advanced accelerator research with focus on plasma wakefield acceleration, university of oslo, erik...

41
Advanced accelerator research with focus on plasma wakefield acceleration Erik Adli, University of Oslo, August 2014, [email protected] , v2.02

Upload: ernesto-ingledue

Post on 14-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Advanced accelerator researchwith focus on plasma wakefield acceleration

Erik Adli, University of Oslo, August 2014, [email protected], v2.02

Page 2: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Luminosity

Energy reach

• Typical accelerator gradient G~10 MV/m -> L~100 km site for 1 TeV collisions • From energy reach: large accelerating gradient with low breakdown rate

• Beam acceleration: ~10 MW of beam power with high gradient and high efficiency (>~10%)• From luminosity requirements: Low energy spread (<1%) and exellent

beam emittance preservation (~<10 nm)

Physics requirements for a future e+ e- collider: Ecm ~ 1 TeV and L ~ 1034/cm2/s

Main motivation: future HEP machines

Page 3: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

• Novel Two-Beam Acceleration Scheme• Cost effective, reliable, efficient

• Single tunnel, no active power components• Modular, staged energy upgrade

• High acceleration gradient: > 100 MV/m • “Compact” collider: total length < 50 km at 3 teV

• Normal conducting acceleration structures at high RF frequency (12 GHz)

CLIC main linac structure :• 12 GHz Cu TW• 100 MV/m gradient (loaded)• Rf pulse length: tp = 240 ns• Efficiency: ~5%• Emittance preservation: ~10 nm

e+ e-

source main linac

beam delivery

Rf based options : CLIC and ILC

CLIC data :

Page 4: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

High gradient (CLIC 100 MV/m)

Good energy efficiency (CLIC 5-10%)

Excellent emittance preservation (DeN~10 nm)

Small emittance generation (CLIC e ,0N ~10 nm)

Low energy spread (CLIC ~1%) Status:FeasibleChallenging

Requirements for linear collider applications

Page 5: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Advanced accelerator research

Cutting edge accelerator physics research. The objective is to overcome limitations in conventional rf based accelerator technology.

Very high frequency normal conducting rf structures (~100 GHz - ~THz)

116 GHz structure (SLAC)

Dielectric structures

Laser based acceleration Plasma wakefield acceleration

“DLA”(SLAC)

[later slides]

SiO2

~1,0 THz,1-10GV/m

[later slides]

Page 6: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Advanced acceleration researchTwo examples :Key milestones in advanced

accelerator research are counted in term of experimental progress.Experimental progress = ideas + funding + hard work

Page 7: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Direct laser acceleration?

Lawson-Woodward theorem: a particle cannot get a net energy gain if interacting with laser in free space (linear approximation).

Laser technology, and achievable laser fields, is advancing rapidly. For example, for a 1 J, 100 fs laser beam focused into a spot size of 10 micron, has a maximum electric field about 40 GV/cm. Can we use this field for particle acceleration?

= 0

Large particle energy gains, in straight particle trajectories, can only be achieved if material boundaries are used to confine the laser field.

Page 8: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Direct laser acceleration:“System on a chip”

Direct acceleration from a laser beam, in a dielectric structure. This laser beam operates at optical or near infrared wavelengths. Dielectrics show high damage threshold and low loss at those wavelength. Gradients of ~300 MV/m has been been demonstrated across a ~1 mm long structure.Potential for ultra-compact, high-repetition rate acceleration.

Page 9: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Dielectric laser acc. experiment

Proof of principle: laser accelerates (some) particles.Very far from an accelerator applications.

Page 10: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Plasma wakefield accelerationIdeas of ~100 GV/m electric fields in plasma, using 1018 W/cm2 lasers: 1979 T.Tajima and J.M.Dawson (UCLA), Laser Electron Accelerator, Phys. Rev. Lett. 43, 267–270 (1979)

Drive a wave in plasma by the space charge field of an intense charged particle beam (beam-driven) or by the radiation pressure of an intense laser beam (laser-driven).

* Typical plasma densities: 1014-18/cm3

* Length scales: lp~10-1000 um* No surface material break down

Terminology:LWFA: laser wakefield acceleratorPWFA: [beam-driven] plasma wakefield accelerator

Page 11: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Field scales in blown-out plasmasScale of electrical fields :

n0 ~ 1e17/cm3 : EWB = 30 GV/m

Scale of radial focusing forces :

Strong plasma response: all plasma electrons blown-put. A perfect ion focusing channel remains. We call this the blow-out Regime. To be studies in detail later.

"Acceleration and Focusing of Electrons in Two-Dimensional Nonlinear Plasma Wake-fields'', J. B. Rosenzweig (UCLA), Phys. Rev. A -- Rapid Comm . 44, R6189 (1991).

Apply Gauss’ law:

Wave solutions:

Gauss’ law:

n0 ~ 1e17/cm3 : Fr/c ~ MT/mQuadrupolar r-focusing.

n0 : plasma densityEWB: “wave breaking field” – the field scale in PWFA

Page 12: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Beam-driven plasma-wake field acceleration

Features of beam-driven plasma wakefield acceleration (PWFA) :• Plasma wave/wake excited by relativistic particle bunch• Wake extracts energy from driver bunch• Trailing witness bunch extracts energy from wake• Quadrupolar r focusing fields (x and y) within bubble• Beam-cavity alignment is not an issue• Typical values: E>10 GV/m, np~1017 /cm3, λp~100μm

High-gradient experimentally demonstrated at SLAC FFTB (2007) : 42 GeV energy gain in 85 cm of plasma.

12

Page 13: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

PWFA: linear theory

Page 14: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Coordinates – speed of light frame

sz = s - vt

x

The beam travels in the s direction, with speed v. The co-moving coordinate z = s-vt is defined in a frame following the beam travelling with speed v , and gives thus the relative position inside the beam. In plasma wakefield applications, the beam is often travelling with velocity v = c. In this case the frame where z = s- ct is defined is called the speed of light frame.

In plasma wakefield applications other coordinates are often use; our “s” is named “z”, and the co-moving coordinate may be defined as x = ct – z. The beam travels in this case towards negative z (and/or to the left on plots). We use the above definition in this course for consistency with earlier material and with what is often used for conventional acceleration.

Page 15: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Linear density equation

sz = s - vt

ne = n0

ne = n0+dn

nb

Page 16: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Linear plasma density perturbation

z = s – ct [um]

dn / n0

General solution of :

is

Example for n0 = 1016/cm3, σz = 20 μm and N = 106, Gaussian bunch.We see dn / n0 << 1 (ok)

Example from I. Blumenfeld

Page 17: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

One dimensional solution

sz = s - vtnb

z=0z=-sz

We can fully solve the system in one dimension (z), assuming a very wide bunch and all fields in the z-direction. Let the bunch have constant surface charge density, nb = s [m-2] from z=-sz to z=0.

NB: This wide-bunch 1-D scenario is most often not a good model.

NB: symbols “ ”s , surface charge density, and “sz”, bunch length, are unrelated.

Page 18: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Two dimensional solutionsAnalytical expressions can be developed. Main features is that solutions are more complex and that the longitudinal and radial fields depend non-linearly on r :

In the narrow beam limit, the on-axis longitudinal field becomes:

Sinusoidal fields: measure of linearity of plasma wakes

Example for n0 = 1017/cm3, σz = 20 μm and N = 108, Gaussian bunch (Ipeak ~ 10 A). We see Ez << EWB (ok)

Page 19: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

PWFA is driver plus witness

sz = s - vt

x

Reminder: our objective is to accelerate a witness bunch. Keywords :• Gradient• Energy transfer efficiency• Energy spread• Emittance preservation - focusing?

?

Page 20: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

From W. Mori (UCLA)

Linear regime : e- and e+ equivalent“QuickPIC” simulation example of linear regime :

NB: focusing force non-linear in r

Page 21: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Field scaling in the linear regimeFor Gaussian beams, the longitudinal field after a narrow bunch has passed is :

Fields are maximized for the relation kpsz = √2, which yields the scaling law :

The scale of the accelerating field can also be written as :

I.e. fields scale as N/s2z if the plasma density is optimized.

I.e. linear in the peak current.

(peak current)

(constant)

Page 22: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Beam loading and efficiencyA beam “placed” inside an existing wake can add energy (field) to the wake, or extract energy (field) from the wake. The latter is called beam loading.

If all the energy is transferred from the wake to the witness bunch, 100% energy efficiency, it is called full beam loading.

In the linear regime, beam loading in calculated simply by superposition of the fields from the driver wake and the fields from the witness beam.

Constant accelerating field, flattened field, along the witness bunch gives zero energy spread.

In the linear regime, there are important trade-offs between charge, energy spread, energy efficiency and gradient. We will not discuss the details here.

Page 23: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Summary: linear regime

• Focusing and accelerating fields non-linear in r• Symmetric for positive and negative charges

(positrons and electrons are treated the same)• Field scales with peak current• Efficiency and transformer ratio limited• Field size limited (linear assumptions)

Page 24: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

PWFA: the blow-out regime

Page 25: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

From linear to non-linear

nb << n0 – linear regime

nb ~ n0 – non-linear wakes

nb >> n0 – blow-out regime

Figures from W. Mori (UCLA)

Page 26: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Blow-out regime

• If the driver beam current is strong enough, the space-charge force of the driver may blow away all the plasma electrons in its path, leaving a uniform layer of ions behind. The latters assumes the ions don’t move.

• The plasma electronics will form a narrow sheath around the evacuated area, and be pulled back by the ion-channel after the drive beam has passed. We do not attempt to model the sheath formation nor electron trajectories in this lecture (see W. Lu’s papers)

• We shall see that the back of the blown-out region is ideal for plasma acceleration

z = s -ct

Ezplasma electrontrajectories

Page 27: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Quasi-static approximation

Driver is moving with speed c, and is unaffected by the plasma on the time scale the plasma electrons move. z = s – ct. Maxwell equations are in this case simplified as follows :

We assume a cylindrical symmetric system with coordinaties (z, r, f).

At v=c the beam has radial (Er) and azimuthal (Bf) fields only, and travels along z (j=jz).

The plasma fields set up can be longitudinal or radial (jz, jr).

This implies that there are no field components Ef,Bz, Br in the beam-plasma system.“Wave symmetry”

Page 28: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Resulting charge-field relations

Inside the fully blow-out bubble, a special case of the Panofsky-Wenzel theorem holds :

The longitudinal (electric) field is given by the radial currents. For the blow-out regime, a constant Ez to the plasma electron sheath; amplitude given by slope of sheath electron trajectories.

The transverse fields are given by charge density. For the blow-out regime, only ions, with density n0 remains inside the bubble, yielding radial r-focusing for electrons.

Valid inside a fully blown-out bubble.

The Maxwell equations with these simplifications gives directly (easily shown) :

Page 29: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Blow-out regime: ideal for accelerating e-

From W. Mori (UCLA)(loaded)

“QuickPIC” simulation example of blow-out regime :

Page 30: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Energy spread and efficiencyCan not be described by field superposition in the blow-out regime. Non-linear theory shows that an ideal-shaped witness bunch can perfectly flatten the field and a bunch can be accelerated without added energy spread.

Charge ratio drive to witness may be a few. High charge witness acceleration possible.

High efficiencies of energy transfer from drive bunch to witness bunch shown in PIC simulations, up to 90%.

M. Tzoufras et al. Phys. Rev. Lett. 2008 (simulations)

Page 31: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

31

Transformer ratio

Ed

Ea

Page 32: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Sources of emittance growth• Emittance growth due to multiple scattering in plasma

Acceleration to 1 TeV in n0 = 1e17/cm3 -> De ~ 10 um V. Lebedev and S. Nagaitsev,

http://arxiv.org/abs/1304.2419

• Emittance growth due to ion motion: not well studied. Not negligible for sub-um level emittances

• Positrons/protons: attracts plasma e-, repelled by ions (no r focusing). Emittance growth

Possible mitigation: hollow channel plasmas? Under study.

Page 33: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Summary: blow-out regime• Field size easily in ~100 GV/m• Fields scale with square of peak current• Linear focusing in r, for electrons• Accelerating fields uniform in r, for electrons• Positrons behaves very differently than electron (big

challenge)• Energy transfer efficiency from a drive charge to

witness charge can be towards 80-90%• High transformers ratios (>2) possible• Emittance growth a big challenge (for all regimes)

Page 34: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

PWFA: experiments

Page 35: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

The AWAKE experiment at CERN

AWAKE: “A Proton Driven Plasma Wakefield Acceleration Experiment at CERN”. Idea: use CERN proton bunches with kJ energies as a PWFA driver. A 400 GeV SPS bunch is sent into a plasma source, in which it drives self-modulated wake fields with accelerating fields of about 1 GV/m over 10 meters. An e- bunch will sample the wake. Global collaboration with MPI as lead experiment partner. First beam: 2016.

The low-density long beam will self-modulated and generate intense wake fields.

Talk for another day

Page 36: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

36

Set-up of a plasma experiment

Spectrometer y-dipole

Deflecting cavity

YAG

Li OVEN CHERENKOV

e- beam -><- W-chicane Imaging

quadrupoles

LANEX

10 TW Ti:Sa laser

2 km

100 m

Talk for another day

The FACET PWFA experiments at SLAC

Page 37: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

June 2013: first two bunch acceleration results

Laser off:

Laser on (subsequent shot):

Beam spectra at the image plane of the spectrometer

June 2013: we demonstrated acceleration of a beam in plasma for the first time, with

accelerating fields corresponding to 6 billion volts/meter – a factor 100 higher

than convention accelerators.

Talk for another day

Page 38: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Conclusions

Page 39: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

PWFA for linear collider applications

Gradient (~>10 GV/m)

Efficiency (~>50%)

Emittance preservation

Emittance generation (~< 100 nm)

Energy spread (~1%)

Status:EstablishedCurrent researchChallenging

Page 40: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

Extra

Page 41: Advanced accelerator research with focus on plasma wakefield acceleration, University of Oslo, Erik Adli, University of Oslo, August 2014, Erik.Adli@fys.uio.no,

41

Non-linear beam loadingTzoufras et al. : beam-loading in the blow-out regime. More than 80% energy transfer efficiency possible for optimally shaped trapezoidal bunch. Flattening of the longitudinal field along the witness bunch, resulting in small energy spread. :

Almost flat beam loading and good very good efficiency also possible for Gaussian witness bunches. For a given blow out radius, and a given bunch separation, Dz, the optimal beam loading ratio is given by the appropriate witness bunch charge, bunch length (QWB, sz,WB).

From Tzoufras et al., Physics of Plasmas, 16, 056705 (2009)