adp000536

Upload: balaji-himakar

Post on 02-Mar-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 ADP000536

    1/106

    * r

    S U P E R S O N I C E J E C T O R - D I F F U S E R

    T H E O R Y

    A N D E X P E R I M E N T S

    W

    _

    _

    .

    L . A d d y

    f

    f

    tA

    T^*^*

    -

    C r a i g

    D u t t o n . *

    u

    .

    C .

    M i k k e l s e n

    m

    OH

    A u g u s t

    1 9 8 1

    S u p p o r t e d

    b y

    U . S . A r m y R e s e a r c h O f f i c a

    G r a n t N u m b e r

    D A H C 0 4 - 7 4 - G - 0 1 1 2

    a n d

    Department

    ofMechanical

    nd

    ndustrialngineering

    Universityofllinois

    at

    rbana-Champaign

    Urbana,

    Illinois1801

    T

    Professor

    nd

    Associate

    ead,

    epartment

    of

    Mechanical

    nd

    ndustrial

    Engineering,

    niversity

    of

    llinois

    t

    rbana-Champaign,

    rbana,

    Illinois.

    Assistant

    Professor,

    epartmentofMechanicalngineering,exas *M

    University,

    ollegetation,exas.

    ,rt

    Aerospace

    Engineer,

    .S .

    rmyMICOM,

    edstoneArsenal, labama.

    96 3

    *f&m

  • 7/26/2019 ADP000536

    2/106

    A*

    T A B L E O F C O N T E N T S

    P a g e

    L I S T O F F I G U R E S -

    L I S T O F

    T A B L E S

    x

    N O M E N C L A T U R E

    1

    1 . 0

    N T R O D U C T I O N

    2 . 0 H E O R E T I C A LI N V E S T I G A T I O N

    2 . 1

    U P E R S O N I C

    E J E C T O R S Y S T E M

    C H A R A C T E R I S T I C S

    2 . 1 . 1

    e r f o r m a n c e

    c h a r a c t e r i s t i c s

    2 . 1 . 1 . 1

    h r e e - d i m e n s i o n a lp e r f o r m a n c e s u r f a c e s

    - -

    2 . 1 . 1 . 2

    w o - d i m e n s i o n a l

    p a r a m e t r i c c u r v e s

    0

    2 . 2

    O N S T A N T - P R E S S U R E E J E C T O R

    6

    2 . 2 . 1

    o n s t a n t - p r e s s u r e

    ejector

    a n a l y s i s

    8

    2 . 2 . 1 . 1

    o n s t a n t - p r e s s u r e

    m i x i n g

    s e c t i o n

    3

    2 . 2 . 1 . 2o n s t a n t - a r e a s u p e r s o n i c

    diffuser

    7

    2 . 2 . 1 . 3v e r a l l

    e j e c t o r

    a n a l y s i s

    1

    2 . 2 . 2o n s t a n t - p r e s s u r e ejector c o m p u t e r p r o g r a m( C P E )-1

    2 . 2 . 3

    e p r e s e n t a t i v e

    r e s u l t s - 3

    2 . 3

    O N S T A N T - A R E A

    E J E C T O R

    5

    2 . 3 . 1

    o n s t a n t - a r e a

    e j e c t o r

    a n a l y s i s 9

    2 . 3 . 1 . 1n e - d i m e n s i o n a l

    o v e r a l l

    m i x i n g - s e c t i o n

    9

    a n a l y s i s

    - -

    2 . 3 . 1 . 2

    j e c t o r f l o w r e g i m e s a n d

    t h e i r

    c r i t e r i a

    -

    7

    2 . 3 . 1 . 3o m p u t a t i o n a l

    p r o c e d u r

    e

    - -

    3

    2 . 3 . 2o n s t a n t - a r e a e j e c t o r c o m p u t e r p r o g r a m( C A E ) 6

    2 . 3 . 3

    e p r e s e n t a t i v e

    r e s u l t s

    8

    2 . 4T A G E D

    C O N S T A N T - A R E A

    E J E C T O R S Y S T E M 5

    2 . 4 . 1

    y s t e m

    c o n f i g u r a t i o n

    5

    3 . 0

    X P E R I M E N T A L

    I N V E S T I G A T I O N 1

    3 . 1

    O L D - F L O W ,A I R - T O - A I R ,E J E C T O R

    E X P E R I M E N T S

    1

    3 . 1 . 1

    x p e r i m e n t a la p p a r a t u s a n d p r o c e d u r e 1

    3 . 1 . 2x p e r i m e n t a l

    r e s u l t s

    9

    4 . 0

    O N C L U S I O N S

    0 1

    5 . 0

    E F E R E N C E S

    0 3

    tfacMmaa

    FiOi

    BUNc-Nor

    FII*ED

    965

    B^T^^PBB^P

    -

  • 7/26/2019 ADP000536

    3/106

    zmmmmmmmmmmmm

    H P-

    * *

    VP-W-'s.;

    '.-

    JBWOT

    ffij^pWjg

    Page

    6 . 0 P P E N D I C E S

    0 5

    6 . 1

    O N S T A N T - P R E S S U R E

    E J E C T O R

    COMPUTER

    P R O G R A M

    ( C P E ) 0 5

    5 . 1 . 1

    o m p u t e r

    p r o g r a m0 5

    6 . 1 . 2

    a m p l e t i m e s h a r e i n p u t / o u t p u t0 9

    6 . 2

    O N S T A N T - A R E A E J E C T O R

    C O M P U T E R P R O G R A M

    ( C A E )

    1 2

    6 . 2 . 1

    o m p u t e r

    p r o g r a m

    1 2

    6 . 2 . 2

    a m p l e

    t i m e s h a r ei n p u t / o u t p u t

    2 4

    966

  • 7/26/2019 ADP000536

    4/106

    flf.;

    -;.

    :

    F ig ure

    2 . 1 - 1

    F ig ure

    2.1-2

    F ig ure

    2.1-3

    F ig ure

    2.1-4

    F ig ure

    2.1-5

    F ig ure

    2.1-6

    F ig ure

    2.1-7

    F ig ure

    2.1-3

    F ig ure

    2.2-1

    F ig ure

    2.2-2

    F ig ure

    2.2-3

    F ig ure2.2-4

    F ig ure

    2.2-5

    F ig ure

    2 . 3 - 1

    F ig ure

    2.3-2

    F ig ure

    2.3-3

    F ig ure 2.3-4

    LIST

    O F

    FIGURES

    Page

    Ejector onfiguration ndnotation 5

    Ejector

    mass

    low

    haracteristic

    urface,

    S P

    SO

    PO

    AT W

    P0

    E j e c t o r

    characteristic

    surface,

    I n t e r s e c t i o n

    o f

    the

    w/w

    urface

    withplanes

    o f

    constant

    P

    aTM

    /P

    B

    .

    1

    ATM

    P 0

    I n t e r s e c t i o n

    o f

    the

    w

    /wurface

    with

    planes

    o f

    constant P

    so

    /P

    po

    2

    I n t e r s e c t i o n

    o f

    t h e

    w /w

    urface

    with

    a

    plane

    WV

    '

    P

    s o /

    P

    P O

    13

    Intersectionof

    he

    surfacewith

    lanes

    of

    on-

    stan

    ATM/

    P

    PO

    14

    Intersection

    of

    he

    surface

    with lanes

    f on -

    ^ant

    s

    /

    p0

    15

    Constant-pressure

    ejector onfiguration 17

    Constant-pressure

    mixing

    ection

    ontrol volume

    19

    Empiricalorrelation

    or

    ength-to-diameter atio

    of onstant-areaupersonic

    diffusers

    from

    R e f e r e n c e[ 2 ] ) 28

    Constant-areaupersonic

    diffuser

    notation

    -

    30

    Representative

    haracteristics

    or

    onstant-

    pressure

    ejector 34

    Cor.stant-area

    jector onfiguration36

    Constant-areamixingectionontrol

    olume

    40

    Contrololumeor

    Fabrichoking"nalysis 49

    Constant-areaejector

    haracteristics

    0

    (a )

    ass

    lowrate haracteristics 0

    (b )ompressionharacteristics 1

    (c)

    ompressionharacteristicsorparametric

    ari-

    ations

    n

    w

    Mw

    2

    967

    _-

  • 7/26/2019 ADP000536

    5/106

    Page

    (d)ompression haracteristics

    or

    variation

    in

    p

    A j

    63

    (e)asslow

    nd

    ompression

    haracteristicsor

    a

    ariation

    n

    64

    Figure

    .4-1 Stagedejector onfigurationnd

    otation 66

    Figure.1-1 Cont inuous

    lowacilitywithaxisymmetricejector

    and

    econdary,

    ass

    low

    measurementection

    installed 72

    Figure .1-2

    Axisymmetric

    ejectorwithlefto

    ight)ariable-

    areamixing

    ube

    with

    diffuser;. 2 45

    n

    .D.

    constant-areamixing

    ube

    nstalled;

    nd

    .995n.

    I.D.

    onstant-area

    mixingube

    73

    Figure .1-3

    Schematic

    ofaxisymmetricejector

    onfiguration

    ----

    74

    Figure

    .1-4

    Schematics nd

    specifications

    ofejectorprimary

    nozzles

    5

    ( a ) a s i c

    c o n i c a l

    n o z z l e

    5

    ( b ) l o t t e d e x t e n s i o n f o r n o z z l e

    5

    ( c )

    o z z l e

    s p e c i f i c a t i o n s

    -5

    F i g u r e 3 . 1 - 5

    S c h e m a t i c s a n d

    s p e c i f i c a t i o n s

    o f

    e j e c t o r

    m i x i n g

    s e c t i o n s

    6

    ( a ) a r i a b l e - a r e a m i x i n g s e c t i o n 6

    b )

    o n s t a n t - a r e a m i x i n g

    s e c t i o n

    6

    c )

    i x i n g

    s e c t i o n

    s p e c i f i c a t i o n s 6

    d )

    u b s o n i c d i f f u s e r

    s e c t i o n

    - - - 6

    F i g u r e

    3 . 1 - 6

    E x p e r i m e n t a l

    e j e c t o r

    s e t - u p

    a n d

    n o t a t i o n

    - - 7 7

    F i g u r e 3 . 1 - 7

    C o n s t a n t - a r e a

    e j e c t o r m a s s

    f l o w c h a r a c t e r i s t i c s

    (\i

    /

    o -

    3

    30,

    -

    516,

    nd

    PI

    -0)

    80

    Figure

    .1-8

    Constant-area

    ejector

    ompressionharacteristics

    (A

    PI

    /

    M S -

    33

    0,

    -

    5

    6

    ,

    nd

    Vi

    s

    ,0)

    81

    Figure.1-9

    Constant-area

    ejector

    mass

    low

    haracteristics

    (A

    PI

    /

    W J

    -

    3

    30,

    5

    1

    6

    ,

    nd

    PI

    2,5)

    83

    Figure.1-10 Constant-areaejector ompressionharacteristics

    (A

    /A

    =

    .330,

    .516,

    nd

    =

    .5)

    84

    P

    l M S I

    Figure. 1 -11 Constant-area,

    lotted-no2zle

    ejector

    mass

    low

    characteristics

    A/A

    .330,

    .516,nd

    M^

    =

    .5)

    L-K. 85

    968

    -i-.

  • 7/26/2019 ADP000536

    6/106

    Figure.1-12

    Figure

    .1-13

    Figure.1-14

    Figure .1-15

    Figure

    .1-16

    Figure

    .1-17

    Figure

    .1-18

    Figure

    .1-19

    Figure

    .1-20

    Figure

    .1-21

    F i g u r e

    3 . 1 - 2 2

    P a g e

    C o n s t a n t - a r e a ,

    s l o t t e d - n o z z l e

    e j e c t o r c o m p r e s s i o n

    c h a r a c t e r i s t i c s(A/A,

    r t

    = 0 . 3 3 0 ,0 . 5 1 6 ,a n d

    M

    pl

    =

    .5)

    1

    - -

    86

    Variable-areaejector

    mass

    low

    haracteristics

    (A

    pl

    /

    f3

    . 516 nd

    pi

    =

    .0,

    .5) 88

    Variable-areaejector

    ompression

    haracteristics

    (A

    /A

    0.516

    nd =

    .0,

    .5) 89

    P

    Variable-areaejectorwall

    ressure

    distributions

    (VM 5

    =

    -

    5

    16

    M

    P 1

    =

    2

    -

    0

    '

    and

    P

    P

    0

    /A T ,

    =

    5

    '

    6)

    90

    Variable-areaejector

    wall

    ressure

    distributions

    (\i/A*

    -

    516

    Vi

    -Z.0.a

    fl

    dP,

    0

    /P

    AT11

    -4

    1)

    -

    9 1

    Variable-area

    jector

    wallressure

    distributions

  • 7/26/2019 ADP000536

    7/106

    LIST

    F

    ABLES

    Page

    Table

    .2-1

    Input

    ariables

    or

    rogram

    P E

    2

    Table

    .2-2 Outpu t

    ariables

    or

    rogram P E

    2

    Table

    .2-3

    Representativeonstant-pressure

    ejector

    onfiguration

    3

    Table

    .3-1 Inputor

    rogram

    A E

    7

    Table

    .3-2

    Ou tpu tor rogram A E 8

    Table

    .3-3

    Representative

    onstant-area

    ejector

    onfiguration

    9

    Table

    .4-1

    Ejector

    pecifications

    8

    Table

    .4-2

    Single

    nd

    taged

    ejector

    erformance

    omparison

    9

    PWBCJLUli^AO ILAMMJO T1L*XD

    971

  • 7/26/2019 ADP000536

    8/106

    P Pil i ' a ^

    &SK

    t

    V

    , .

    t tl

    ,- ;

    i^j^^ppi *?* -^

    NOMENCLATURE

    Symbols

    A

    Area

    C

    1'

    C

    2

    3

    Constants

    efined

    next

    C

    P

    Specific

    eatat

    onstant

    ressure

    D

    Diameter

    f(

    Function

    V

    i . e . ,t h e y

    a r e

    d e p e n d e n t

    o n t h e s t a g n a t i o n p r e s s u r e a n d b a c k p r e s s u r e

    r a t i o s .

    A n

    a l t e r n a t e

    f o r m u l a t i o n

    o f

    t h e

    p u m p i n g c h a r a c t e r i s t i c s

    i n t e r m s

    o f

    t h ei n i t i a ls e c o n d a r y s t r e a m M a c h n u m b e r ,M

    $l

    ,t h e s t a t i c p r e s s u r er a t i o

    PP

    o f t h e s e c o n d a r y s t r e a m

    a t

    t h e

    p o i n t

    of c o n f l u e n c e o f t h e t w o

    s t r e a m s ,

    a n d

    t h e a m b i e n t p r e s s u r e

    r a t i o ,

    P / P i s g i v e n

    i n

    f u n c t i o n a l

    ATM

    0

    form

    y:

    M

    S

    l

    =

    (

    P

    S

    l

    /PO .

    f

    W

    P

    0

    )

    ?

    -

    -

    2

    >

    "*

    978

  • 7/26/2019 ADP000536

    14/106

    ^*?a*'vv*~rtfsr*KH^nw?,i:

    HBSBSr

    - .-

    ,- r

    c

    o

    o

    c

    a

    c

  • 7/26/2019 ADP000536

    15/106

    y'^'* :...:.

    '

    :

    ~ : . :

    ''

    .

    ,

    \'-

    -

    r

    r

    ^ ^ ^

    ,

    Thiselection

    f

    ariables,lthough

    ess

    bvious,sonvenient

    orper-

    forming

    he

    umer ical

    alculations

    nvolved

    n

    many

    heoretical

    jector

    analyses.

    In

    ddition

    oestablishingheunctional

    orm

    of

    he

    umping

    har-

    acteristics,nother

    quantity

    of

    nterest

    s

    hehroudwallressure

    distribution iven

    unctionally

    y :

    where sheaxialoordinate.

    Afterestablishinghe

    bove

    unctional

    relationships,

    hehrust

    characteristicsf ystem an

    henedetermined

    n

    hehrust

    ugmenta-

    tionapplication.

    In

    ractice,

    hiss

    ccomplished

    y

    onsidering

    he

    contributionsn

    hexial

    irection

    of

    he nteringmomentumluxes

    f

    the

    primary nd

    econdary

    t reams

    ndhe

    ntegrated

    hroud

    wall pressure

    distribution.

    2.1.1.1

    Three-dimensional

    erformance

    urfaces

    Theunctional

    relations,

    2.1-1)

    nd

    2.1-2),har-

    acterizehepumping"

    haracte-'stics

    f

    nejector ystem

    nd

    epresent

    surfaces

    nhepacesescribed yheoordinates

    W

    S

    /

    W

    P

    P

    S(

    /

    *

    P

    ATM/

    P

    PO >

    nd

    M

    SI

    P

    SI

    /

    PO'

    F

    WPO>'

    espectively.

    Theumping

    haracteristics

    of

    ypical

    jector ystem

    n

    erms

    f

    the

    irst

    et

    of

    ariables

    are

    hown

    n

    ig.

    .1-2.

    This

    urface

    learly

    delineates

    he

    low egimeswhereinhemas*

    low

    haracteristicsre

    independent

    or

    ependent

    n

    he

    mbientpressure

    evel. These

    low

    regimes

    merge

    ogether

    long

    he

    break-off

    urve"

    nd ,

    n

    rinciple,

    thisondition

    erves

    o

    niquely

    efine

    his

    urve.

    980

  • 7/26/2019 ADP000536

    16/106

    wr

    r

    - r ~

    -

    mmmg

    ,

    u

    .. . -..

    .

    .,. ,,

    wq

    o

    o

    o

    C O

    u

    J-

    10

    4.

    0)

    -t->

    O

    3

    i-

    10

    to

    f c .

    o

    4- >

    u

    CN 4

    I

    3

    981

  • 7/26/2019 ADP000536

    17/106

    ,

    M

    .-,..,

    .......,

    7

    ,

    ,,-,-;,.,,.

    T

    TOWP^ MBtw

    ffW

    ^y

    w

    y py

    .w r

    1

    "

    .

    "TTP**

    WtilHHWIJ

    ... v*.-,,,::. , .,; ^/

    . "'

    -.v-v^^i;

    W

    s/

    W

    P =

    f

    (

    P

    30/

    P

    P0

    )

    VP

    =

    (

    P

    S0/

    P

    P0.

    P

    A T M /

    P

    P0)

    Toheeftofhebreak-off urve""supersonic"ndsaturated

    supersonic"

    egimes),

    he

    ass

    low

    haracteristics

    re

    ndependent

    of

    P

    ATM

    /P

    p0

    nd

    he

    urfaces

    ylindricalith

    ts

    eneratorparallel

    to

    the

    ATM

    /P

    po

    xis. Forheseegimes,he

    mass

    low haracteristicsan

    be

    epresented

    y :

    (2.1-4)

    when

    A TM

    /P

    P O

    ATM^PO^BO-

    To

    he

    1

    9

    ht

    of

    he

    bre

    a

    k

    -

    ff

    urve"

    ("mixed"

    egime),

    he

    urface

    s

    hree-dimensional

    in

    ature

    nd

    xtends

    fromhe

    spatial "break-off

    urve"

    o

    helane

    here

    w

    =

    base

    pressureplane);ence,

    WhenP

    A TM

    /P

    P0

    P

    ATM/

    P

    PO>BO-

    In

    principle,.. "break-off

    urve"

    epresents imultaneousolu-

    tion

    of

    heunctional

    relationships

    2.1-4)

    nd2.1-5).

    However,

    he

    "break-off

    urve"

    lso

    as henomenological interpretationased

    n

    he

    flowfield

    nteractions

    occurring

    within

    he

    ejector

    hroud.

    Points

    n

    thebreak-off

    urve"

    re

    determined

    y

    he

    onditionhatransition

    rom

    dependenceondependence

    ofhe

    mass

    low

    haracteristics

    nhe

    ambient

    pressure

    evelwill

    ccur

    henheecondarytreamust

    attains

    sonic

    onditions

    either

    nside

    hemixingube

    or

    at

    ts

    ntrance.

    This

    point

    will

    e

    urther

    amplified

    n

    he

    discussion

    of

    he

    onstant-area

    ejector.

    An

    alternative

    epresentation

    of

    he

    umpingharacteristics

    n

    terms

    of

    he

    ariables

    M

    S1

    ,P

    S1

    /P

    po

    .P

    ATM

    /P

    p0

    )siven

    nig..1-3.

    9b2

    C

    -

    ~

    MmM

  • 7/26/2019 ADP000536

    18/106

    P

    AT M

    /PpQ- Independent

    Psi

    /Ppo

    Break-off

    Curve

    P

    A T M

    /P

    PO*

    Dependent

    ^Tn/Ppo

    Figure2.1-3

    Ejector

    characteristic

    urface

    $1

    =

    (P

    sl

    /

    po

    P

    ATI|

    /P p

    0

    )

    983

  • 7/26/2019 ADP000536

    19/106

    wmmmt mm.wwmmm> m m

    ,

    , .

    .. m

    .

    n u

    . mmwm mmm mm

    wmmmmmm

    m

    For

    hisurface,

    here

    re

    direct

    ounterpartsohe

    /P

    - inde[7end-

    ATff

    P

    0

    e n t

    a n d

    P

    A

    ,/P-dependentr e g i m e so ft h e w / w

    u r f a c e .

    AT M

    P OP

    2 . 1 . 1 . 2

    w o - d i m e n s i o n a l

    p a r a m e t r i c

    c u r v e s

    The

    hree-dimensional

    erformance

    urfaces

    f

    Figures.1-2

    nd

    .1-3 enerallyave

    heirprincipal

    alue

    n

    resenting

    an

    overview

    of

    heerformanceharacteristics

    f

    ypical

    jector

    ystems.

    Inheoretical

    nalyses

    r

    xperimentalrograms,

    ts

    often

    more

    on-

    veniento

    onsider

    wo-dimensional

    arametric

    epresentations

    f

    hese

    operating

    urfaces.

    These

    parametric

    urves

    sually

    epresent

    nothing

    morehanntersectionsof

    he

    erformance

    urfaces

    witharious

    lanes

    corresponding

    o

    onstant

    alues

    of

    he

    espectiveariables.

    T w o

    of

    he

    moreuseful parametricepresentationsfhemasslow

    characteristics re

    obtained yntersectinghe

    w/w surfacey lanes

    of

    onstant

    ATM

    /

    p

    po

    t

    ig..1-4,

    ndlanesof onstant

    so

    /

    P

    po

    i

    Fig.

    .1-5.

    Another

    nteresting

    nd

    seful

    arametric

    urve

    an

    e

    obtained

    yntersecting

    he

    w surface

    y

    lane

    or

    hich

    P

    S

  • 7/26/2019 ADP000536

    20/106

    wr w vw

    w ~ - a .

    v

    - : .

    ,

    . -

    ,,.- , .-,-

    ,-_-,

    .

    ,,-.-

    ,

    'WiiWW

    o

    0.

    0?

    O O O 0)

    E

    SO g>

    5

    3

    o

    - t - >

    c

    o

    o

    c

  • 7/26/2019 ADP000536

    21/106

    mmss

    PW SB TT JT

    4P

    o

    a.

    o

    C O

    c

    (0

    c

    o

    o

    l/>

    V

    c

    r'

    Q.

    XI

    u

    The

    specification

    fA^/A^

    instead

    of

    /A^

    is

    onvenience

    or

    later

    omparisons

    etween onstant-pressure nd

    onstant-areaejectors.

    Utilizing

    he

    oregoing

    ata

    nd

    parametric

    alue

    of

    u,

    he

    mixed

    as

    properties

    1C

    M w

    *

    P

    '?

    JTC'

    %

    p'

    YM

    J

    can

    e

    eterminedrom qs . (2.2-19),

    (2.2-21),

    nd

    2.2-22),

    espectively.

    Tnemixed-to-primary tagnation

    emperature

    atio,

    /T .an

    hene

    M) PO

    *

    N u m b e r si n

    b r a c k e t s

    refer

    t o

    e n t r i e si nR E F E R E N C E S .

    ^Unfortunately,

    t h e

    c o n s t a n t - p r e s s u r e e j e c t o r

    m o d e l

    i s

    i n c a p a b l e

    o f

    d e a l -

    i n g w i t h

    t h i sr e a l i t y of

    j e c t o r

    o p e r a t i o n .

    h i s

    p o i n t w i l lb e c o n -

    s i d e r e di nd e t a i li n S e c t i o n

    2 . 3

    w h e r e i nt h ec o n s t a n t - a r e a

    e j e c t o r

    i s

    a n a l y z e d .o t e

    t h a t

    t h i s

    s e l e c t i o n of v a r i a b l e si s

    s o m e w h a t

    d i f f e r e n t

    t h a n

    t h o s e u s e d i nS e c t i o n

    2 . 1 .

    999

    MM

    MMM

  • 7/26/2019 ADP000536

    33/106

    d e t e r m i n e d

    f r o m

    E q .

    ( 2 . 2 - 1 5 ) .

    s i n g

    t h e s e

    d a t a ,t h e s o l u t i o n v a l u e

    o f

    M

    i s

    d e t e r m i n e d

    f r o m E q .( 2 . 2 - 6 )

    b y

    s o l v i n g

    Mv

    H

    J

    s

    lJ

    ^'

    V

    P H .

    \?

    1/2

    A;;

    M w

    p

    M O

    ( 2 . 2 - 2 3 )

    T h e

    s o l u t i o n v a l u e

    f o r M

    s u p e r s o n i c r o o t )i s

    M2

    \z

    2,

    1/ 2

    (

    MV"

    C

    :>\

    W

    1 /

    2

    ( 2 . 2 - 2 4 )

    The

    nexttepsnhe

    solution

    rocedure

    re

    oetermine

    gl

    /

    pi

    and

    M

    1

    V P

    M

    3' M 3'

    L/D>

    Minimum

    requ

    ired

    valuefromF i g .

    2.2-3

    F i g u r e

    2 . 2 - 4o n s t a n t - a r e a s

    u p e r s o n i c d i f f u s e r n o t a t i o n

    1004

  • 7/26/2019 ADP000536

    38/106

    ^y^w-iS-vraa^^-^^- ^ .->h^

    2.2.1.3

    Overalljectoranalysis

    The

    operatingharacteristics

    ofhe

    onstant-pressure

    mixing

    ection

    an

    e

    etermined

    s

    utlined

    n

    ection

    .2.1.1.

    For

    givenalues

    of

    &.

    Y

    P

    /*, T

    so

    /T

    po

    .A

    M2

    /A

    pi

    ,M l]

    and arametric alue

    of

    u,he aluesf

    can

    e

    determined.

    Utilizinghesealues,

    he

    mixing ectionressure

    ratios

    P

    P

    0

    /

    P

    soV

    so3

    can

    heneound.

    For

    iven

    alue

    of

    heiffuserpressure-riseoefficient,he

    diffuserstatic-pressureise

    atio,

    ./P,,

    anhen

    e

    etermined.

    The

    M s

    Ifi

    overall

    jector

    omptossion

    atio

    setermined

    rom

    S

    .2

    S

    P -

    F 2-2-32)

    S O

    O

    2

    where

    m

    /P

    sc

    ndP /P^

    re

    rom qs. (2.2-18)nd2.2-30),

    respectively.

    The

    operation

    f

    he

    onstant-pressure

    ejector

    shen

    stablished

    inerms

    f

    he

    ariablesu.

    p

    F0

    /

    p

    S0

    .

    w

    p

    so

    ]

    2.2.2

    Constant-pressure

    ejector

    omputer

    rogram

    CPE)

    A

    omputer rogram

    as

    written,

    ased

    n

    heanalysis

    of

    Section

    .2.1,o

    etermine

    he

    perating

    haracteristics

    f

    onstant-

    pressure jectors. Aomplete

    istingof

    his

    rograms

    iven

    n

    Appendix

    .1.

    1005

  • 7/26/2019 ADP000536

    39/106

    r-

    -

    -

    -

    mm w

    ''

    -

    ,.,'--~w..-'.*-. --''

    .;,.*

    ..,

    i-.^^.wf)^i.,iJ

    ..

    ....u.-

    >r-

    JHWIWPW

    w

    Thenputariables,

    heir

    ymbols,

    ndheirdefault

    alues

    re

    um-

    marized

    n

    able

    .2-1.

    Theutputariablesnd

    ymbols

    re

    ummarized

    in

    able

    .2-2.

    Table

    .2

    M

    Input

    variables

    or

    rogram

    P E

    Variable

    Symbol

    Default

    alue

    Y

    s

    G S

    1.405

    *p

    G P

    1.405

    M w

    s

    /w

    p

    M W S P

    1.0

    T

    SO/

    T

    PO

    TS0P0

    1.0

    *w v

    A M 2 P 1

    l

    M P 1

    (>1.0)

    r

    d

    R D

    1.0

    u= w

    s

    /

    p

    WSPI

    C A S E

    "NEW"

    Table.2-2

    Outputariables

    orrogram

    P E

    Variable Symbol

    ^

    M

    G M

    M w ^ M W p

    M W M P

    N C A S E

    m

    M M 2

    SI

    M S I

    Asi/Si

    AS1P1

    P

    >o/

    P

    s o

    PP0S0

    Vs o

    PM3 S0

    I

    1006

  • 7/26/2019 ADP000536

    40/106

    ms g

    w

    ,

    w

    w.

    g

    p

    i

    i si

    7

    2.2.3

    Representative

    esults

    T o

    emonstrate

    ypicalperating haracteristics

    f

    constant-pressureejector,

    heejector

    onfiguration

    ummarized

    n

    Table .2-3 aselected.

    Table

    .2-3

    Representative

    onstant-pressure

    ejector

    onfiguration

    Variable

    Value

    Y

    s

    1.4

    ^P

    1.4

    M w

    Mw

    5 P

    1.0

    T

    SO/

    T

    PO

    1.0

    W

    3.0,4.0

    l

    4.0

    r

    d

    1.0

    u

    Varied

    The

    operating

    haracteristics

    of

    his

    ejector

    ystem

    are

    ummarized

    inig.

    .2-5. From

    hisigure, itslearhatheonstant-pressure

    ejector

    solutionexistsor

    ach re a

    atiooveronly

    elativelysnail

    range

    ofmass

    lowrateatios.

    Corresponding

    o

    his

    ange,

    he aluef

    M varies

    hroughoutts

    possible

    ange,

  • 7/26/2019 ADP000536

    41/106

    1. 2

    1. 0

    0.8

    0.6

    0.4

    o.2^

    0L_

    A /A

    "M2'"P1

    3. 0

    4.0

    19

    7

    s

    -

    P

    a

    .405

    M w

    s

    /

    Wp

    .0

    T

    S O/

    T

    PO

    =1

    -0

    o

  • 7/26/2019 ADP000536

    42/106

    This

    onstant-pressure

    ejector

    onfiguration ashosenor

    ompar-

    isonwith onstant-areaejector

    with

    imilar

    onfiguration,

    Section

    .3.3.

    A

    omparison

    f

    he

    ompression

    ressure

    atio

    haracteristics

    f

    he

    constant-pressure

    ejector

    Fig..2-5)nd

    onstant-area

    ejectors

    (Figs..3-4b,d)

    ith

    he

    ame

    alues

    of\

    /

    \nd

    ,

    hows

    hat

    both jectors

    aveapproximatelyhe ame

    maximum

    ompressionressure

    ratios.

    However,

    heonstant-area

    ejector

    s

    een

    o

    ave

    uch

    roader

    range

    of

    possible

    olutions.

    D u e

    o

    he

    arge

    umber

    or

    ariables

    nvolved,

    o

    ttempt

    as

    ade

    topresenterein

    omprehensive

    arametrictudy

    of

    he

    onstant-

    pressure

    ejector

    or

    xpectedrends

    s

    onsequence

    ofariationsn

    theseariables. Rather,t

    s

    econmendedhathe omputer rogram

    e

    used

    o

    make

    hese

    tudies

    nlyafter

    aseline

    onfigurationaseen

    established.

    .3

    C O N S T A N T - A R E A

    J E C T O R

    A

    chematic

    of

    onstant-area

    jector

    s

    hownn

    ig.

    2.3-1. The

    ejector onsistsf

    onstant-areamixing

    ectionwherein

    he

    i

    nary

    and

    econdary

    lowsnteract ndmixo

    orm

    niform

    mixedlow

    at

    he

    ejector

    exit.

    The

    onstant-areaejector

    as

    w odistinctoperating

    regimes hich

    re

    dentified

    accordingo

    hether

    hemass

    lowratehar-

    acteristics

    of

    he

    ejector

    are ependent

    or

    ndependent

    of

    he ack-

    pressureevel

    imposedathe

    ejector

    exit. In

    he

    iterature

    3,4],

    he

    back-pressure ependent

    egime

    s

    eferred

    o

    s

    he

    mixed"

    regime

    nd

    the ack-pressurendependen t

    egime s

    hesupersonic"

    nd

    1009

    ** W

    m

  • 7/26/2019 ADP000536

    43/106

    -Constant-area

    mixing

    section-

    V/////////////////////////////////////////////^^^^

    Secondary

    M

  • 7/26/2019 ADP000536

    44/106

    saturated- supersonic

    regimes.

    hile

    these

    designations

    are

    somewhat

    misnomers,

    theyd o ,

    how ever,d e s c r i b e

    the

    operating

    reg imes

    o f

    a n

    e j e c t o r

    i n

    analogy

    to

    a

    conventional

    c onve r g in g - d ive r g in g

    nozzle

    [ 1 ] .

    The

    performance

    o f

    a n

    e j e c t o r system

    c a n

    only

    be

    analyzed

    by

    estab-

    lishingbotht he

    conditions

    f o r thesef l o wreg imest o

    e x i s t

    and

    t he

    c o n d i t i o n sfo r t r a n s i t i o n

    betw een

    these

    reg imes.

    he

    transitionc o n d i -

    tions

    betw een

    the

    mixed and

    supersonic or

    saturated- supersonic

    reg imes

    a r ereferredt o

    a s

    the

    break-off c o n d i t i o n s .

    The supersonic reg ime

    of

    a n

    e j e c t o r

    i st heresult

    of

    the nearly

    inviscidi n t e r a c t i o n

    betw een

    the

    primary

    a n dsecondary

    streams

    downstream

    o f

    their confluence,S e c t i o n

    1 ,

    F i g .

    2.3-1.

    hestatic

    pressuresa tthe

    confluence

    of

    the

    flows

    must

    b esuchthatt h e

    supersonic

    primary

    flow

    expandsandinteracts

    with

    t hesubsonic

    secondary

    flowcausing

    i t

    t o

    reachsonic

    flow

    conditionsa tt he aerodynamicallyf o r m e d

    m in im um

    secondary

    flow

    area.

    sa

    consequence

    o f thissecondary

    f l o w chok ing

    phenomenon,

    the

    secondary

    mass

    flow rate

    i sd e t e r m i n e d

    independent

    o f

    back-

    pressureconditions.hile

    t h e

    e j e c t o r

    massflowrate

    characteristics

    are

    independent

    o f

    t h e

    back-pressure

    level,

    the

    complex

    shock,

    mixing,and

    i n t e r a c t i o nflow s t r u c t u r ethat g overnst h e

    pressurer e c o v e r yi sdepend-

    ent

    o n

    t h e

    back-pressurel e v e l .

    The

    saturated- supersonic

    regime

    i s

    a

    limiting

    case

    o f

    t h e

    super-

    sonic

    regime.

    he

    e j e c t o r

    conditionsar e

    such

    that

    the

    secondary

    flow

    reaches

    sonic

    flow

    conditions

    at

    t h e

    g e o m e t r i c

    m in im um

    area

    at

    t h e

    conflu-

    ence o f

    t h e

    primaryand

    secondaryflows(Section1 ) .

    gain,

    the

    mass

    flow rate

    characteristics

    of

    the

    e j e c t o r

    areindependent

    o f

    the

    back-

    pressurec o n d i t i o n s

    while

    t h er e c o mp r e s s i o nflowprocessi sn o t .

    1 0 1 1

  • 7/26/2019 ADP000536

    45/106

    The

    mixed"

    egimencludes

    all

    jectoroperatingonditions

    or

    hich

    the

    econdarymasslowrate

    s

    ependent

    n

    he ack-press>,reevel.

    This

    dependency

    s

    he

    esult

    of

    heecondarylownotattainingonic

    low

    conditionsteitherhe

    onfluence

    of

    he

    treams

    r

    withinhe ownstream

    interaction

    egion. Consequently,oth

    he

    econdary

    mass

    lowrate ndhe

    ejector ecompressionrocessreependent nhe ack-pressureevel.

    The

    criteria

    ordetermining

    he

    break-off"

    onditions

    areerived

    fromhe

    equirementhat

    ontinuous

    ransition

    etween

    he

    supersonic"

    or

    saturated-supersonic"

    egimes

    nd

    hemixed"

    egime

    mustxist.

    These

    riteria

    nd

    he

    etermination

    of

    he

    break-off"

    onditions

    re

    importantactorsn

    nalyzing

    nd

    nderstanding

    ejectoroperation.

    The

    onstant-area jector aseennalyzed y

    detailed

    nteraction

    model

    p,5]

    hichas

    een eneralized

    onclude

    ariable-area

    mixing

    sectionejectors6]. While

    he

    operationalharacteristicspredicted

    withhisodelrenood greementwith xperiment,

    he

    omputational

    time

    equirementsnd

    omplexities

    liminate

    his

    echnique

    s

    n

    effec-

    tive

    methodor

    makingroad-band

    parametric

    tudies

    f

    ejector

    operation.

    As onsequence,he

    tudy

    herein

    sestricted

    ohe onstant-area

    ejector

    hich

    exhibits

    ll

    f

    heoperational

    haracteristicsf

    more

    om-

    plex eometriesut et an

    till

    benalyzed yimplified

    ne-

    dimensional

    ethods.

    The

    one-dimensional

    nalysis

    rovides

    esults

    hat

    are enerallynood greementwith

    xperiment

    xceptat

    mal l

    secondary

    flowrates

    hen

    HJ*

  • 7/26/2019 ADP000536

    49/106

    ( 8 )

    n e g l i g i b l e c h a n g e i n p o t e n t i a l

    e n e r g y

    d u e t ov a r i a t i o n s

    i n

    e l e v a t i o n

    i n

    t h e

    m i x i n g

    s e c t i o n .

    ( 9 )

    h e

    p r i m a r y

    a n d

    s e c o n d a r y

    f l o w s

    a r e

    a s s u m e d

    t o

    b e

    i s e n -

    t r o p i c f r o m t h e i r r e s p e c t i v e s t a g n a t i o ns t a t e s

    t o

    t h e

    s t a t e s

    a t

    S e c t i o n

    1 .

    T h e c o n t i n u i t y e q u a t i o ni s

    p V

    d A

    =

    0

    ( 2 . 3 - 1 )

    c s

    and

    with

    ssumption

    2)

    ecomes

    PAI

    +

    hx\Ax

    "

    >**

    2

    -

    3

    -

    2

    )

    In

    erms

    fhemasslowrates,

    AV,

    he ontinuity quation

    s

    w

    + = ,

    s P

    r

    (2.3-3)

    The

    masslowrate, ,

    sxpressed

    n

    erms

    of

    he

    mass

    low

    unction

    y

    -,1/2-,\

    .

    -.1/2

    _ W _

    P A

    i-.

    M w o

    (2.3-4)

    Introducing

    he

    econdary-to-prirnarymasslowrateatio,

    s

    /w

    p

    ,

    nd

    E q. (2.3-4)nto q. (2.3-3)

    esults

    n

    n

    xpression

    orhe

    stitic

    pressureatioP../P.,

    Theesults

    0

    PI

    M S

    P I

    r o w

    Tl

    1/

    T *

    1

    M O

    PI

    M w

    T

    M

    P O

    L_]

    (Hu)

    (2.3-5)

    I n t e r m s o f t h e

    m a s s

    f l o w

    f u n c t i o n ,t h e m a s sf l o w r a t e r a t i o ,u ,i s

    (2.3-6)

    P

    si

    A

    si

    I*-.

    T

    POT

    2

    V>V

    M

    s > >

    T h e s t a t i c p r e s s u r e r a t i o ,P

    s l

    /

    p

    pl

    .c a n b e

    e x p r e s s e d

    f r o m

    E q .

    ( 2 . 3 - 6 )a s

    1016

    *-- -

    -

  • 7/26/2019 ADP000536

    50/106

    SI

    P I

    P

    so

    P

    P1 s i

    - . 1 / 2

    S

    P O

    ( 2 . 3 - 7 )

    T h e m o m e n t u m e q u a t i o n i n

    t h e

    f l o w

    d i r e c t i o n i s

    + +

    IF

    v

    pv-dA)

    Jcs

    (2.3-8)

    With

    he

    oregoingssumptions,hemomentum quation ecomes

    P

    Fl\l

    +

    P

    S1

    A

    S 1

    -

    P

    *

    =

    P

    MsVL

    "

    tP,-Vt

    1

    i

    i

    Equations2.3-5).2.3-7),nd2.3-10)aneombined nd

    rearrangednto

    ormhats

    articularly

    onvenient

    or

    omputation;

    theesults

    Mv'W-

    f

    5

    (

    vPi>

    Vv

    sl

    >

    P

    O

    S

    O

    -11/2

    [ T l w

    _MO

    M w

    W

    O

    -.1/2

    (2.3-11)

    (1+u)

    where

    he

    unction

    y.M)

    is

    efined s

    f

    3

    ( ,M )

    (HyM

    2

    )

    M

    Yd

    Y-M}

    -,1/

    (2.3-12)

    The

    elationship,

    3

    (y

    ,M)

    onstant,an

    e

    olvedor

    he

    a c h

    umber,

    M ,

    s

    a/

    2

    Lff-jiJv.

    2

    |\

    2 ( 1 = 1 1 [ ,

    1 7

    1/

    (2.3-13)

    1017

    IIIMil 1 III

  • 7/26/2019 ADP000536

    51/106

    T h e e n e r g y e q u a t i o n

    i s

    P Q .

    s

    P t t

    c s

    h

    + ^-+ g z

    ( p V - d A )

    ( 2 . 3 - 1 4 )

    W i t h

    s i m p l i f y i n g

    a s s u m p t i o n s

    ( 6 , 7 , 8 ) ,

    t h e

    e n e r g y

    e q u a t i o n

    b e c o m e s

    _ 2 . 3 - 1 5 )

    { h

    0

    (

    P

    V - d A )

    -0

    ^ J

    . h

    V * / 2 .

    o r t h e

    o v e r a l l

    *ixin

    9

    s e c t i o n

    c o n t r o l

    1.

    t h e

    (2.3-16)

    energy

    quationecomes

    wAo

    s

    h

    soA* '

    Tne

    ontinuity nd nergy quationsane

    ombined

    longwith

    Q

    p

    T

    ,

    and

    Wg/Wp

    o

    evelop

    n xpression

    or

    he

    mixed-to-primary

    tagnation

    temperature

    atio.

    The

    esult

    s

    T n o

    'I B

    P

    '

    C

    P>S

    T

    s

    ol

    (2.3-17)

    THe

    secono -to-P rv

    tagnation

    pressure

    atio an

    e

    xpressed

    oy

    (2.3-18)

    nerehe

    ressure

    atios/>

    fl

    nd

    s

    ,/

    s0

    -*-*" >

    ined

    or

    sentropicl o w .

    For

    sentropic

    low,

    ne

    ressure

    at,o

    d e t e r m

    f u n c t i o n

    i s

    d e f i n e d b y

    0

    Thus ,q.

    (2-3-18)

    ecomes

    y

    (Y-

    1

    )

    ;

    2

    (

    Y

    ,M)

    (2.3-19)

    1018

  • 7/26/2019 ADP000536

    52/106

    so

    P O

    9

    v

    pl

    }

    (2.3-20)

    In

    he

    preceding

    quations,

    he

    as

    roperties

    f

    he

    mixed

    low

    at

    Section must e nown. Thesepropertiesreeterminedorhemixed

    gas

    y

    applying al

    ton's

    awofpartial

    ressureso

    hypothetical

    ix-

    ing rocess

    t

    onstantolume

    orhe espective

    mass

    ractions

    f

    he

    primary nd

    econdary

    perfect

    ases.

    The

    mixed as

    roperties

    re

    expressed

    nermsfhesecondary-to-primarymasslowrateatio

    nd

    theprimaryndecondaryas

    ropertiesy

    P

    ^PX

    (1+u)

    M w ,

    M w ~

    M

    1

    +

    li

    (1+u)

    w:

    w > ,

    (2.3-21)

    1

    M w

    p

    M w ~

    (2.3-22)

    and

    v

    Mw .

    "

    +

    -

    s i -

    'M

    (1

    7TTirr}

    -l

    (2.3-23)

    Y

    p

    VTTMW

    S

    The

    atio

    of

    specific

    eatst onstantressure an

    e

    xpressedn

    erms

    of

    other

    properties

    y

    M w .

    (

    C

    P>S

    (Y

    r

    -

    D

    (2.3-24)

    1019

  • 7/26/2019 ADP000536

    53/106

    E q u a t i o n s

    ( 2 . 3 - 2 1 )

    t o

    ( 2 . 3 - 2 4 )

    d e f i n e

    t h e m i x e d g d s

    p r o p e r t i e s

    c o m p l e t e l y

    i nt e r m s of

    t h e

    p r o p e r t i e s

    o f

    t h e

    p r i m a r y a n d

    s e c o n d a r y g a s e s

    a n d

    t h e

    m a s s

    f l o w r a t er a t i o ,u .

    T h e

    c o m p u t a t i o n a l

    p r o c e d u r e a d o p t e d

    h e r e i n

    w i l l

    n o w

    b e

    d i s c u s s e d .

    A t t h e

    o u t s e t ,

    t h e f o l l o w i n g

    d a t a

    a r e

    a s s u m e d

    t o

    b e

    k n o w n

    S

    O

    _ UB_

    M

    V

    P w

    p

    7T

    _ .

    >

    po

    \l

    Ifhe

    primary

    nozzle

    ase

    re a

    s

    ssumed

    o

    e

    negligible,he

    onstant-

    area

    mixing

    ection

    equirement

    s

    si

    A

    P

    f A

    M J

    P I

    1

    ( 2 . 3 - 2 5 )

    U s i n g

    t h e s e

    d a t a

    a n d a

    p a r a m e t r i c

    v a l u e

    o f

    u ,

    t h e m i x e d

    g a s p r o p e r t i e s

    a t

    S e c t i o n 3

    c a n b e d e t e r m i n e d

    f r o m

    E q s .

    ( 2 . 3 - 2 1 )

    t o

    ( 2 . 3 - 2 3 ) ;t h e

    r e s u l t s

    a r e

    M w . .

    ' M

    Themixed-to-primarylow tagnation

    emperature

    atio,

    /T

    an

    hen

    be

    ound

    rom q. (2.3-17)

    A n xamination

    of

    qs .

    (2.3-5),

    (2.3-7),

    nd

    2.3-11)

    hows

    hat

    he

    followingariables

    re

    till to edetermined;

    hey

    re

    P

    M

    si

    W

    ~

    PII

    T h u s ,

    t h i s

    s e t

    of e q u a t i o n s

    m u s t

    b e

    s u p p l e m e n t e d ,

    a s

    d i s c u s s e d

    i n

    t h e

    f o r e g o i n g

    s e c t i o n s ,

    w i t h

    a n

    a d d i t i o n a lr e l a t i o n s h i p b e f o r e u n i q u e e j e c t o r

    s o l u t i o n s

    c a n

    b e d e t e r m i n e d .

    h e

    n e e d e d

    r e l a t i o n s h i p

    i s

    b e t w e e n

    t h e

    1020

    I

    , . -

    aiSAk,.-

    -

  • 7/26/2019 ADP000536

    54/106

    v a r i a b l e s

    M

    a n d P . , / P _ , o r

    a

    p a r a m e t r i c

    v a l u e

    o f

    p .

    h e

    f o r m

    o f

    t h i s

    r e l a t i o n s h i p ,

    a s

    w i l l

    b e d i s c u s s e d

    i n t h e

    f o l l o w i n g

    s e c t i o n s ,

    i s

    d e t e r -

    m i n e d

    b y

    t h e o p e r a t i n g r e g i m e .

    T h u s ,

    w i t h

    t h e

    a f o r e m e n t i o n e d

    i n p u t

    d a t a ,

    a

    p a r a m e t r i c

    v a l u e

    o f

    u ,

    a n d

    a

    p r e s u m e d r e l a t i o n s h i p b e t w e e n

    ( M

    P _ , / P , ) ,

    a l lv a l u e s

    a t

    SI

    SI

    ?

    1

    S e c t i o n3

    c a n

    b e d e t e r m i n e d

    b y

    t h e f o r e g o i n g

    a n a l y s i s .

    T h e

    s u b r o u t i n e ,

    C A E O C V ( . . . )

    h a s

    b e e n

    w r i t t e n ,

    b a s e d

    o n

    t h e

    f o r e -

    g o i n g a n a l y s i sf o r

    t h e

    o v e r a l l

    c o n t r o l

    v o l u m e ,

    t o

    c a r r y

    o u t

    t h e c o m p u t a -

    t i o n s a s j u s t

    d e s c r i b e ' .

    h e s u b r o u t i n e h a s

    t h e

    f o r m

    C A E O C V

    ( G P ,M P 1 ,G S ,

    M S I ,

    M W S P ,

    T S 0 P P ,

    P S 1 P 1 , A P 1 M 3 ,

    N E R R O R ,

    M M 3 ,

    P P 0 S 0 ,

    P M 3 S 0 ,P M 0 S 0 ) .

    F o r

    i n p u t

    v a l u e s

    o f( G P ,M P 1 ,G S ,

    M S I ,

    M W S P ,

    T S 0 P 0 ,P S 1 P 1 ,

    A P 1 M 3 ) ,

    t h e

    s u b r o u t i n e

    e i t h e r r e t u r n s a

    s e t

    o f

    s o l u t i o n

    v a l u e s

    f o r

    ( M M 3 ,

    P M 3 S 0 ,

    P M 3 S 1 ,

    P P 0 S 0 ,

    P M 0 S 0 )

    o r

    a

    n o - s o l u t i o n e r r o r i n d i c a t o r

    N E R R O R .

    A

    l i s t i n g o f t h i s

    s u b r o u t i n e

    i si n c l u d e d

    i n

    A p p e n d i x

    6 . 2 .

    2 . 3 . 1 . 2j e c t o r f l o w

    r e g i m e s

    a n d

    t h e i r

    c r i t e r i a

    T h e

    r e l : i o n s h i p

    b e t w e e n

    t h e

    s t a t i c

    p r e s s u r e s ,

    P

    a n d

    P

    d e t e r m i n e s

    t h e

    o p e r a t i n g

    r e g r e

    of

    a n

    e j e c t o r .

    I f

    P

    P . t h e e j e c t o r o p e r a t e s

    i n

    e i t h e r

    t h e

    s a t u r a t e d -

    s i

    i

    s u p e r s o n i c

    o r t h e

    m i x e d

    r e g i m e

    b e c a u s e

    ( 1 )

    t h e

    minimum

    s e c o n d a r y

    f l o w

    a r e a

    i s e q u a lt o

    t h e g e o m e t r i c

    s e c o n d a r y f l o w

    a r e a a t

    S e c t i o n

    1 ,

    a n d

    ( 2 )

    t h e s e c o n d a r y

    f l o w

    i s

    s u b s o n i c

    u p s t r e a m

    of

    S e c t i o n

    1

    t h u s

    l i m i t i n g

    M

    S 1

    to

    he

    ange ,

    < ^

    . For

    hesaturated-supersonic"egime,

    he

    secondary

    lo ws

    onict

    ection

    ,

    =1,

    ndheecondary

    a s s

    flowrate

    s

    eterminedolely

    y

    he

    pstream

    onditions.

    Forhe

    mixed"

    1021

  • 7/26/2019 ADP000536

    55/106

    regime,

    he

    econdary

    low

    at

    Section

    subsonic,

  • 7/26/2019 ADP000536

    56/106

    0

    >r

    h v

    V

    V

    -H

    ontrol

    volume

    'S 2

    'P 2

    S

    F i g u r e 2 . 3 - 3

    o n t r o lv o l u m e

    f o r

    F a b r i

    c h o k i n g

    a n a l y s i s

    1023

    ^ - ^ ^ * > ~

    ^.^(afcv

  • 7/26/2019 ADP000536

    57/106

    at

    he

    minimum low

    rea

    s

    nity,

    heejector

    perates

    n itherhe

    "saturated-supersonic"

    r

    he

    supersonic"egime;

    while

    if

    his a c h

    number

    s

    ess

    han

    unity,

    he

    ejector

    perates

    n

    he

    mixed"

    egime.

    Thebreak-off onditions

    or

    ransition

    etween

    he

    arious

    egimes

    must

    satisfy

    he

    ollowing onditions. They re :

    (1 )or

    he

    uncture

    of

    he

    saturated-supersonic"

    nd

    "supersonic"

    egimes:

    ( M

    S1

    )

    B

    0

    ndP

    sl

    /

    pi

    )

    B

    0

    ;

    (2 )or

    hesaturated-supersonic"

    nd

    mixed"

    egimes:

    ( M

    e

    ,)

    on

    ndP

    c

    ,/

    ol

    L>; nd

    S I

    O

    S I

    P I

    O-

    ( 3 ) o r t h e

    s u p e r s o n i c a n d m i x e d r e g i m e s :M

    2

    0.25

    ( )/

    (

    P

    so),

    7.6

    K\,2

    4.0

    U s i n g

    p r o g r a m

    C A E ,

    t h e i n d i v i d u a l

    s t a g e

    c o m p r e s s i o n

    r a t i oi sf o u n d

    f r o m

    E q .

    2 . 4 - 5 )t o b e

    a p p r o x i m a t e l y

    f , 0

    s o

    2 . 6 8

    ;

    1, 2

    t h e r e m a i n d e r o f t h e o p e r a t i n g c h a r a c t e r i s t i c s f o r t h e s t a g e d e j e c t o r a r e

    g i v e n

    i n

    T a b l e 2 . 4 - 2 .

    T h u s ,a c o m p a r i s o n

    o f

    t h e

    v a l u e s

    i n

    T a b l e 2 . 4 - 2

    s h o w s

    t h a t

    s o m e

    g a i n s

    c a n

    b e

    m a d e

    b y

    s t a g i n g .

    h e

    t w o - s t a g e

    ejector

    i n

    t h e

    a b o v e

    e x a m p l e

    r e q u i r e s

    a p p r o x i m a t e l y 3 9 %

    l e s s

    p r i m a r y

    m a s s

    f l o w

    a n d

    a b o u t1 6 % l e s s

    L

    1042

    ^ . . . rn-

    n.

    - , . , .

    _*

  • 7/26/2019 ADP000536

    76/106

    m a x i m u m

    rimary

    ressure.

    However,

    n

    roader iewhese ains

    might

    not

    esignificantw h e n onsiderations

    iven

    o

    he

    additional

    ardware

    required. Also,

    more early

    ptimum

    single-stage jector

    ould,n

    all

    probability,

    e

    oundorhispplication.

    Table

    .4-2

    Si

    ngle nd

    taged

    ejector

    erformance omparison

    Variable

    Value

    (1)

    Two-staged

    ejector

    < V

    W

    A,2

    0.47

    (p

    p

    2 . 6 7

    **

    0.497

    (P

    /p )

    PO

    SO'l,2

    68

    o

    a >

    0 1

    < _ >

    si

    00

    o

    (O

    l*-

    o

    0J

    $

    ^ ~

    o

    ^ ~

    f

    IO

    4-

    +J

    00

    00

    c

    3

    :

    o

    3

    c :

    C

    o

    r

    r

    4 ->

    ->

    C U

    o

    < u

    o

    00

    1046

    n

    a )

    4-

    CD

    MMMM

    a

    ass

  • 7/26/2019 ADP000536

    79/106

    Figure

    .1-2

    Axisymmetric

    jector

    with

    nf*

    i.

    fixingube

    with?ffu

    (

    15W

    ar1

    ;

    bl

    e

    "

    mixing

    ube

    nstalled;

    nd

    95'n"

    ons

    J

    an

    -

    mixing

    ube

    "

    I

    -

    c

    onstant-area

    1047

    **=.^".

    -

    ~1

    DM

    s

  • 7/26/2019 ADP000536

    80/106

    Static

    pressure

    w a l l

    t aps

    unzznm

    S e c onda r yr

    flow

    s o

    r

    so

    TzamzL

    Mixingtube

    ( in te rchangeab le )

    Primary

    nozzle

    ( interchangeable )

    Primary

    flow

    Figure3.1-3

    chematic

    ofaxisymmetric

    ejectcr

    configurati

    o n

    1048

    ^ V s t e * * - '

    MMMB

  • 7/26/2019 ADP000536

    81/106

    715"

    diam

    0.020"

    0.715"

    diam

    (a)as icconical

    nozzle.

    12

    Slots:

    equay-

    spaced,

    0.020"

    w i de

    X

    .190"long

    * ozzle

    exit

    plane

    (b)

    Slotted

    extension

    for

    nozzle.

    Nozz le

    M

    p

    ,

    0;n.

    1

    2

    3*

    2 .0

    2 .5

    2 .5

    0 . 5 5 0

    0 . 4 4 0

    0 . 4 4 0

    'Slotted

    nozzle

    (c)ozzlespecif icat ions.

    Figure3.1-4

    Schematics

    a n d

    speci

    f

    ication s

    o f

    e j e c t o r

    primary

    nozzles

    1 0 4 9

    i*-- '

    m i n i

  • 7/26/2019 ADP000536

    82/106

    Constant-area

    section

    6

    C

    converging

    section

    1.250"

    (a)ar iab le-area

    mixing

    section.

    re

    \

    L-l

    i

    Constant-area

    section

    mssssw

    (b )

    onstant-area

    mixing

    section.

    Mixing

    tube

    Din.

    Lin.

    1

    2

    3*

    0.995

    1.245

    0.995

    12 .500

    13.000

    12.882

    With

    6converging

    section

    (c)

    Mixingsectionspeci f icat ions.

    1.939"

    5.382"

    0.995"

    Id ) ubsonic

    diffuser

    section.

    F i g u r e

    . 1 - 5

    c h e m a t i c s a n d s p e c i f i c a t i o n so f e j e c t o r

    m i x i n g s e c t i o n s

    1050

    biMMiMiM

    .

    , . : . -

    -

    .

    m

    . . . .

    . - .

  • 7/26/2019 ADP000536

    83/106

    P

    T

    PSN' 'PSN

    Primary

    AP ,

    PS N

    V D I

    standard

    nozzle

    Secondary*

    >

    From

    atmosphere

    V D I

    standard

    nozzle

    AP

    S S N

    P

    T

    SSN'

    S S N

    W

    W

    ^

    S O

    'so

    P O

    P O

    P (X

    .

    44

    +

    X

    Figure

    .1-6

    Experimental

    jector

    et-up

    nd

    otati

    on

    1051

    feM.

  • 7/26/2019 ADP000536

    84/106

    conical

    ozzle,

    nd .5

    lotted

    nozzle

    ofig..1-4)

    n

    ombination

    with

    ach

    ofhenterchangeable

    mixing

    ubes

    1.245nch.D.onstant-

    area

    ube,

    .995

    nch

    .D.

    onstant-area

    ube,

    nd

    ariable-areaube

    ofFig.

    .1-5). The

    exit

    re a

    of

    he

    primary

    nozzles

    as

    onstant

    pro-

    vidingor

    dentical

    reaatiosL./A.ith

    ach

    mixingube.

    Theariable-area

    mixing

    ube

    as

    onstructed

    uchhat

    he

    ntrance

    diameter

    as qual

    o

    he

    iameter

    of

    he

    arger

    . 2 4 5

    nch

    .D.onstant-

    areaube

    while

    he

    exitdiameter as

    quivalent

    o

    he

    diameter

    of

    he

    smaller

    .995

    nch.D.onstant-area

    ube.

    Pressureaps

    ere

    dded

    n

    a

    0.5

    nch

    pacing

    hroughhe

    apered

    sectionof

    he

    ube

    or

    obtaining

    th ewallressure

    istribution.

    Theubsoniciffuser

    of

    Fig.

    .1-5

    as

    added

    o

    he

    ariable-area

    ubenall

    ases

    nd

    o

    he.995

    nch

    .D.

    tuben

    elected

    ests.

    Figure.1-6

    s

    chematic

    of

    he

    est

    et-up

    withnotation

    orhe

    ejector

    nd

    he

    rimary

    nd

    econdary

    masslow

    measurement

    ections.

    Air assed

    or

    oth

    he

    rimary

    nd

    econdary

    ases

    n

    ach

    xperiment

    while

    p0

    as

    eld

    onstant

    nd

    B

    ATM

    ;

    hus,

    he

    atio

    po

    /

    P

    B

    r

    P .

    i

    5

    .-

    was

    onstant.

    In

    ddition,

    asonstant

    or

    ach

    un

    ince

    PO A TM

    t h e

    p r i m a r y

    f l o w

    w a s

    c h o k e d

    i n

    t h e s u p e r s o n i c

    n o z z l e a n d

    P

    f0

    w a s

    c o n s t a n t .h e s e c o n d a r ys t r e a m w a s

    d r a w n

    f r o m

    a t m o s p h e r e ;av a l v ei n t h e

    s e c o n d a r y f l o w l i n e w a s u s e d t oc h a n g e w

    $

    a n d

    P

    SQ

    .

    e n c e ,

    w

    s

    / w

    p

    a n d

    P

    P

    w e r e t h e v a r i a b l e s i n e a c h

    e x p e r i m e n t .

    i n c e

    t h e

    e x p e r i m e n t s

    S O

    PO

    were

    erformed

    with onstant

    aluesof

    ATM

    /P

    p0

    ihe

    xperimental

    results

    m a y

    e

    hought

    of sntersectionsf

    he

    hree-dimensional

    perating

    surfaces,igs.

    .1-2

    nd .1-3,

    with

    planes

    of

    ATU

    /

    p

    p0

    =

    onstant.

    Examples

    ofheesultingwo-dimensional

    arametric

    urves

    re

    ketched

    in

    igs..1-4 nd

    .1-7.

    1052

    %

  • 7/26/2019 ADP000536

    85/106

    3.1.2

    Experimentalesults

    The

    xperimental

    esults

    orhe

    onical

    rimary

    nozzle

    nhe. 245nch.D.

    (A

    pi

    /

    R

    .333)nd .995

    nch

    .D.

    (Apj/ZLj

    .516)

    onstant-area

    mixing

    ubes

    re

    presented

    n

    igs.

    .1-7

    and

    .1-8.

    Figure.1-7

    s

    lotof

    s

    /

    w

    p

    s

    so

    /

    po

    - The

    xperimental

    valuesieery loseohe

    heoretical

    reak-off urves

    t

    xcept

    t

    verymall

    alues

    f

    e

    /

    D

    here,

    sreviously

    discussed,

    he

    lowfield

    becomes

    wo-dimensional

    in

    nature.

    The

    ompression

    atio

    ATM

    /P

    S0

    is

    plottedagainst_

    n

    /

    P

    c

    in

    ig.

    3.1-8. The xperimentalataoints

    ie

    below

    heheoreticalreak-off

    urves

    hich

    imply

    ndicates

    hathe

    ejector

    as

    perating

    nhe

    p0

    /

    P

    .

    TM

    ndependentegime.

    H

    D u eoheomewhatongested

    nature

    ofhe

    heoretical

    A

    /P

    TMo

    v s

    P

    / P

    u r v e s ,

    s i m i l a r

    t o

    t h o s e

    s h o w ni n

    F i g s .2 . 3 - 4 ( a - d ) ,

    t h e

    P O

    so

    theoreticalurves ereot

    ompleted

    n

    he

    po

    /

    p

    ATfc

    -

    ndependent

    egion

    ofFig.

    .1-8

    xcept

    or

    c

    /

    D

    =.316,

    .108,.074,

    nd

    . 0 43at

    5

    P

    A

    /A , .330.

    Comparisons

    etween

    he

    heoretical

    nd xperimental

    results

    erve

    o

    alidateheone-dimensional

    flowmodel.

    From

    ig.

    .1-8

    t

    ould ppearhat

    heejector as

    perating

    closer

    o

    heheoretical

    break-off

    urveor /A

    =

    .330;

    owever ,

    PI

    rO

    a

    ertical

    line

    rawnhroughhe xperimental

    data

    nd

    he

    heoretical

    break-off urveodeterminehebreak-offpoints,ndicatesifferent

    T

    Recal l

    that

    he

    heoretical

    s

    /

    w

    p

    vs

    so

    /

    P

    pa

    urve

    s

    nvariant

    nd

    identical

    o

    he

    reak-off

    urve

    nheP

    ..ndependent

    egime.

    PO AT M

    ,T

    Refer

    ack

    o

    ection

    .3 nd

    ig.

    2.3-4

    or

    more

    omplete

    presenta-

    tionofhe

    ypicalperating

    haracteristicsf njector

    ystem

    s

    determined

    rom

    heheoreticalonstant-areaejector

    model.

    1053

    ft

    aafk

  • 7/26/2019 ADP000536

    86/106

    J

    5

    < o

    u

    iri

    V /

    n

    2

    OO

    o

    *

    5

    4)

    a

    X

    CN

    II

    5 i

    t

    < />

    d

    n

    5

    8 .

    o

    a .

    a.

    in

    " 5

    e

    ^ r

    *

    6

    in

    r-

    C M

    10

    r-

    6

    h

    a

    e

    2

    0

    o

    U II

    6

    5

    -

    O

    Q.

    o

    o

    a.

    < /l

    too

    s

    a.

    fO

    d

    r

    a.

    t.r>

    6

    o

    t- >

    o

    u

    < y *

    oO

    m

    m

    0 )

    o

    j-

    I

    (0

    t

    o

    5 5

    a

    d

    M/

    S

    M

    6

    i

    3

    8

    o

    1054

    amMtittaaaifeatt

    ^sfcSjfc.

  • 7/26/2019 ADP000536

    87/106

    A

    P1

    /A

    M3

    = 0 .516

    2 4k

    3\-

    w

    s

    /

    w

    p

    =0 . 043

    Theoretical

    break-off

    curves

    Experiments

    M

    p]

    = 2

    MWg/Mw,=

    so''

    P 0

    =

    7

    P

    =

    7

    S

    =

    1.4

    5

    -

    5

  • 7/26/2019 ADP000536

    88/106

    valuesof

    w

    for

    ach

    re a

    atio.

    This

    acts

    orne

    out

    y

    he ata

    pointsor

    s

    /w

    p

    at

    A^/A

    =.330 nd

    0.516;hesepoints

    ndicate

    thathe

    jectors

    ereperatedsignificantly

    elow

    he

    applicable

    reak-

    off

    urveatower

    alues

    f

    g

    /w

    p

    .

    The

    xperimental

    esults

    or

    he

    .5onicalrimary

    nozzle

    n

    the. 2 45nch.D. (A /A^

    =

    .330)nd .995nch

    .D.

    (A /A^

    =

    .516)

    constant-areamixing

    ubes

    s

    iven

    n

    igs.

    3.1-9 nd

    .1-10

    ollow

    he

    samerendssorhe

    onicalozzle.

    Again,

    he xperimental

    values

    of

    s

    /

    p

    vs

    so

    /

    po

    re

    n

    ood

    greement

    with

    heone-dimensional

    flow

    model

    xceptatow

    alues

    f

    s

    /Wp. Since

    he

    xperimental

    ata

    points

    or

    ATH

    /P

    S0

    s

    po

    /

    so

    lie

    elow

    he

    heoretical

    reak-off

    curves,

    jectoroperation

    nhe

    po

    /

    ATM

    ndependentegime

    sndicated.

    Addition

    of

    heubsoniciffuserohe .995nch.D.onstant-area

    ube

    idnot

    alter

    hemasslow

    haracteristics

    f

    Fig.

    .1-9ince

    he

    diffuser

    affects

    nly

    he

    ecompression

    hock

    structure

    within

    he

    ejector

    in

    he

    p0

    /

    P

    ATM

    ndependent

    egime. FromFig..1-10

    ts

    pparenthat

    theejector asoperating

    loser

    ohe

    heoreticalreak-off

    urve

    with

    the

    iffuser;

    owever,he

    xperiment

    withhe

    diffuser

    nstalled as

    conducted

    at /P =

    .5;

    hereas,he

    xperiment

    without

    hediffuser

    PO ATM

    wasp e r f o r m e d withPP

    =

    6 . 2 .

    hed i f f e r e n c e

    i n

    P/P

    A

    , . . ,

    a s w i l l

    O

    ATM

    O

    ATM

    b e

    d e m o n s t r a t e d

    below,

    should

    have

    been

    responsible

    for

    t h e

    d i f f e r e n c e s

    i nP

    ?

    values

    withand w i t h o u t

    t h e

    subsonicdiffuse r.

    ATM S O

    The

    xperimental

    results

    *orhe .5

    lotted

    primaryozzle

    n

    trie

    . 245

    nch

    .D.

    (A

    /A

    =

    0.330)

    nd

    .995

    nch

    .D.

    (A

    /A

    =

    p

    i

    M S

    i

    .a

    0.516)

    onstant-area

    ixing

    ubes

    reresented

    n

    igs. 3.1-11

    and

    3.1-12. FromFig. 3.1-11 the

    xperimental

    ata

    or w vs

    /P

    PS0P0

    1056

  • 7/26/2019 ADP000536

    89/106

    C O

    u

    CO

    r-

    _

    < U

    t- >

  • 7/26/2019 ADP000536

    90/106

    12

    A

    P1

    /A

    M

    3

    =

    0 . 516

    Theoretical

    break-off

    curve

    Experiments

    M

    p

    ,

    =

    2 .5

    Mw

    s

    /

    Mw

    p

    =

    T

    so/Tpo=1

    5

    -

    5

  • 7/26/2019 ADP000536

    91/106

    I/)

    i.

    < D

    +->

    U

    (O

    S -

    (O

    -C

    u

    2

    o

    ifl

    i.

    n

    0

    4 ->

    M

    o

    < U

    I

    -5

    *?

    N

    O

    N

    O (0

    c

    1O

    -a

    c u

    n

    +J

    + Jo

    o

    r

    t/ >

    O

    ro

    ro

    C Uo

    s.

    iq

    n

    = J

    gt

    * >v.

    < />

    *

    t_)

    .

    ai

    C 7 >

    u.

    1059

  • 7/26/2019 ADP000536

    92/106

    18

    16-

    14

    .

    12

    o

    Z

    10

    U

    i-

    t- >

    u

    3

    2

    o

    1

    o

    o

    a ;

    < u

    ^ ~

    ID

    0>

    r

    C V

    rM

    IS I

    II

    O

    c

    1

    o

    Z

    0 )

    JLJ

    o

    4J

    c

    o

    -

    I/I VO

    I

    in

    a

    0)

    O

    s -

    (0

    1

    ii

    i

    a

    1069

  • 7/26/2019 ADP000536

    102/106

    1.5-

    QL

    J

    '

    I't-

    xperiments

    M

    pl

    -5

    0.5-

    A

    P 1

    /A

    M

    3

    -

    0.516

    MWj/MWp

    7

    *r,

    "

    1.4

    5. 6

    I?

    W'

    ATM

    o -

    o . .

    0 .5

    1. 0

    - . .

    6

    Curve

    w

    s

    /w

    p

    1

    2

    3

    0 .0

    0.144

    0.254

    j_

    .5

    x,

    n c h e s

    2. 0

    2 .5

    3. 0

    Figure

    .1 -21

    Variable-area,lotted-nozzlejector a ll

    ressure

    distributions

    A^/A^

    0.516,

    2.5,

    nd

    P /P

    to'

    A TM

    5.6)

    1071

    ~-p*i

  • 7/26/2019 ADP000536

    103/106

    2.0,

    1.5

    ?

    ..,....,0.

    05-

    o -

    ->

    Q'o

    p -

    xperiments

    M

    p

    ,

    2.5

    A

    P 1

    /A

    M3"-

    5

    6

    M w

    s

    / w

    p

    -

    T

    S (/

    T

    P 0

    "

    7p

    -7

    8

    -

    4

    V

    A TM 4- 2

    0. 5

    1.0

    9

    ' " o

    T4

    Curve

    w

    s

    /w

    p

    1

    2

    3

    0.0

    0.155

    0.262

    JL

    1.5

    x,nches

    2. 0

    2. 5

    3.0

    F i g u r e

    3 . 1 - 2 2

    a r i a b l e

    a r e .

    s l o t t e d - n o z z l e e j e c t o r

    w a n

    p r e s s u r e

    d i s t r i b u t i o n s

    U,//^

    - 0 . 5 1 6 . ^

    2 . 5 ,a n d

    P O

    ATM

    1072

  • 7/26/2019 ADP000536

    104/106

    nozzle s pposedo

    he

    onicalr imary ozzlesof igs.

    .1 -15hrough

    3.1-18

    nd

    m a y ccount

    orhe

    excellent

    greement

    ofhe

    w

    s

    / vs

    P

    so

    /

    po

    ata

    with

    he

    heoretical

    reak-off

    urve

    of

    ig .

    .1-19,

    althoughhe onstant-areamixing

    ube

    ata

    f

    ig .

    .1-11

    ould

    preju-

    dice

    ny

    onclusions ased

    n

    r imary

    ozzle

    esign

    lone.

    Again,

    ote

    that

    nly

    henitial

    ortions

    of

    he allressure

    distributions re

    presentedn

    igs.

    .1-21

    nd

    . 1 - 22 .

    1073

  • 7/26/2019 ADP000536

    105/106

    -

    . .-

    4.0 C O N C L U S I O N S

    Only

    o m e

    eneral

    onclusions

    will

    e

    rawn

    n

    his

    ect ionince

    specific

    onclusions

    erencluded

    n

    heoregoingections.

    The

    on -

    clusions

    re :

    (1 )

    he

    onstant -area

    jectorlo w

    model

    nd

    omputer

    rogram

    should

    edoptedshe

    asis

    oresignnd

    ystem

    tudies.

    This

    model

    most

    ealistically

    predicts

    he

    operational

    haracteristics

    of

    ejector

    systems.

    The

    elationship

    nd

    orrespondence

    etween

    ariable-area

    nd

    constant -areamixing

    ube

    jectorshouldestablishedyot hxperi-

    mentnd

    analysis.

    (2 )

    he

    analysisofvariable-areamix ing - tubejectors

    hould

    e

    cont inued.

    (3)heesign

    fpotential

    igh-performance

    jector,

    us t

    mprove

    mixing

    ndo m e n t u mransfer;

    e m eesigns

    with

    potentialre :

    unsteady

    flow,

    eriodic

    pulsating

    low,

    esonance

    henomena,

    nd /or

    arious

    nozz le

    nd

    mix ing - tube

    eometr ies.

    (4)

    he

    omputer

    modelsevelooed

    nhistudy

    hould

    eugmented

    an d

    ncorporated

    ntonoverallystemrogram

    nd

    urthermprovement

    of

    ub-system

    models

    houldeont inued .

    I

    MBffiUAfiiai

    BUMC-MOT

    111*0

    1075

  • 7/26/2019 ADP000536

    106/106

    w w w s r v - - - - -

    :