 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

166.

405060708090

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 295: Abstract - John L. Wood

271 27

1

8 6 4 2 0 ppm

Figure A.3.88 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 167.

OO

167

OTBSTBSO

O

MeON2

Page 296: Abstract - John L. Wood

272 27

2

200

150

100

500

PPM

Figu

re A

.3.9

0 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 16

7.

Figu

re A

.3.8

9 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

167.

20406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 297: Abstract - John L. Wood

273 27

3

8 6 4 2 0 ppm

Figure A.3.91 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 168.

168

OO

O

HMeO OTBSOTBS

Page 298: Abstract - John L. Wood

274 27

4

200

150

100

500

PPM

Figu

re A

.3.9

3 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 16

8.

Figu

re A

.3.9

2 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

168.

80859095100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 299: Abstract - John L. Wood

275 27

5

8 6 4 2 0 ppm

Figure A.3.94 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 169.

OO

O

169

OBnBnO

O

Page 300: Abstract - John L. Wood

276 27

6

200

150

100

500

PPM

Figu

re A

.3.9

6 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 16

9.

Figu

re A

.3.9

5 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

169.

7075808590

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 301: Abstract - John L. Wood

277 27

7

8 6 4 2 0 ppm

Figure A.3.97 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 170.

OO

O

170

OBnBnO

O

N2

Page 302: Abstract - John L. Wood

278 27

8

200

150

100

500

PPM

Figu

re A

.3.9

9 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 17

0.

Figu

re A

.3.9

8 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

170.

20406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 303: Abstract - John L. Wood

279 27

9

8 6 4 2 0 ppm

Figure A.3.100 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 172.

OO

O

172

OBnBnO

TBSO

N2

Page 304: Abstract - John L. Wood

280 28

0

200

150

100

500

PPM

Figu

re A

.3.1

02 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 17

2.

30405060708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Figu

re A

.3.1

01 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 17

2.

Page 305: Abstract - John L. Wood

281 28

1

8 6 4 2 0 ppm

Figure A.3.103 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 174.

OO

O

174

OBnBnO

N2

Page 306: Abstract - John L. Wood

282 28

2

200

150

100

500

PPM

Figu

re A

.3.1

05 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 17

4.

Figu

re A

.3.1

04 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 17

4.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 307: Abstract - John L. Wood

283 28

3

8 6 4 2 0 ppm

Figure A.3.106 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 176.

OO

176

OBnBnO

O

MeO

Page 308: Abstract - John L. Wood

284 28

4

200

150

100

500

PPM

Figu

re A

.3.1

08 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 17

6.

Figu

re A

.3.1

07 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 17

6.

60708090

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 309: Abstract - John L. Wood

285 28

5

8 6 4 2 0 ppm

Figure A.3.109 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 177.

OO

177

OBnBnO

O

MeON2

Page 310: Abstract - John L. Wood

286 28

6

200

150

100

500

PPM

Figu

re A

.3.1

11 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d 17

7.

Figu

re A

.3.1

10 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 17

7.

20406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 311: Abstract - John L. Wood

287 28

7

8 6 4 2 0 ppm

Figure A.3.112 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 178.

178

OO

O

HMeO OBnOBn

Page 312: Abstract - John L. Wood

288 28

8

200

150

100

500

PPM

Figu

re A

.3.1

14 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 17

8.

Figu

re A

.3.1

13 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 17

8.

5060708090

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 313: Abstract - John L. Wood

289 28

9

8 6 4 2 0 ppm

Figure A.3.115 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 179.

OO

O

179

OMeMeO

Page 314: Abstract - John L. Wood

290 29

0

200

150

100

500

PPM

Figu

re A

.3.1

17 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 17

9.

Figu

re A

.3.1

16 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 17

9.

20406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 315: Abstract - John L. Wood

291 29

1

8 6 4 2 0 ppm

Figure A.3.118 1H NMR (500 MHz, CDCl3) of Compound 156.

OHO

156

MeO OMe

Page 316: Abstract - John L. Wood

292 29

2

200

150

100

500

PPM

Figu

re A

.3.1

20 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 15

6.

Figu

re A

.3.1

19 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 15

6.

20406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 317: Abstract - John L. Wood

293 29

3

8 6 4 2 0 ppm

Figure A.3.121 1H NMR (400 MHz, CDCl3) of Compound 180.

OO

O

180

OMeMeO

O

Page 318: Abstract - John L. Wood

294 29

4

200

150

100

500

PPM

Figu

re A

.3.1

23 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 18

0.

Figu

re A

.3.1

22 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 18

0.

406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 319: Abstract - John L. Wood

295 29

5

8 6 4 2 0 ppm

Figure A.3.124 1H NMR (500 MHz, CDCl3) of Compound 181.

OO

O

181

OMeMeO

O

N2

Page 320: Abstract - John L. Wood

296 29

6

200

150

100

500

PPM

Figu

re A

.3.1

26 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 18

1.

Figu

re A

.3.1

25 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 18

1.

708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 321: Abstract - John L. Wood

297 29

7

8 6 4 2 0 ppm

Figure A.3.127 1H NMR (400 MHz, CDCl3, Me4Si) of Compound 183.

OO

O

183

OMeMeO

TBSO

N2

Page 322: Abstract - John L. Wood

298 29

8

200

150

100

500

PPM

Figu

re A

.3.1

29 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 18

3.

Figu

re A

.3.1

28 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 18

3.

20406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 323: Abstract - John L. Wood

299 29

9

8 6 4 2 0 ppm

Figure A.3.130 1H NMR (400 MHz, CDCl3) of Compound 185.

OO

O

185

OMeMeO

N2

Page 324: Abstract - John L. Wood

300 30

0

200

150

100

500

PPM

Figu

re A

.3.1

32 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 18

5.

Figu

re A

.3.1

31 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 18

5.

5060708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 325: Abstract - John L. Wood

301 30

1

8 6 4 2 0 ppm

Figure A.3.133 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 186.

OO

O

186

OMeMeO

Page 326: Abstract - John L. Wood

302 30

2

200

150

100

500

PPM

Figu

re A

.3.1

35 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 18

6.

Figu

re A

.3.1

34 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 18

6.

405060708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 327: Abstract - John L. Wood

303 30

3

8 6 4 2 0 ppm

Figure A.3.136 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 187.

OO

187

OMeMeO

O

MeO

Page 328: Abstract - John L. Wood

304 30

4

200

150

100

500

PPM

Figu

re A

.3.1

38 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 18

7.

Figu

re A

.3.1

37 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 18

7.

60708090

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 329: Abstract - John L. Wood

305 30

5

8 6 4 2 0 ppm

Figure A.3.139 1H NMR (500 MHz, CDCl3, Me4Si) of Compound 188.

OO

188OMeMeO

O

MeON2

Page 330: Abstract - John L. Wood

306 30

6

200

150

100

500

PPM

Figu

re A

.3.1

41 13

C N

MR

(100

MH

z, C

DC

l 3) o

f Com

poun

d 18

8.

Figu

re A

.3.1

40 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 18

8.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 331: Abstract - John L. Wood

307 30

7

8 6 4 2 0 ppm

Figure A.3.142 1H NMR (500 MHz, CDCl3) of Compound 190.

OO

O

190

OHHO

O

Page 332: Abstract - John L. Wood

308 30

8

200

150

100

500

PPM

Figu

re A

.3.1

44 13

C N

MR

(125

MH

z, a

ceto

ne-d

6) o

f Com

poun

d 19

0.

Figu

re A

.3.1

43 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 19

0.

60708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 333: Abstract - John L. Wood

309 30

9

8 6 4 2 0 ppm

Figure A.3.145 1H NMR (400 MHz, CDCl3) of Compound 194.

OO

O

194

OHHO

O

N2

Page 334: Abstract - John L. Wood

310 31

0

200

150

100

500

PPM

Figu

re A

.3.1

47 13

C N

MR

(100

MH

z, a

ceto

ne-d

6) o

f Com

poun

d 19

4.

Figu

re A

.3.1

46 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 19

4.

406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 335: Abstract - John L. Wood

311 31

1

8 6 4 2 0 ppm

Figure A.3.148 1H NMR (500 MHz, CDCl3) of Compound 196.

OO

196

OHHO

O

MeO

Page 336: Abstract - John L. Wood

312 31

2

200

150

100

500

PPM

Figu

re A

.3.1

50 13

C N

MR

(100

MH

z, a

ceto

ne-d

6) o

f Com

poun

d 19

6.

Figu

re A

.3.1

49 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 19

6.

020406080100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 337: Abstract - John L. Wood

313 31

3

8 6 4 2 0 ppm

Figure A.3.151 1H NMR (500 MHz, acetone-d6) of Compound 199.

OO

O

199HO

N2

OH

MeO

Page 338: Abstract - John L. Wood

314 31

4

200

150

100

500

PPM

Figu

re A

.3.1

53 13

C N

MR

(100

MH

z, a

ceto

ne-d

6) o

f Com

poun

d 19

9.

Figu

re A

.3.1

52 F

TIR

Spe

ctru

m (t

hin

film

/NaC

l) of

Com

poun

d 19

9.

60657075808590

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 339: Abstract - John L. Wood

315

Appendix 4

X-ray Structure Reports Relevant to Chapter 3.

A.4.1 X-ray Structure Report for Spirolactone 127.

OO

O

127

H

OMe

O1

O2

O3

O4

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10 C11

C12

C13

C14

H1

Figure A.4.1 ORTEP plot of Spirolactone 127.

A.4.1.1 Crystal Data.

Empirical Formula C14H16O4 Formula Weight 248.28 Crystal Color, Habit colorless, plate Crystal Dimensions 0.09 × 0.28 × 0.45 mm Crystal System monoclinic Lattice Type Primitive Lattice Parameters a = 7.9014(3)Å b = 9.0387(3) Å c = 17.686(1) Å β = 99.494(2)o V = 1245.81(8) Å3 Space Group P21/n (#14) Z value 4 Dcalc 1.324 g/cm3 F000 528.00 µ(MoKα) 0.96 cm-1

Page 340: Abstract - John L. Wood

316

A.4.1.2 Intensity Measurements.

Diffractometer Nonius KappaCCD Radiation MoKα (λ = 0.71069 Å) graphite monochromated Crystal to Detector Distance 33 mm Temperature -90.0oC 2θmax 55.0o No. of Reflections Measured Total: 3039 Corrections Lorentz-polarization

A.4.1.3 Structure Solution and Refinement.

Structure Solution Direct Methods (SIR92) Refinement Full-matrix least-squares Function Minimized Σ w (|Fo| - |Fc|)2 Least Squares Weights 1/σ2 = 4Fo2/σ2(Fo2) p-factor 0.0100 Anomalous Dispersion All non-hydrogen atoms No. Observations (I>5.00σ(I)) 1910 No. Variables 227 Reflection/Parameter Ratio 8.41 Residuals: R; Rw 0.039 ; 0.045 Goodness of Fit Indicator 2.89 Max Shift/Error in Final Cycle 0.00 Maximum peak in Final Diff. Map 0.29 e-/Å3 Minimum peak in Final Diff. Map -0.20 e-/Å

Page 341: Abstract - John L. Wood

317

A.4.1.4 Atomic coordinates and Biso/Beq.

Table A.4.1 Atomic coordinates and Biso/Beq for Spirolactone 127.

atom x y z Beq O(1) 0.6153(2) 0.7506(1) 0.16361(6) 3.72(3) O(2) 0.4356(1) 0.5605(1) 0.14188(6) 3.58(3) O(3) 0.3197(1) 0.5786(1) 0.29058(6) 2.97(2) O(4) 0.6156(1) 1.0182(1) 0.40874(6) 3.20(3) C(1) 0.6080(2) 0.5616(2) 0.26287(8) 2.27(3) C(2) 0.5596(2) 0.6387(2) 0.18664(8) 2.69(3) C(3) 0.3859(3) 0.4353(2) 0.18477(10) 3.45(4) C(4) 0.4410(2) 0.4759(2) 0.26836(8) 2.39(3) C(5) 0.4515(2) 0.3475(2) 0.32442(9) 3.02(4) C(6) 0.3873(3) 0.4126(2) 0.3925(1) 5.18(6) C(7) 0.2630(3) 0.5267(3) 0.3585(1) 5.32(6) C(8) 0.6824(2) 0.6562(2) 0.33032(8) 2.13(3) C(9) 0.8116(2) 0.5988(2) 0.38601(8) 2.52(3) C(10) 0.8752(2) 0.6810(2) 0.44971(9) 2.83(3) C(11) 0.8142(2) 0.8225(2) 0.45992(9) 2.58(3) C(12) 0.6866(2) 0.8802(2) 0.40472(8) 2.35(3) C(13) 0.6213(2) 0.7977(2) 0.33996(8) 2.31(3) C(14) 0.6797(3) 1.1051(2) 0.4748(1) 3.57(4) H(1) 0.694(2) 0.486(2) 0.2537(8) 2.7(3) H(2) 0.448(2) 0.345(2) 0.1709(9) 3.9(4) H(3) 0.262(2) 0.427(2) 0.1716(9) 4.6(4) H(4) 0.563(3) 0.305(2) 0.3357(10) 4.6(4) H(5) 0.374(3) 0.274(2) 0.302(1) 5.7(5) H(6) 0.341(3) 0.341(2) 0.423(1) 5.8(5) H(7) 0.504(3) 0.463(3) 0.438(1) 9.8(7) H(8) 0.152(4) 0.477(3) 0.344(2) 11.3(9) H(9) 0.243(3) 0.616(3) 0.390(1) 7.5(6) H(10) 0.851(2) 0.502(2) 0.3792(8) 2.9(3) H(11) 0.968(2) 0.642(2) 0.4881(8) 3.4(3) H(12) 0.854(2) 0.878(2) 0.5024(8) 2.7(3) H(13) 0.532(2) 0.844(2) 0.3004(8) 2.7(3) H(14) 0.807(3) 1.125(2) 0.4768(10) 4.7(4) H(15) 0.662(2) 1.050(2) 0.523(1) 4.0(4) H(16) 0.620(2) 1.201(2) 0.471(1) 5.3(4)

Beq = 8/3 π2(U11(aa*)2 + U22(bb*)2 + U33(cc*)2 + 2U12(aa*bb*)cos γ + 2U13(aa*cc*)cos β + 2U23(bb*cc*)cos α)

Page 342: Abstract - John L. Wood

318

A.4.2 X-ray Structure Report for Spirolactone 149.

OO

O

149

H

OMe

O1

O2

O3

O4

C1

C2

C3

C4 C5 C6

C7

C8

C9

C10 C11

C12

C13

C14

H3

Figure A.4.2 ORTEP plot of Spirolactone 149.

A.4.2.1 Crystal Data.

Empirical Formula C14H14O4 Formula Weight 246.26 Crystal Color, Habit colorless, prism Crystal Dimensions 0.27 X 0.30 X 0.32 mm Crystal System monoclinic Lattice Type Primitive Lattice Parameters a = 7.6868(4)Å b = 8.9354(4) Å c = 18.155(1) Å β = 100.994(3)o V = 1224.08(10) Å3 Space Group P21/n (#14) Z value 4 Dcalc 1.336 g/cm3 F000 520.00 µ(MoKα) 0.98 cm-1

Page 343: Abstract - John L. Wood

319

A.4.2.2 Intensity Measurements.

Diffractometer Nonius KappaCCD Radiation MoKα (λ = 0.71069 Å) graphite monochromated Take-off Angle 2.8o Crystal to Detector Distance 35 mm Temperature -90.0oC Scan Rate 14s/frame Scan Width 1.4o/frame 2θmax 55.0o No. of Reflections Measured Total: 2977 Corrections Lorentz-polarization

A.4.2.3 Structure Solution and Refinement.

Structure Solution Direct Methods (SIR92) Refinement Full-matrix least-squares Function Minimized Σ w (|Fo| - |Fc|)2 Least Squares Weights 1/σ2(Fo) p-factor 0.0100 Anomalous Dispersion All non-hydrogen atoms No. Observations (I>5.00σ(I)) 1717 No. Variables 219 Reflection/Parameter Ratio 7.84 Residuals: R; Rw 0.037 ; 0.043 Goodness of Fit Indicator 2.75 Max Shift/Error in Final Cycle 0.00 Maximum peak in Final Diff. Map 0.23 e-/Å3 Minimum peak in Final Diff. Map -0.14 e-/Å3

Page 344: Abstract - John L. Wood

320

A.4.2.4 Atomic coordinates and Biso/Beq.

Table A.4.2 Atomic coordinates and Biso/Beq for Spirolactone 149.

atom x y z Beq O(1) 0.0552(1) 0.5682(1) 0.85703(6) 3.70(3) O(2) -0.1324(2) 0.7573(1) 0.82836(7) 4.06(3) O(3) 0.1987(1) 0.5835(1) 0.71546(7) 3.63(3) O(4) -0.1125(1) 1.0327(1) 0.59483(6) 3.68(3) C(1) 0.0700(2) 0.4817(2) 0.73499(9) 2.98(4) C(2) 0.1192(3) 0.4435(2) 0.8183(1) 3.87(5) C(3) -0.0684(2) 0.6451(2) 0.80877(9) 2.99(4) C(4) -0.1055(2) 0.5667(2) 0.73399(9) 2.63(4) C(5) 0.0669(2) 0.3541(2) 0.6823(1) 3.48(4) C(6) 0.1708(3) 0.3836(2) 0.6346(1) 5.10(6) C(7) 0.2576(3) 0.5300(2) 0.6503(1) 5.04(6) C(8) -0.1726(2) 0.6605(2) 0.66587(9) 2.57(3) C(9) -0.2909(2) 0.5977(2) 0.60584(10) 3.13(4) C(10) -0.3506(2) 0.6806(2) 0.5423(1) 3.47(4) C(11) -0.2954(2) 0.8270(2) 0.5361(1) 3.14(4) C(12) -0.1779(2) 0.8893(2) 0.59489(9) 2.80(4) C(13) -0.1168(2) 0.8065(2) 0.65968(10) 2.75(4) C(14) -0.1802(3) 1.1231(2) 0.5310(1) 4.02(5) H(1) 0.246(3) 0.443(2) 0.835(1) 4.9(4) H(2) 0.057(2) 0.352(2) 0.829(1) 4.1(4) H(3) -0.193(2) 0.491(2) 0.7393(8) 2.5(3) H(4) -0.009(2) 0.271(2) 0.6855(10) 4.0(4) H(5) 0.195(3) 0.321(2) 0.597(1) 6.7(5) H(6) 0.229(2) 0.601(2) 0.603(1) 4.1(4) H(7) 0.387(3) 0.532(2) 0.660(1) 6.0(5) H(8) -0.329(2) 0.496(2) 0.6079(9) 3.5(3) H(9) -0.436(2) 0.638(2) 0.5008(10) 3.9(4) H(10) -0.335(2) 0.884(2) 0.492(1) 4.0(4) H(11) -0.037(2) 0.852(1) 0.6988(9) 2.6(3) H(12) -0.311(3) 1.132(2) 0.525(1) 5.5(5) H(13) -0.126(3) 1.221(2) 0.543(1) 6.3(5) H(14) -0.144(2) 1.080(2) 0.486(1) 5.1(5)

Beq = 8/3 π2(U11(aa*)2 + U22(bb*)2 + U33(cc*)2 + 2U12(aa*bb*)cos γ + 2U13(aa*cc*)cos β + 2U23(bb*cc*)cos α)

Page 345: Abstract - John L. Wood

321

A.4.3 X-ray Structure Report for Spirolactone 153.

OO

O

153

H

OMe

O1

O2 O3

O4

C1

C2

C3

C4 C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

H7

Figure A.4.3 ORTEP plot of Spirolactone 153.

A.4.3.1 Crystal Data.

Empirical Formula C14H14O4 Formula Weight 246.26 Crystal Color, Habit colorless, plate Crystal Dimensions 0.10 X 0.15 X 0.34 mm Crystal System monoclinic Lattice Type Primitive Lattice Parameters a = 14.774(1)Å b = 5.581(1) Å c = 14.820(1) Å β = 90.475(6)o V = 1222.0(2) Å3 Space Group P21/c (#14) Z value 4 Dcalc 1.338 g/cm3 F000 520.00 µ(MoKα) 0.98 cm-1

Page 346: Abstract - John L. Wood

322

A.4.3.2 Intensity Measurements.

Diffractometer Nonius KappaCCD Radiation MoKα (λ = 0.71069 Å) graphite monochromated Take-off Angle 2.8o Crystal to Detector Distance 33 mm Temperature -90.0oC Scan Rate 60s/frame Scan Width 2.0o/frame 2θmax 54.9o No. of Reflections Measured Total: 2682 Corrections Lorentz-polarization

A.4.3.3 Structure Solution and Refinement.

Structure Solution Direct Methods (SIR92) Refinement Full-matrix least-squares Function Minimized Σ w (|Fo| - |Fc|)2 Least Squares Weights 1/σ2(Fo) p-factor 0.0100 Anomalous Dispersion All non-hydrogen atoms No. Observations (I>5.00σ(I)) 1273 No. Variables 163 Reflection/Parameter Ratio 7.81 Residuals: R; Rw 0.037 ; 0.043 Goodness of Fit Indicator 1.94 Max Shift/Error in Final Cycle 0.00 Maximum peak in Final Diff. Map 0.16 e-/Å3 Minimum peak in Final Diff. Map -0.16 e-/Å3

Page 347: Abstract - John L. Wood

323

A.4.3.4 Atomic coordinates and Biso/Beq.

Table A.4.3 Atomic coordinates and Biso/Beq for Spirolactone 149.

atom x y z Beq O(1) 0.33265(10) -0.1797(3) 0.2417(1) 3.40(4) O(2) 0.45348(9) -0.0442(3) 0.3169(1) 2.88(4) O(3) 0.35590(8) 0.0777(3) 0.48365(9) 2.55(4) O(4) -0.05317(10) 0.2099(3) 0.3898(1) 4.24(5) C(1) 0.3659(1) -0.0288(4) 0.2893(2) 2.57(6) C(2) 0.4745(1) 0.1530(4) 0.3773(1) 2.76(5) C(3) 0.3836(1) 0.2365(4) 0.4129(1) 2.18(5) C(4) 0.3794(1) 0.4791(4) 0.4540(2) 2.90(6) C(5) 0.3426(2) 0.4679(4) 0.5340(2) 3.59(6) C(6) 0.3206(1) 0.2172(5) 0.5573(2) 3.52(6) C(7) 0.3241(1) 0.1961(4) 0.3281(1) 2.33(5) C(8) 0.2234(1) 0.1968(4) 0.3402(1) 2.28(5) C(9) 0.1721(1) 0.3868(4) 0.3090(2) 2.82(6) C(10) 0.0793(1) 0.3991(4) 0.3242(2) 3.13(6) C(11) 0.0375(1) 0.2180(4) 0.3708(2) 2.86(6) C(12) 0.0876(1) 0.0240(4) 0.4013(2) 3.05(6) C(13) 0.1792(1) 0.0121(4) 0.3858(1) 2.63(6) C(14) -0.1061(2) 0.4150(6) 0.3663(2) 5.57(8) H(1) 0.5123 0.1004 0.4255 3.3150 H(2) 0.5037 0.2788 0.3456 3.3150 H(3) 0.4004 0.6219 0.4262 3.4774 H(4) 0.3316 0.6022 0.5718 4.3088 H(5) 0.2570 0.1963 0.5620 4.2229 H(6) 0.3489 0.1727 0.6127 4.2229 H(7) 0.3376 0.3225 0.2874 2.7954 H(8) 0.2007 0.5120 0.2765 3.3877 H(9) 0.0451 0.5317 0.3025 3.7574 H(10) 0.0585 -0.1017 0.4331 3.6642 H(11) 0.2127 -0.1229 0.4064 3.1597 H(12) -0.0827 0.5518 0.3967 6.6796 H(13) -0.1671 0.3895 0.3837 6.6796 H(14) -0.1036 0.4401 0.3030 6.6796

Beq = 8/3 π2(U11(aa*)2 + U22(bb*)2 + U33(cc*)2 + 2U12(aa*bb*)cos γ + 2U13(aa*cc*)cos β + 2U23(bb*cc*)cos α)

Page 348: Abstract - John L. Wood

324

A.4.4 X-ray Structure Report for Spirolactone 168.

168

O

OO

OTBS

OTBSH

MeO

Si1

Si2

O1

O2

O3

O4

O5

O6

C1

C2 C3

C4

C5 C6

C7

C8 C9

C10

C11

C12

C13

C14

C15

C16 C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

H1 H11

H12

Figure A.4.4 ORTEP plot of Spirolactone 168.

A.4.4.1 Crystal Data.

Empirical Formula C26H44O6Si2 Formula Weight 508.80 Crystal Color, Habit colorless, plate Crystal Dimensions 0.06 X 0.11 X 0.13 mm Crystal System monoclinic Lattice Type Primitive Lattice Parameters a = 18.637(1)Å b = 7.8057(3) Å c = 19.887(1) Å β = 93.434(2)o V = 2887.8(2) Å3 Space Group P21/c (#14) Z value 4 Dcalc 1.170 g/cm3 F000 1104.00 µ(MoKα) 1.58 cm-1

Page 349: Abstract - John L. Wood

325

A.4.4.2 Intensity Measurements.

Diffractometer Nonius KappaCCD Radiation MoKα (λ = 0.71069 Å) graphite monochromated Take-off Angle 2.8o Crystal to Detector Distance 35 mm Temperature -90.0oC Scan Rate 114s/frame Scan Width 1.9o/frame 2θmax 52.0o No. of Reflections Measured Total: 6129 Corrections Lorentz-polarization

A.4.4.3 Structure Solution and Refinement.

Structure Solution Direct Methods (SIR92) Refinement Full-matrix least-squares Function Minimized Σ w (|Fo| - |Fc|)2 Least Squares Weights 1/σ 2(Fo) p-factor 0.0100 Anomalous Dispersion All non-hydrogen atoms No. Observations (I>3.00σ(I)) 3386 No. Variables 483 Reflection/Parameter Ratio 7.01 Residuals: R; Rw 0.038 ; 0.035 Goodness of Fit Indicator 1.79 Max Shift/Error in Final Cycle 0.00 Maximum peak in Final Diff. Map 0.20 e-/Å3 Minimum peak in Final Diff. Map -0.26 e-/Å3

Page 350: Abstract - John L. Wood

326

A.4.4.4 Atomic coordinates and Biso/Beq.

Table A.4.4 Atomic coordinates and Biso/Beq for Spirolactone 168.

atom x y z Beq Si(1) 0.26556(3) 0.46474(8) 0.57811(3) 2.34(1) Si(2) 0.38262(3) 0.24483(8) 0.36641(3) 2.65(2) O(1) -0.04152(8) 0.4228(2) 0.41459(8) 3.67(4) O(2) 0.00962(7) 0.2285(2) 0.48415(8) 3.09(4) O(3) 0.06618(9) 0.4261(2) 0.17833(8) 4.47(5) O(4) 0.12929(7) 0.1158(2) 0.39887(7) 2.73(4) O(5) 0.22434(7) 0.4247(2) 0.50346(7) 2.24(3) O(6) 0.31950(7) 0.1921(2) 0.41802(7) 2.64(4) C(1) 0.1301(1) 0.2401(3) 0.4523(1) 2.14(5) C(2) 0.0900(1) 0.4033(3) 0.4290(1) 2.09(5) C(3) 0.0122(1) 0.3578(3) 0.4388(1) 2.68(6) C(4) 0.0821(1) 0.1762(4) 0.5063(1) 2.89(6) C(5) 0.1063(1) 0.4773(3) 0.3612(1) 2.08(5) C(6) 0.1546(1) 0.6111(3) 0.3586(1) 2.54(6) C(7) 0.1737(1) 0.6753(3) 0.2972(1) 3.10(6) C(8) 0.1434(1) 0.6095(3) 0.2385(1) 3.18(6) C(9) 0.0939(1) 0.4775(3) 0.2402(1) 2.89(6) C(10) 0.0757(1) 0.4097(3) 0.3013(1) 2.49(6) C(11) 0.0089(2) 0.3073(6) 0.1759(2) 6.3(1) C(12) 0.2099(1) 0.2633(3) 0.4740(1) 2.05(5) C(13) 0.2456(1) 0.2369(3) 0.4087(1) 2.16(5) C(14) 0.2004(1) 0.0949(4) 0.3763(2) 3.09(7) C(15) 0.2067(2) 0.4056(4) 0.6465(1) 3.40(7) C(16) 0.3510(2) 0.3420(4) 0.5881(2) 3.73(8) C(17) 0.2808(1) 0.7019(3) 0.5752(1) 2.43(5) C(18) 0.3148(2) 0.7643(4) 0.6429(1) 3.78(8) C(19) 0.3314(2) 0.7490(4) 0.5200(2) 3.75(8) C(20) 0.2091(1) 0.7948(4) 0.5606(1) 3.05(7) C(21) 0.3411(2) 0.3523(5) 0.2905(2) 4.44(8) C(22) 0.4467(2) 0.3940(5) 0.4108(2) 4.86(9) C(23) 0.4289(1) 0.0407(3) 0.3442(1) 2.71(6) C(24) 0.4720(2) -0.0321(5) 0.4055(2) 4.55(9) C(25) 0.4804(2) 0.0735(5) 0.2879(2) 4.43(9) C(26) 0.3730(2) -0.0934(4) 0.3195(2) 4.32(8) H(1) 0.1005(9) 0.489(2) 0.4629(9) 1.3(4) H(2) 0.095(1) 0.228(3) 0.550(1) 2.4(5) H(3) 0.083(1) 0.053(3) 0.5112(10) 2.6(5)

Page 351: Abstract - John L. Wood

327

Table A.4.4 Atomic coordinates and Biso/Beq for Spirolactone 168 (Continued). H(4) 0.1762(10) 0.652(3) 0.3993(10) 2.2(5) H(5) 0.206(1) 0.766(3) 0.2968(10) 3.0(5) H(6) 0.154(1) 0.655(3) 0.197(1) 3.7(5) H(7) 0.043(1) 0.322(3) 0.3032(10) 2.3(5) H(8) 0.032(1) 0.193(4) 0.197(1) 6.4(9) H(9) -0.029(1) 0.348(3) 0.202(1) 5.3(7) H(10) -0.007(1) 0.296(3) 0.128(1) 5.6(7) H(11) 0.2239(9) 0.172(2) 0.5039(9) 1.1(4) H(12) 0.2408(9) 0.339(2) 0.3835(8) 1.0(4) H(13) 0.218(1) -0.017(3) 0.392(1) 3.5(6) H(14) 0.197(1) 0.104(3) 0.327(1) 3.7(6) H(15) 0.201(1) 0.290(3) 0.647(1) 4.9(7) H(16) 0.229(1) 0.438(3) 0.689(1) 4.4(6) H(17) 0.159(1) 0.460(3) 0.641(1) 4.8(6) H(18) 0.376(1) 0.364(4) 0.630(1) 6.5(8) H(19) 0.343(2) 0.226(4) 0.590(2) 7.8(10) H(20) 0.382(2) 0.364(4) 0.556(1) 6.4(8) H(21) 0.361(1) 0.709(3) 0.653(1) 3.7(6) H(22) 0.323(1) 0.885(4) 0.643(1) 5.3(7) H(23) 0.280(1) 0.740(3) 0.682(1) 5.4(6) H(24) 0.381(1) 0.695(3) 0.528(1) 5.4(7) H(25) 0.315(1) 0.707(3) 0.476(1) 3.7(6) H(26) 0.336(1) 0.880(4) 0.514(1) 5.6(7) H(27) 0.190(1) 0.775(3) 0.513(1) 4.1(6) H(28) 0.215(1) 0.919(3) 0.568(1) 4.3(6) H(29) 0.171(1) 0.757(3) 0.589(1) 3.6(5) H(30) 0.305(2) 0.286(4) 0.269(1) 6.9(9) H(31) 0.316(2) 0.453(4) 0.303(1) 7.1(9) H(32) 0.377(1) 0.379(3) 0.260(1) 5.4(7) H(33) 0.463(1) 0.348(4) 0.453(1) 6.0(9) H(34) 0.485(2) 0.421(3) 0.382(1) 6.7(8) H(35) 0.424(2) 0.502(4) 0.419(1) 7.6(9) H(36) 0.491(1) -0.136(4) 0.393(1) 6.1(8) H(37) 0.443(1) -0.053(3) 0.444(1) 5.4(7) H(38) 0.511(1) 0.047(3) 0.420(1) 4.2(6) H(39) 0.517(1) 0.161(3) 0.301(1) 4.2(6) H(40) 0.506(1) -0.031(4) 0.279(1) 5.7(7) H(41) 0.454(2) 0.117(4) 0.247(1) 6.8(9) H(42) 0.396(1) -0.203(4) 0.307(1) 5.5(7) H(43) 0.343(1) -0.126(3) 0.358(1) 5.6(7) H(44) 0.345(1) -0.045(4) 0.280(1) 6.3(8)

Beq = 8/3 π2(U11(aa*)2 + U22(bb*)2 + U33(cc*)2 + 2U12(aa*bb*)cos γ + 2U13(aa*cc*)cos β + 2U23(bb*cc*)cos α)

Page 352: Abstract - John L. Wood

328

Chapter 4

Syributins: Background and Introduction.

4.1 Syributins and Secosyrins: Isolation and Characterization.

In 1995 Sims et al.1 reported the isolation and structure elucidation of syributin 1

(201), syributin 2 (202), secosyrin 1 (204), and secosyrin 2 (205), the major coproducts of

syringolides 1 and 2. Unlike the syringolides, the syributins and secosyrins are not active

elicitors of a hypersensitive response on soybean cultivars carrying the resistance gene

Rpg4. Through a combination of NMR experiments and chemical methods Sims et al.

determined the structures illustrated in Figure 4.1.

O

O

HO

HOO

O

O

O

HO

HOO

O

O

O

HO

HOO

O

O

O

HO

O

O

O

O

O

HO

O

O

O

O

O

HO

O

O

O

(+)-Syributin 1 (201) (+)-Syributin 2 (202) (+)-Syributin 3 (203)

(+)-Secosyrin 1 (204) (+)-Secosyrin 2 (205) Secosyrin 3 (206)

Figure 4.1 Syributins and Secosyrins.

Page 353: Abstract - John L. Wood

329

As mentioned in Chapter 1, in 1994 Yucel et al.2 reported that two different

classes of avrD alleles occur in Pseudomonas syringae pathovars: class I and class II

alleles. Class I alleles include the avrD allele 1 from P. s. pv. lachrimans and the avrD

allele from P. s. pv. tomato. Class II alleles include the avrD allele 2 from P. s. pv.

lachrimans and the avrD allele from P. s. pv. phaseolicola. The same year Yucel and co-

workers3 reported that the two classes of alleles direct the production of different

syringolides, syributins and secosyrins. Class I avrD alleles are responsible for the

biosynthesis of syringolides 1 and 2 and their accompanying syributins 1 (201) and 2

(202) and secosyrins 1 (204) and 2 (205) while class II avrD alleles direct the production

of syringolides 1 and 3 and their accompanying syributins 1 (201) and 3 (203) and

secosyrins 1 (204) and 3 (206).

4.2 Proposed Biosynthesis of Syributins and Secosyrins.

Sims et al.1 proposed in the original syributins and secosyrins isolation and

characterization paper a possible biosynthesis for these compounds from syringolides

(Scheme 4.1). Reverse Claisen cleavage of syringolides (1-3) would furnish the

corresponding secosyrins (204-206) and a reverse Michael reaction from secosyrins,

followed by a 1,3-acyl migration of the intermediates 207-209, would result in the

formation of the corresponding syributins (201-203). This is supported by experiments

wherein base treatment of secosyrin 1 was shown to furnish syributin 14a and by the base

promoted sequential transformation of the syringolides into the corresponding secosyrins

and syributins.5

Page 354: Abstract - John L. Wood

330

OO

O

HO

O

n

Syringolide 1 (1), n = 3Syringolide 2 (2), n = 5Syringolide 3 (3), n = 1

OH

O

O

O

HOOH

O

O

HO

O

O

O

Scheme 4.1 Proposed Biosynthesis of Secosyrins and Syributins.

207, n = 3208, n = 5209, n = 1

Secosyrin 1 (204), n = 3Secosyrin 2 (205), n = 5Secosyrin 3 (206), n = 1

n

n

HH

O

O

HO

HOO

O

Syributin 1 (201), n = 3Syributin 2 (202), n = 5Syributin 3 (203), n = 1

n

O

4.3 Syntheses of Secosyrins and Syributins.

Since 1996 there have been reported four different total syntheses of syributins 1

and 24a,6-8 and a formal one9 and two different syntheses of secosyrins 1 and 24,7 and a

formal one.9 However, just as syringolide 3, syributin 3 and secosyrin 3 have yet to be

synthesized. All the syributin and secosyrin syntheses reported to date are outlined

below.

Page 355: Abstract - John L. Wood

331

O

O

HO

OTBSOH

O

O

44OTBS

O

O

42

B

OTBS43

+

TfO

O

O

O

O

HO

OO

O

O

O

OO

AD-mixβMeSO2NH2

1:1 t-BuOH:H2O, 0 °C(85%)

45

2,2-Dimethoxypropane

PPTS, DMF(80%)

46

210a

Pyridine, CH2Cl2, 0 °C (94%)

211a

(Ph3P)2PdCl2K3PO4, THF

70 °C (48%)

Scheme 4.2 Honda et al.: Total Synthesis of (+)-Syributin 1.

Cl3

O

O

3 1 N HCl THF

(100%)

O

O

HO

HOO

O201

3

4.3.1 Honda et al.: Total Synthesis of (+)-Syributin 1.

In 1996 Honda et al.6 published the first total synthesis of syributin 1 along with

the fifth total synthesis of syringolides (section 1.6.5). Sharpless asymmetric

dihydroxylation of either 44 (Scheme 4.2) or 213 (Scheme 4.3) was the source of

asymmetry and 46 was a common intermediate used in the syringolide synthesis.

Deprotection of 211a to furnish 201 showed that 1,3-acyl migration could be the final

step of syributin biosynthesis as proposed by Sims et al. (Scheme 4.1).

Page 356: Abstract - John L. Wood

332

Scheme 4.3 Honda et al.: Total Synthesis of (+)-Syributin 1.

O

O

44OTBS

O

O

212OH

O

O

213

O

O3

210a

Et3N, CH2Cl2, 0 °C (96%)

Cl3

O

AD-mixβMeSO2NH2

1:1 t-BuOH:H2O, 0 °C(72%)

2:1:1AcOH:THF:H2O

(99%)

O

O

HO

HOO

O

201

3

4.3.2 Wong et al.: Total Syntheses of (+)-Syributins 1 and 2 and (+)-Secosyrins 1 and

2.

In 1997 Wong et al.7 published the second total syntheses of syributins and

secosyrins (the first total synthesis of secosyrins will be described in the following

section). They used (+)-2,3-O-isopropylidene-D-glyceraldehyde (63) as the source of

asymmetry (Scheme 4.4). Compound 214 was a common intermediate for the syntheses

of syributins and secosyrins (Schemes 4.4 and 4.5) and compound 47 was used in the

seventh total synthesis of syringolides10 (section 1.6.7).

Page 357: Abstract - John L. Wood

333

O

SiMe3

TBSO

OO

O

O

TBSO

OO

TBSCl, Et3N, DMAP

DMF (96%)

47

Scheme 4.4 Wong et al.: Total Synthesis (+)-Syributins 1 and 2

OTBSO

OO

67

OHO

OO

64(70% from 62a)(62% from 62b)

OR

LiBEt3H, THF

-78 °C (100%)

1. n-BuLi, THF, -78 °C

2.

62a, R = Sn(n-Bu)362b, R = Br

HO

OO

63

OO

OO

65

PDC, CH2Cl2

(95%)

OHO

OO

66

1. n-BuLi, THF,-78 °C

2. TMSCl(82%, two steps)

68

32% AcOOH, NaOAc

CH2Cl2(70%)

O

O

TBSO

214

OHOH

O

O

TBSO

OOH

O

Et3N, CH2Cl2, 0 °C (70-73%)

Cln

O

n

210a, n = 3210b, n = 5

215a, n = 3215b, n = 5

80% AcOH

(95%)

(n-Bu)4NF,THF

0°C (87-90%)

O

O

HO

OOH

On

201, n = 3202, n = 5

Page 358: Abstract - John L. Wood

334

Scheme 4.5 Wong et al.: Total Synthesis (+)-Secosyrins 1 and 2.

O

O

TBSO

214OH

OH

Et3N, DMAP, CH2Cl20 °C (98-93%)

Cln

O

210a, n = 3210b, n = 5

204, n = 3205, n = 5

O

O

HO

O

O

O

n

O

O

HO

O

TBSOO

O

HO

O

TBSO

216(12%)

217(60%)

+Et3N, CH2Cl2, 0 °C

O

O

HO

O

TBSO

217

O

O

MOMO

O

TBSO

218

O

O

MOMO

O

HO

219

MOMCl, i-Pr2NEt

THF, 0 °C (95%)

TBAF, THF

-10 °C (60%)

O

O

MOMO

O

O

O

n

220a, n = 3220b, n = 5

PhSH, BF3·Et2O

THF (95-97%)

4.3.3 Mukai and co-workers: Total Syntheses (+)-Syributins 1 and 2 and (+)-

Secosyrins 1 and 2.

In 1997 Mukai and co-workers published the third total synthesis of syributins4a

and the first total synthesis of secosyrins.4 For the syributins Mukai et al. employed the

monosylilated alcohol 11 as the source of asymmetry (Scheme 4.6) while for syributins

Page 359: Abstract - John L. Wood

335

monoprotected alcohol 227 was used (Scheme 4.7). Both starting materials were

prepared from diisopropyl tartrate. Mukai et al.4a also proved that secosyrin 1 (204) can

be converted into syributin 1 (201) under basic conditions (Scheme 4.8).

Scheme 4.6 Mukai et al.: Total Synthesis of (+)-Syributins 1 and 2.

10% HCl

(72%)

OTBSOHO

O

OTBS

O

O

O

O

11

OTBS

O

O

221

OEt

O

OTBS

O

O

222

OEt

O

NO2

n

OTBS

O

O

O

O

223

224

OH

O

O

O

O

225

O

O

O

O

O

On

O

O

O

O

HO

HO

1. Swern oxidation

2. (Et2O)POCH2CO2Et, NaH(85%, two steps)

CH3NO2, DBU

(80%)

1. KOH2. KMnO4, MgSO4, H2O

3. NaBH4(72%, three steps)

1. LHMDS, TMSCl

2. Pd(OAc)2, benzoquinone(74%, two steps)

TBAF, HF

Et3N, DMAP, CH2Cl2(81-85%, two steps)

Cln

O

210a, n = 3210b, n = 5

226a, n = 3226b, n = 5

201, n = 3202, n = 5

Page 360: Abstract - John L. Wood

336

Scheme 4.7 Mukai and co-workers: Total Synthesis of (+)-Secosyrins 1 and 2.

227

1. Swern oxidation2. Phenylacetylene, n-BuLi, THF

3. Swern oxidation(72%, three steps)

H2, Lindlar cat.

(78%)

1. O3, pyridine, CH2Cl22. NaBH4, MeOH

3. DBU, CH2Cl2(75%, three steps)

LHMDS, MeCOS(t-Bu)

THF, -78 °C (94%)

THF, DMAP (70-78%)

]2On[

O

234a, n = 3234b, n = 5

BnO

BnO

228

BnO

BnOOTBS OTBS

OOH

Ph

229

BnO

BnOOTBS

S(t-Bu)

OHO

Ph

1. TBAF, HF (95%)

2. Co2(CO)8, Et2O (98%)

230

BnO

BnOOTBS

S(t-Bu)

OHO

(CO)3Co

(CO)3CoPh 1. BF3·Et2O, CH2Cl2

2. CAN, MeOH(74%, two steps) O

BnO

BnO

O

S(t-Bu)Ph

231

OBnO

BnO

O

S(t-Bu)

232

Ph

O

O

BnO

O

BnO

211, n = 3212, n = 5

O

O

HO

O

O

O

n

175

O

O

HO

O

HO

233

H2, Pd/C

(90%)

Page 361: Abstract - John L. Wood

337

Scheme 4.8 Mukai et al.: Synthesis of (+)-Secosyrin 1 from (+)-Syributin 1.

204

O

O

HO

O

O

O

O

O

O

O

HO

HO

LHMDS, THF

-78 °C (100%)

201

Scheme 4.9 Yoda et al.: Total Synthesis of (+)-Syributin 1.

240

3

235 236

237

O

O

O

O

3

O

O

HO

HO

1. Me2C(OMe)2, acetone,p-TSOH (94%)

2. CF3SO2Cl, Et3N, DMAP,CH2Cl2 (78%)

PCC, MS4A,

CH2Cl2 (92%)

1. NaBH4, EtOH(99%)

2. TBSCl, Et3N,DMAP (93%)

Pd (black),4.4% HCO2H-MeOH

40 °C (80%)

DCC, DMAP, CH2Cl2(98%,)

Cl3

O

210a

226a 201

9:1 TFA:H2O

(70%)

OBnO

BnOOH

OBnBnO

BnOOTBS

OHOBn

BnO

BnOOTBS

OOBn

BnO

BnO

OBnOEt

O

HO

HO

HO

HO O

O

238

1. CH2=C(OLi)OEt,-78 °C (86%)

2. p-TsOH, MeOH(90%)

BnO

BnO

OBnOEt

O

HO

239

3O

O

O

O3

OH

O

O

O

O

Page 362: Abstract - John L. Wood

338

4.3.4 Yoda et al.: Total Synthesis of (+)-Syributin 1.

Yoda et al.8 reported in 1997 the fourth syributin total synthesis. In this approach

2,3,5-tri-O-benzyl-β-D-arabinofuranose (235) was used as the source of asymmetry

(Scheme 4.9).

Scheme 4.10 Carda et al.: Formal Synthesis of (+)-Secosyrins and (+)-Syributins.

O

O

BnO

O

BnO

175

O3, CH2Cl2,

NaOH, MeOH

OH

HO

HO

OOH

6

TBDPSCl, imidazole,

DMAP, DMF (75%)

1. CH2=CH-CH2Br,In, THF, H2O

2. BnBr, NaH, THF(50%, two steps)

OTBDPS

HO

HO

OOTBDPS

241

OTBDPS

BnO

BnO

OTBDPS

242

HO

OTBDPS

BnO

BnO

OTBDPS

243

HO

O

OH

OTBDPS

BnO

BnO244

HO O

O

TBAF, THF

(50%, two steps)

p-TsCl, Et3N,

DMAP, CH2Cl2 (72%)

4.3.5 Carda et al.: Formal Synthesis of (+)-Secosyrins and (+)-Syributins.

In 1998 Carda et al.9 reported a formal synthesis of secosyrins and syributins

using D-xylulose (6) as the source of asymmetry (Scheme 4.10). Carda et al.

accomplished the synthesis of the secosyrins precursor 175, previously reported by

Mukai and co-workers.4 As mentioned in section 4.3.3, Mukai et al.4a proved that

Page 363: Abstract - John L. Wood

339

secosyrin 1 can be converted into syributin 1 under basic conditions. Therefore, any total

or formal synthesis of secosyrin 1 could be considered as a formal synthesis of syributin

1.

4.4 References.

(1) Midland, S. L.; Keen, N. T.; Sims, J. J. J. Org. Chem. 1995, 60, 1118-1119.

(2) Yucel, I.; Boyd, C.; Debnam, Q.; Keen, N. T. Mol. Plant-Microbe Interact.

1994, 7, 131-139.

(3) (a) Yucel, I.; Midland, S. L.; Sims, J. J.; Keen, N. T. Mol. Plant-Microbe

Interact. 1994, 7, 148-150. (b) Keen, N.; Midland, S. L.; Boyd, C.; Yucel, I.; Tsurushima,

T.; Lorang, J.; Sims, J. J. In Advances in Molecular Genetics of Plant-Microbe

Interactions; Daniels, M. J.; Downie, J. A.; Osburn, A. E., Eds.; Kluwer Academic:

Boston, 1994; Vol. 3, pp 41-48.

(4) (a) Mukai, C.; Moharram, S. M.; Azukizawa, S.; Hanaoka, M. J. Org Chem.

1997, 62, 8095-8103. (b) Mukai, C.; Moharram, S. M.; Hanaoka, M. Tetrahedron Lett.

1997, 38, 2511-2512.

(5) Wood, J. L. and Navarro Villalobos, M., unpublished results (Yale University,

Department of Chemistry).

Page 364: Abstract - John L. Wood

340

(6) Honda, T.; Mizutani, H.; Kanai, K. J. Org. Chem. 1996, 61, 9374-9378.

(7) Yu, P.; Yang, Y.; Zhang, Z. Y.; Mak, T. C. W.; Wong, H. N. C. J. Org Chem.

1997, 62, 6359-6366.

(8) Yoda, H.; Kawauchi, M.; Takabe, K.; Hosoya, K. Heterocycles 1997, 45,

1903-1906.

(9) Carda, M; Castillo, E.; Rodríguez, S.; Falomir, E.; Marco, J. A. Tetrahedron

Lett. 1998, 39, 8895-8896.

(10) Yu, P.; Wang, Q.-G.; Mak, T. C. W.; Wong, H. N. C. Tetrahedron, 1998, 54,

1783-1788.

Page 365: Abstract - John L. Wood

363 36

3

8 6 4 2 0 ppm

OO

(-)-246

O

OOTBS

OBr

Figure A.5.1 1H NMR (500 MHz, CDCl3) of Compound (-)-246.

Page 366: Abstract - John L. Wood

364 36

4

200

150

100

500

PPM

Figu

re A

.5.3

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

(-)-

246.

Figu

re A

.5.2

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

246.

30405060708090100 3

500

300

0 2

500

200

0 1

500

100

0

Wav

enum

bers

% Transmittance

Page 367: Abstract - John L. Wood

365 36

5

8 6 4 2 0 ppm

OO

(+)-246

O

OOTBS

OBr

Figure A.5.4 1H NMR (500 MHz, CDCl3) of Compound (+)-246.

Page 368: Abstract - John L. Wood

366 36

6

200

150

100

500

PPM

Figu

re A

.5.6

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

(+)-

246.

Figu

re A

.5.5

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

246.

859095100

105 3

500

300

0 2

500

200

0 1

500

100

0

Wav

enum

bers

% Transmittance

Page 369: Abstract - John L. Wood

367 36

7

8 6 4 2 0 ppm

Figure A.5.7 1H NMR (500 MHz, CDCl3) of Compound (+)-226c.

O

O

O

O

O

O(+)-226c

Page 370: Abstract - John L. Wood

368 36

8

200

150

100

500

PPM

Figu

re A

.5.9

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

(+)-

226c

.

Figu

re A

.5.8

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

226c

.

60708090100

110

300

0 2

500

200

0 1

500

100

0 5

00

Wav

enum

bers

% Transmittance

Page 371: Abstract - John L. Wood

369 36

9

8 6 4 2 0 ppm

Figure A.5.10 1H NMR (500 MHz, CDCl3) of Compound (-)-226c.

O

O

O

O

O

O(-)-226c

Page 372: Abstract - John L. Wood

370 37

0

200

150

100

500

PPM

Figu

re A

.5.1

2 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-22

6c.

Figu

re A

.5.1

1 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

226c

.

406080100

120

300

0 2

500

200

0 1

500

100

0

Wav

enum

bers

% Transmittance

Page 373: Abstract - John L. Wood

371 37

1

8 6 4 2 0 ppm

Figure A.5.13 1H NMR (500 MHz, CDCl3) of Compound (+)-201.

O

O

HO

HO

(+)-Syributin 1(+)-201

O

O

Page 374: Abstract - John L. Wood

372 37

2

200

150

100

500

PPM

Figu

re A

.5.1

5 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-20

1.

Figu

re A

.5.1

4 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

201.

80859095

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 375: Abstract - John L. Wood

373 37

3

8 6 4 2 0 ppm

Figure A.5.16 1H NMR (500 MHz, CDCl3) of Compound (-)-201.

O

O

OH

OH

(-)-Syributin 1(-)-201

O

O

Page 376: Abstract - John L. Wood

374 37

4

200

150

100

500

PPM

Figu

re A

.5.1

8 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-20

1.

Figu

re A

.5.1

7 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

201.

75808590

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 377: Abstract - John L. Wood

375 37

5

8 6 4 2 0 ppm

Figure A.5.19 1H NMR (500 MHz, CDCl3) of Compound (+)-202.

O

O

HO

HO

(+)-Syributin 2(+)-202

O

O

Page 378: Abstract - John L. Wood

376 37

6

200

150

100

500

PPM

Figu

re A

.5.2

1 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-20

2.

Figu

re A

.5.2

0 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

202.

93949596

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 379: Abstract - John L. Wood

377 37

7

8 6 4 2 0 ppm

Figure A.5.22 1H NMR (500 MHz, CDCl3) of Compound (-)-202.

O

O

OH

OH

(-)-Syributin 2(-)-202

O

O

Page 380: Abstract - John L. Wood

378 37

8

200

150

100

500

PPM

Figu

re A

.5.2

4 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-20

2.

86878889909192

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Figu

re A

.5.2

3 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

202.

Page 381: Abstract - John L. Wood

379 37

9

8 6 4 2 0 ppm

Figure A.5.25 1H NMR (500 MHz, CDCl3) of Compound (+)-203.

O

O

HO

HO

(+)-Syributin 3(+)-203

O

O

Page 382: Abstract - John L. Wood

380 38

0

200

150

100

500

PPM

Figu

re A

.5.2

7 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-20

3.

Figu

re A

.5.2

6 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

203.

405060708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 383: Abstract - John L. Wood

381 38

1

8 6 4 2 0 ppm

Figure A.5.28 1H NMR (500 MHz, CDCl3) of Compound (-)-203.

O

O

OH

OH

(-)-Syributin 3(-)-203

O

O

Page 384: Abstract - John L. Wood

382 38

2

200

150

100

500

PPM

Figu

re A

.5.3

0 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-20

3.

80859095

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Figu

re A

.5.2

9 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

203.

Page 385: Abstract - John L. Wood

363 36

3

8 6 4 2 0 ppm

OO

(-)-246

O

OOTBS

OBr

Figure A.5.1 1H NMR (500 MHz, CDCl3) of Compound (-)-246.

Page 386: Abstract - John L. Wood

364 36

4

200

150

100

500

PPM

Figu

re A

.5.3

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

(-)-

246.

Figu

re A

.5.2

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

246.

30405060708090100 3

500

300

0 2

500

200

0 1

500

100

0

Wav

enum

bers

% Transmittance

Page 387: Abstract - John L. Wood

365 36

5

8 6 4 2 0 ppm

OO

(+)-246

O

OOTBS

OBr

Figure A.5.4 1H NMR (500 MHz, CDCl3) of Compound (+)-246.

Page 388: Abstract - John L. Wood

366 36

6

200

150

100

500

PPM

Figu

re A

.5.6

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

(+)-

246.

Figu

re A

.5.5

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

246.

859095100

105 3

500

300

0 2

500

200

0 1

500

100

0

Wav

enum

bers

% Transmittance

Page 389: Abstract - John L. Wood

367 36

7

8 6 4 2 0 ppm

Figure A.5.7 1H NMR (500 MHz, CDCl3) of Compound (+)-226c.

O

O

O

O

O

O(+)-226c

Page 390: Abstract - John L. Wood

368 36

8

200

150

100

500

PPM

Figu

re A

.5.9

13C

NM

R (1

25 M

Hz,

CD

Cl 3)

of C

ompo

und

(+)-

226c

.

Figu

re A

.5.8

FTI

R S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

226c

.

60708090100

110

300

0 2

500

200

0 1

500

100

0 5

00

Wav

enum

bers

% Transmittance

Page 391: Abstract - John L. Wood

369 36

9

8 6 4 2 0 ppm

Figure A.5.10 1H NMR (500 MHz, CDCl3) of Compound (-)-226c.

O

O

O

O

O

O(-)-226c

Page 392: Abstract - John L. Wood

370 37

0

200

150

100

500

PPM

Figu

re A

.5.1

2 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-22

6c.

Figu

re A

.5.1

1 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

226c

.

406080100

120

300

0 2

500

200

0 1

500

100

0

Wav

enum

bers

% Transmittance

Page 393: Abstract - John L. Wood

371 37

1

8 6 4 2 0 ppm

Figure A.5.13 1H NMR (500 MHz, CDCl3) of Compound (+)-201.

O

O

HO

HO

(+)-Syributin 1(+)-201

O

O

Page 394: Abstract - John L. Wood

372 37

2

200

150

100

500

PPM

Figu

re A

.5.1

5 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-20

1.

Figu

re A

.5.1

4 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

201.

80859095

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 395: Abstract - John L. Wood

373 37

3

8 6 4 2 0 ppm

Figure A.5.16 1H NMR (500 MHz, CDCl3) of Compound (-)-201.

O

O

OH

OH

(-)-Syributin 1(-)-201

O

O

Page 396: Abstract - John L. Wood

374 37

4

200

150

100

500

PPM

Figu

re A

.5.1

8 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-20

1.

Figu

re A

.5.1

7 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

201.

75808590

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 397: Abstract - John L. Wood

375 37

5

8 6 4 2 0 ppm

Figure A.5.19 1H NMR (500 MHz, CDCl3) of Compound (+)-202.

O

O

HO

HO

(+)-Syributin 2(+)-202

O

O

Page 398: Abstract - John L. Wood

376 37

6

200

150

100

500

PPM

Figu

re A

.5.2

1 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-20

2.

Figu

re A

.5.2

0 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

202.

93949596

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Page 399: Abstract - John L. Wood

377 37

7

8 6 4 2 0 ppm

Figure A.5.22 1H NMR (500 MHz, CDCl3) of Compound (-)-202.

O

O

OH

OH

(-)-Syributin 2(-)-202

O

O

Page 400: Abstract - John L. Wood

378 37

8

200

150

100

500

PPM

Figu

re A

.5.2

4 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-20

2.

86878889909192

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Figu

re A

.5.2

3 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

202.

Page 401: Abstract - John L. Wood

379 37

9

8 6 4 2 0 ppm

Figure A.5.25 1H NMR (500 MHz, CDCl3) of Compound (+)-203.

O

O

HO

HO

(+)-Syributin 3(+)-203

O

O

Page 402: Abstract - John L. Wood

380 38

0

200

150

100

500

PPM

Figu

re A

.5.2

7 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (+

)-20

3.

Figu

re A

.5.2

6 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(+)-

203.

405060708090100

350

0 3

000

250

0 2

000

150

0 1

000

500

Wav

enum

bers

% Transmittance

Page 403: Abstract - John L. Wood

381 38

1

8 6 4 2 0 ppm

Figure A.5.28 1H NMR (500 MHz, CDCl3) of Compound (-)-203.

O

O

OH

OH

(-)-Syributin 3(-)-203

O

O

Page 404: Abstract - John L. Wood

382 38

2

200

150

100

500

PPM

Figu

re A

.5.3

0 13

C N

MR

(125

MH

z, C

DC

l 3) o

f Com

poun

d (-

)-20

3.

80859095

350

0 3

000

250

0 2

000

150

0 1

000

Wav

enum

bers

% Transmittance

Figu

re A

.5.2

9 FT

IR S

pect

rum

(thi

n fil

m/N

aCl)

of C

ompo

und

(-)-

203.

Page 405: Abstract - John L. Wood

383

Appendix 6

Notebook Cross Reference.

The following notebook cross reference has been included to facilitate access to

the original spectroscopic data obtained for the compounds presented in this work. For

each compound a folder name is given (e.g., MNV.0X.099) which corresponds to an

archived characterization folder hard copy and folders stored on a ZIP and a compact

disks. For each folder a characterization notebook page number (e.g., 099) is given and

for each spectrum a code (i.e.: 0H for 1H NMR, 0C for 13C NMR and 0I for FTIR) and a

number (e.g., 099) are given. The characterization notebook, spectral data and disks are

stored in the Wood Group archives.

Table A.6.1 Compounds Appearing in Chapter 2.

Compound Folder 1H NMR 13C NMR FTIR

(-)-1 MNV.0X.045

MNV.0H.045

MNV.0Ha.045 MNV.0C.045 MNV.0I.045

(+)-1 MNV.0X.051

MNV.0H.051

MNV.0Ha.051 MNV.0C.051 MNV.0I.051

(-)-2 MNV.0X.047

MNV.0H.047

MNV.0Ha.047 MNV.0C.047 MNV.0I.047

(+)-2 MNV.0X.053

MNV.0H.053

MNV.0Ha.053 MNV.0C.053 MNV.0I.053

(-)-3 MNV.0X.049 MNV.0H.049 MNV.0C.049 MNV.0I.049

(+)-3 MNV.0X.055 MNV.0H.055 MNV.0C.055 MNV.0I.055

Page 406: Abstract - John L. Wood

384

Table A.6.1 Compounds Appearing in Chapter 2 (Continued).

Compound Folder 1H NMR 13C NMR FTIR

(-)-12 MNV.0X.025 MNV.0H.025 MNV.0C.025 MNV.0I.025

(+)-12 MNV.0X.031 MNV.0H.031 MNV.0C.031 MNV.0I.031

(-)-13 MNV.0X.027 MNV.0H.027 MNV.0C.027 MNV.0I.027

(+)-13 MNV.0X.033 MNV.0H.033 MNV.0C.033 MNV.0I.033

(-)-16a MNV.0X.029 MNV.0H.029 MNV.0C.029 MNV.0I.029

(+)-16a MNV.0X.035 MNV.0H.035 MNV.0C.035 MNV.0I.035

(-)-16b MNV.0X.037 MNV.0H.037 MNV.0C.037 MNV.0I.037

(+)-16b MNV.0X.041 MNV.0H.041 MNV.0C.041 MNV.0I.041

(-)-16c MNV.0X.039 MNV.0H.039 MNV.0C.039 MNV.0I.039

(-)-16c MNV.0X.043 MNV.0H.043 MNV.0C.043 MNV.0I.043

(-)-51a MNV.0X.057 MNV.0H.057 MNV.0C.057 MNV.0I.057

(+)-51a MNV.0X.063 MNV.0H.063 MNV.0C.063 MNV.0I.063

(-)-51b MNV.0X.059 MNV.0H.059 MNV.0C.059 MNV.0I.059

(+)-51b MNV.0X.065 MNV.0H.065 MNV.0C.065 MNV.0I.065

(-)-51c MNV.0X.061 MNV.0H.061 MNV.0C.061 MNV.0I.061

(+)-51c MNV.0X.067 MNV.0H.067 MNV.0C.067 MNV.0I.067

(-)-91 MNV.0X.113 MNV.0H.114 MNV.0C.114 MNV.0I.113

(-)-92 MNV.0X.115

MNV.0H.116

MNV.0H.115 MNV.0C.116 MNV.0I.116

(-)-93 MNV.0X.117 MNV.0H.117 MNV.0C.117 MNV.0I.117

Page 407: Abstract - John L. Wood

385

Table A.6.2 Compounds Appearing in Chapter 3.

Compound Folder 1H NMR 13C NMR FTIR

115 MNV.0X.119 MNV.0H.120 MNV.0C.119 MNV.0I.119

117 MNV.0X.121 MNV.0H.122 MNV.0C.121 MNV.0I.121

121 MNV.0X.123 MNV.0H.124 MNV.0C.123 MNV.0I.123

122 MNV.0X.125 MNV.0H.125 MNV.0C.125 MNV.0I.125

125 MNV.0X.127 MNV.0H.127 MNV.0C.127 MNV.0I.127

126 MNV.0X.129 MNV.0Ha.129 MNV.0C.129 MNV.0I.129

127 MNV.0X.131 MNV.0Ha.131 MNV.0C.131 MNV.0I.131

129 MNV.0X.133 MNV.0H.134 MNV.0C.133 MNV.0I.133

130 MNV.0X.135 MNV.0H.136 MNV.0C.136 MNV.0I.136

131 MNV.0X.137 MNV.0H.138 MNV.0C.138 MNV.0I.137

134 MNV.0X.142 MNV.0H.142 MNV.0Ca.141 MNV.0I.141

135 MNV.0X.143 MNV.0H.143 MNV.0C.143 MNV.0I.143

140 MNV.0X.145 MNV.0Ha.145 MNV.0C.146 MNV.0I.145

141 MNV.0X.147 MNV.0H.148 MNV.0C.148 MNV.0I.147

143 MNV.0X.151 MNV.0Ha.152 MNV.0C.152 MNV.0I.151

145 MNV.0X.149 MNV.0H.150 MNV.0C.149 MNV.0I.149

147 MNV.0X.153 MNV.0Ha.154 MNV.0C.153 MNV.0I.153

148 MNV.0X.155 MNV.0H.155 MNV.0C.155 MNV.0I.155

149 MNV.0X.157 MNV.0H.157 MNV.0C.157 MNV.0I.157

151 MNV.0X.159 MNV.0H.160 MNV.0C.159 MNV.0I.159

152 MNV.0X.161 MNV.0H.161 MNV.0C.161 MNV.0I.161

153 MNV.0X.163 MNV.0Ha.163 MNV.0C.163 MNV.0I.163

154 MNV.0X.181 MNV.0Ha.181 MNV.0C.181 MNV.0I.181

156 MNV.0X.185 MNV.0H.186 MNV.0C.185 MNV.0I.185

158 MNV.0X.179 MNV.0H.180 MNV.0C.180 MNV.0I.180

159 MNV.0X.205 MNV.0Ha.206 MNV.0C.205 MNV.0I.205

160 MNV.0X.207 MNV.0H.208 MNV.0C.207 MNV.0I.207

Page 408: Abstract - John L. Wood

386

Table A.6.2 Compounds Appearing in Chapter 3 (Continued).

Compound Folder 1H NMR 13C NMR FTIR

162 MNV.0X.211 MNV.0Ha.212 MNV.0C.212 MNV.0I.211

164 MNV.0X.209 MNV.0Ha.210 MNV.0C.209 MNV.0I.209

165 MNV.0X.213 MNV.0Hb.214 MNV.0C.213 MNV.0I.213

166 MNV.0X.199 MNV.0H.199 MNV.0C.199 MNV.0I.199

167 MNV.0X.221 MNV.0H.222 MNV.0C.221 MNV.0I.221

168 MNV.0X.226 MNV.0H.226 MNV.0C.225 MNV.0I.225

169 MNV.0X.171 MNV.0H.171 MNV.0C.171 MNV.0I.171

171 MNV.0X.173 MNV.0H.174 MNV.0C.173 MNV.0I.173

172 MNV.0X.177 MNV.0H.177 MNV.0C.178 MNV.0I.177

174 MNV.0X.175 MNV.0H.176 MNV.0C.175 MNV.0I.175

176 MNV.0X.167 MNV.0H.167 MNV.0C.167 MNV.0I.167

177 MNV.0X.169 MNV.0H.169 MNV.0C.169 MNV.0I.169

178 MNV.0X.227 MNV.0H.227 MNV.0C.227 MNV.0I.227

179 MNV.0X.183 MNV.0H.183 MNV.0C.183 MNV.0I.183

180 MNV.0X.191 MNV.0Ha.191 MNV.0C.191 MNV.0I.191

181 MNV.0X.193 MNV.0H.194 MNV.0C.194 MNV.0I.193

183 MNV.0X.197 MNV.0Hb.197 MNV.0C.198 MNV.0I.197

185 MNV.0X.195 MNV.0H.195 MNV.0C.196 MNV.0I.195

186 MNV.0X.203 MNV.0Hc.204 MNV.0C.203 MNV.0I.203

187 MNV.0X.187 MNV.0H.187 MNV.0C.188 MNV.0I.187

188 MNV.0X.189 MNV.0Ha.189 MNV.0C.189 MNV.0I.189

190 MNV.0X.215 MNV.0H.216 MNV.0C.216 MNV.0I.215

194 MNV.0X.217 MNV.0H.217 MNV.0C.217 MNV.0I.217

196 MNV.0X.201 MNV.0Ha.201 MNV.0C.201 MNV.0I.201

199 MNV.0X.223 MNV.0Hb.223 MNV.0C.224 MNV.0I.223

Page 409: Abstract - John L. Wood

387

Table A.6.3 Compounds Appearing in Chapter 5.

Compound Folder 1H NMR 13C NMR FTIR

(+)-201 MNV.0X.081 MNV.0H.081 MNV.0C.081 MNV.0I.081

(-)-201 MNV.0X.087 MNV.0H.087 MNV.0C.087 MNV.0I.087

(+)-202 MNV.0X.083 MNV.0H.083 MNV.0C.083 MNV.0I.083

(-)-202 MNV.0X.089 MNV.0H.089 MNV.0C.089 MNV.0I.089

(+)-203 MNV.0X.085 MNV.0H.085 MNV.0C.085 MNV.0I.085

(-)-203 MNV.0X.091 MNV.0H.091 MNV.0C.092 MNV.0I.092

(+)-226c MNV.0X.101 MNV.0H.101 MNV.0C.101 MNV.0I.101

(-)-226c MNV.0X.111 MNV.0H.111 MNV.0C.111 MNV.0I.111

(-)-246 MNV.0X.093 MNV.0H.093 MNV.0C.093 MNV.0I.093

(+)-246 MNV.0X.103 MNV.0H.103 MNV.0C.103 MNV.0I.103

Page 410: Abstract - John L. Wood

388

Bibliography

Aoyama, T.; Shioiri, T. Tetrahedron Lett. 1990, 31, 5507-5508. Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. Synth. Commun. 1987, 17, 1709-1716. Benneck, J. A.; Gray, G. R. J. Org. Chem. 1987, 42, 892-897. Birch, P. L.; El-Obeid, H. A.; Akhtar, M. Arch. Biochem. Biophys. 1972, 148, 447-451. Bloodworth, A. J.; Bothwell, B. D.; Collins, A. N.; Maidwell, N. L. Tetrahedron Lett. 1996, 37, 1885-1888. Box, V. G. S.; Marinovic, N.; Yiannikouros, G. P. Heterocycles 1991, 32, 245-251 Bunelle, W. H.; Rafferty, M. A.; Hodges, S. L. J. Org. Chem. 1987, 52, 1603-1605. Carda, M; Castillo, E.; Rodríguez, S.; Falomir, E.; Marco, J. A. Tetrahedron Lett. 1998, 39, 8895-8896. Carlsen, P. H. J; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936-3938. Chênevert, R.; Dasser, M. Can. J. Chem. 2000, 78, 275-279. Chênevert, R.; Dasser, M. J. Org. Chem. 2000, 65, 4529-4531. Coggins, J. R.; Kray, W.; Shaw, E. Biochem. J. 1974, 137, 579-585. Cook, L.; Ternai, B.; Ghosh, P. J. Med. Chem. 1987, 30, 1017-1023. Crotti, P.; Di Bussolo, V.; Favero, L. Gozzi, C.; Pineschi, M. Tetrahedron: Asymmetry 1997, 8, 1611-1621. Davies, H. M. L.; Houser, J. H.; Thornley, C. J. Org. Chem. 1995, 60, 7529-7534. Doyle, M. P.; Dyatkin, A. B. J. Org. Chem. 1995, 60, 3035-3038. Flor, H. H. Phytopathology 1942, 32, 653-669. Fujioka, H.; Kitagawa, H.; Kondo, M.; Kita, Y. Heterocycles 1994, 37, 743-746. Gianinazzi, S. In Plant-Microbe Interactions; Kosuge, T.; Nester, E. W., Eds.; Macmillan: New York, 1984; Vol. 1, Chapter 13.

Page 411: Abstract - John L. Wood

389

Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512-7515. Hassner, A.; Alexanian, V. Tetrahedron Lett. 1978, 19, 4475-4478. Heath, M. C. Eur. J. Plant. Pathol. 1998, 104, 117-124. Henschke, J. P.; Rickards, R. W. J. Labelled Cpd. Radiopharm. 1998, 41, 211-220. Henschke, J. P.; Rickards, R. W. Tetrahedron Lett. 1996, 37, 3557-3560. Honda, T.; Mizutani, H.; Kanai, K. J. Org. Chem. 1996, 61, 9374-9378. Iida, H.; Yamazaki, N.; Kibayashi, C. J. Org. Chem. 1987, 52, 3337-3342. Ishihara, I.; Sugimoto, T.; Murai, A.; Tetrahedron 1997, 53, 16029-16040. Ishihara, I.; Sugimoto, T.; Murai, A.; Synlett 1996, 335-336. Ji, C.; Boyd; C.; Salymaker, D.; Okinaka, Y.; Takeuchi, T.; Midland, S. L.; Sims, J. J.; Herman, E.; Keen, N. T. Proc. Natl. Acad. Sci. USA 1998, 95, 3306-3311. Ji, C.; Okinaka, Y.; Takeuchi, T.; Tsurushima, T.; Buzzell, R. I.; Sims, J. J.; Midland, S. L.; Salymaker, D.; Yoshikawa, M.; Yamaoka, N.; Keen, N. T. The Plant Cell 1997, 9, 1425-1433. Ji, C.; Smith-Becker, J.; Keen, N. T. Curr. Opin. Biothechnol. 1998, 9, 202-207. Keen, N. T. Adv. Bot. Res. 1999, 30, 291-328. Keen, N. T. In Mechanisms of Plant Defense Responses; Fritig, B.; Legrand, M., Eds.; Kluwer Academic: Boston, 1993; pp 3-11. Keen, N. T. Plant Molecular Biology 1992, 19, 109-122. Keen, N. T. Annu. Rev. Genet. 1990, 24, 447-463. Keen, N.; Midland, S. L.; Boyd, C.; Yucel, I.; Tsurushima, T.; Lorang, J.; Sims, J. J. In Advances in Molecular Genetics of Plant-Microbe Interactions; Daniels, M. J.; Downie, J. A.; Osburn, A. E., Eds.; Kluwer Academic: Boston, 1994; Vol. 3, pp 41-48. Kruizinga, W. H.; Kellogg, R. M. J. Am. Chem. Soc. 1981, 103, 5183-5189. Kruizinga, W. H.; Kellogg, R. M. J. Chem. Soc., Chem. Commun. 1979, 286-288.

Page 412: Abstract - John L. Wood

390

Kuwahara, S.; Moriguchi, M.; Miyagawa, K.; Konno, M.; Kodama O. Tetrahedron Lett. 1995, 36, 3201-3202. Kuwahara, S.; Moriguchi, M.; Miyagawa, K.; Konno, M.; Kodama O. Tetrahedron, 1995, 51, 8809-8814. Lamb, C. J.; Lawton, M. A.; Dron, M.; Dixon, R. A. Cell 1989, 56, 215-224. Masamune, T.; Matsue, H.; Murase, H. Bull. Chem. Soc. Jpn. 1979, 52, 127-134. Mash, E. A.; Nelson, K. A.; Van Deusen, S.; Hemperly, S. B. Org. Synth. 1990, 68, 92-103. McDougal, P. G.; Rico, J. G.; Oh, Y.-I.; Condon, B. D. J. Org. Chem. 1986, 51, 3388-3390. Midland, S. L.; Keen, N. T.; Sims, J. J. J. Org. Chem. 1995, 60, 1118-1119. Midland, S. L.; Keen, N. T.; Sims, J. J.; Midland, M. M.; Stayton, M. M.; Burton, V.; Smith, M. J., Mazzola, E. P.; Graham, K. J.; Clardy, J. J. Org. Chem. 1993, 58, 2940-2945. Mukai, C.; Moharram, S. M.; Azukizawa, S.; Hanaoka, M. J. Org. Chem. 1997, 62, 8095-8103. Mukai, C.; Moharram, S. M.; Hanaoka, M. Tetrahedron Lett. 1997, 38, 2511-2512. Nicotra, F.; Panza, L.; Russo, G.; Zucchelli, L.. J. Org. Chem. 1992, 57, 2154-2158. Niwa, H.; Okamoto, O.; Miyachi, Y.; Uosaki, Y.; Yamada, K. J. Org. Chem. 1987, 52, 2941-2943. Neises, B.; Steglich, W. Angew. Chem. Int. Ed. Engl. 1978, 7, 522-523. Nudelman, A.; Kelner, R.; Broida, N.; Gottlieb, H. E. Synthesis 1989, 387-388. Padwa, A.; Austin, D. J. Angew. Chem. Int. Ed. Engl. 1994, 33, 1797-1815. Padwa, A.; Kulkarni, Y. S.; Zhang, Z. J. Org. Chem. 1990, 55, 4144-4153. Pelliciari, R.; Natalini, B.; Sadeghpour, B. M.; Marinozzi, M.; Snyder, J. P.; Williamson, B. L.; Kuethe, J. T.; Padwa, A. J. Am. Chem. Soc. 1996, 118, 1-12. Sakuda, S.; Tanaka, S.; Mizuno, K.; Sukcharoen, O.; Nihira, T.; Yamada, Y. J. Chem. Soc., Perkin Trans. 1 1993, 2309-2315.

Page 413: Abstract - John L. Wood

391

Smith, M. J., Mazzola, E. P.; Sims, J. J.; Midland, S. L.; Keen, N. T.; Burton, V.; Stayton, M. M. Tetrahedron Lett. 1993, 34, 223-226. Staskawicz, B. J.; Ausubel, F. M.; Baker, B. J.; Ellis, J. G.; Jones, J. D. G. Science 1995, 268, 661-667. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925. Strange, R. N. Sci. Progr. 1998, 81, 35-68. Taber, D. F.; Ruckle, R. E., Jr.; Hennessy, M. J. J. Org. Chem. 1986, 51, 4077-4078. Taber, D. F.; You, K. K.; Rheingold, A. L. J. Am. Chem. Soc. 1996, 118, 547-556. Taunton, J.; Collins, J. L.; Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 10412-10422. Tsurushima, T.; Midland, S. L.; Zeng, C.-M.; Ji, C.; Sims, J. J.; Keen, N. T. Phytochemistry 1996, 43, 1219-1225. Wang, X.; Monte, W. T.; Naiper, J. J.; Ghannam, A. Tetrahedron Lett. 1994, 35, 9323-9326. Wood, J. L.; Jeong, S.; Salcedo, A.; Jenkins, J. J. Org. Chem. 1995, 60, 286-287. Wood, J. L.; Moniz, G. A.; Pflum, D. A.; Stoltz, B. M.; Holubec, A. A.; Dietrich, H.-J. J. Am. Chem. Soc. 1999, 121, 1748-1746. Yoda, H.; Kawauchi, M.; Takabe, K.; Hosoya, K. Heterocycles 1997, 45, 1903-1906. Yoda, H.; Kawauchi, M.; Takabe, K.; Hosoya, K. Heterocycles 1997, 45, 1895-1898. Yu, P.; Wang, Q.-G.; Mak, T. C. W.; Wong, H. N. C. Tetrahedron, 1998, 54, 1783-1788. Yu, P.; Yang, Y.; Zhang, Z. Y.; Mak, T. C. W.; Wong, H. N. C. J. Org Chem. 1997, 62, 6359-6366. Yucel, I.; Boyd, C.; Debnam, Q.; Keen, N. T. Mol. Plant-Microbe Interact. 1994, 7, 131-139. Yucel, I.; Midland, S. L.; Sims, J. J.; Keen, N. T. Mol. Plant-Microbe Interact. 1994, 7, 148-150. Zeng, C.-M.; Midland, S. L.; Keen, N. T.; Sims, J. J. J. Org. Chem. 1997, 62, 4780-4784.

Page 414: Abstract - John L. Wood

392

Index

1,3-Acyl migration, 329, 331

Affinity chromatography, 3-5, 7, 26, 32

1,4-Anhydroarabinityl Esters, 134, 139, 142, 146, 147

Anti orientation, 125, 127, 128, 132, 133, 138, 142, 149, 150

avrD, 2, 329

Biomimetic, 25, 27-29, 31, 32

Biosynthesis, 1, 2, 4-6, 10, 25, 329-331

Butenolide, 4, 26, 29, 31, 38-43, 46, 49, 52, 54, 55, 58, 151, 341, 342, 344, 348, 349, 351, 353

α-Bromoketone, 26, 27, 29, 31, 31, 36, 37, 39, 40, 43, 54, 344

(-)-N-(Carbobenzyloxy)-8-aminosyringolide 1, 31, 32, 55

C-H insertion, 120-123, 125, 127, 129, 131, 132, 134, 138, 141, 142, 149-151, 208

Cyclohexenyldiazoacetate, 127, 129, 149, 164, 165

Diazo transfer, 120-122, 125, 126, 129, 132, 133, 135, 138, 139, 141, 143, 145-147, 204, 207, 208

Diazoacetate, 120, 122, 127, 129, 131, 137, 141, 144, 151, 163, 169, 181, 182, 189, 190, 199, 200, 209

Diazoacetoacetate, 122-124, 129-131, 135-137, 139-141, 143, 144, 146, 150, 153, 154, 167-169, 179-181, 187-189, 197-199, 204, 209

2-Diazo-3-[(t-butyldimethylsilyl)oxy]-3-butenoate, 122, 124, 130, 136, 140, 143, 150, 209

α-Diazoester, 120-122

α-Diazoketone, 34, 35, 341, 342, 346

Diazomalonate, 123, 125, 156

2,5-Dihydrofuranyl, 132, 133

2,5-Dihydrofurfuryl esters, 129

Elicitor, 1, 2, 4, 13, 32, 328

β-Elimination, 128, 150, 151

Hypersensitive response (HR), 1-4, 13, 32, 328

β-Ketoacid, 4, 7, 14, 25, 26, 28, 29, 31, 39, 40, 43, 54, 58, 120

Page 415: Abstract - John L. Wood

393

Knoevenagel, 4, 25, 26, 29

3-Methoxyphenyldiazoacetate, 123, 125, 126, 129, 132, 138, 141, 145-147, 158, 159, 171, 172, 184, 185, 192, 193, 202, 206

4-Methoxyphenyldiazoacetate, 123, 129, 133, 174, 175

Michael addition, 5, 25

Model system, 121, 126, 134, 139, 142, 146, 150, 151

Model studies, 122, 123, 129, 134

Molecular probe, 3, 31, 128

O-H insertion, 124, 136, 341, 342

Pathogen, 1, 3

Polihydrofurany, l49

Pseudomonas, 2, 329

Radiolabel, 3, 5, 7, 8, 14, 20, 26

Receptor, 1, 3, 4, 8, 14, 20, 31, 128

Relative stereochemistry, 29, 51, 126-128, 132, 133, 138, 149, 150, 159, 172, 175, 185

Retrosynthetic analysis, 25, 26, 28, 120, 121, 341

Reverse Claisen, 329

Reverse Michael, 329

Rhodium (Rh), 120, 121, 123-125, 127, 130-133, 135-139, 141, 143-146, 148, 159, 162, 165, 172, 175, 182, 185, 190, 193, 200, 342, 346

Rpg4, 2-4, 13, 32, 328

Secosyrin, 16, 328-330, 332, 334-339

Soybean, 2-4, 13, 31, 32, 128, 328

Spirolactone, 120, 122-128, 130-133, 135-141, 143-146, 148-151, 159, 162, 165, 172, 175, 182, 185, 190, 193, 200, 315, 317, 318, 320, 321, 323, 324, 326, 327

Syributin, 16, 328-335, 337-339, 341-344, 355-360 Syringolide, 1-20, 25-32, 44, 46, 48-53, 59, 117, 119-122, 126, 128, 149-151, 328-332, 341, 343

Tetrahydrofuranyl, 127, 128, 138, 142, 150

Wittig olefination, 342, 344, 360

Tetrahydrofurfuryl Ester, 125, 125, 131

Trans diol, 121, 123, 129, 134, 146

Vinyldiazoacetate, 123, 126, 159, 162

Page 416: Abstract - John L. Wood

394

Xylose, 13

Xylulose, 4, 10, 18, 25, 338

X-ray, 2, 29, 34, 51, 117, 125, 126, 132, 133, 138, 142, 149, 150, 153, 159, 172, 175, 185, 315, 318, 321, 324

Page 417: Abstract - John L. Wood

395

About the Author

Mauricio Navarro Villalobos was born in Mexico City in May, 1971. His given

name is Mauricio and his full surname is Navarro Villalobos. He does not have a middle

name. As customary in Spanish-speaking countries, his first surname (i.e., Navarro) is

the first surname of his father and his second surname (i.e., Villalobos) is the first

surname of his mother. Mr. Navarro was very surprised when he learned that in many

countries people only have one surname.

He attended the Instituto Tecnológico y de Estudios Superiores de Monterrey,

Campus Monterrey in Mexico where he worked in the laboratories of Dr. Teófilo Dieck

Abularach and had outstanding teachers such as Dr. Xorge A. Domínguez, Ing. Javier

Rivas Ramos and Dr. Elsa Guajardo Touché. There he earned the degree of Licenciado

en Ciencias Químicas in 1994.

At Yale University he worked under the direction of Professor John L. Wood and

also had excellent teachers, that is: Professor Frederick E. Ziegler, Professor William L.

Jorgensen, Professor Martin Saunders, Professor Jack W. Faller and Professor Wood.

There he earned the degree of Master of Science in 1995 and is currently a candidate for

the degree of Doctor of Philosophy.

Mr. Navarro has accepted a post-doctoral position in the laboratories of Professor

David Gin at the University of Illinois at Urbana-Champaign starting in September, 2000

and is planning to return to Mexico afterwards.