advanced problems of lateral- directional dynamics · roll rate responseis marginally well...

19
12/4/18 1 Advanced Problems of Lateral- Directional Dynamics Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 4 th -order dynamics Steady-state response to control Transfer functions Frequency response Root locus analysis of parameter variations Residualization Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/FlightDynamics.html Flight Dynamics 595-627 1 Learning Objectives Stability-Axis Lateral-Directional Equations Δ ! r(t ) Δ ! β (t ) Δ ! p(t ) Δ ! φ(t ) = N r N β N p 0 1 Y β V N 0 g V N L r L β L p 0 0 0 1 0 Δr(t ) Δβ (t ) Δp(t ) Δφ(t ) + ~0 N δ R 0 0 L δ A ~0 0 0 Δδ A Δδ R Δx 1 Δx 2 Δx 3 Δx 4 " # $ $ $ $ $ % & ' ' ' ' ' = Δr Δβ Δp Δφ " # $ $ $ $ $ % & ' ' ' ' ' = Yaw Rate Perturbation Sideslip Angle Perturbation Roll Rate Perturbation Roll Angle Perturbation " # $ $ $ $ $ % & ' ' ' ' ' Δu 1 Δu 2 " # $ $ % & ' ' = Δδ A Δδ R " # $ % & ' = Aileron Perturbation Rudder Perturbation " # $ $ % & ' ' With idealized aileron and rudder effects (i.e., N δA = L δR = 0) 2

Upload: others

Post on 22-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

  • 12/4/18

    1

    Advanced Problems of Lateral-Directional Dynamics

    Robert Stengel, Aircraft Flight DynamicsMAE 331, 2018

    • 4th-order dynamics– Steady-state response to control– Transfer functions– Frequency response– Root locus analysis of parameter variations

    • Residualization

    Copyright 2018 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE331.html

    http://www.princeton.edu/~stengel/FlightDynamics.html

    Flight Dynamics595-627

    1

    Learning Objectives

    Stability-Axis Lateral-Directional Equations

    Δ!r(t)

    Δ !β(t)Δ!p(t)Δ !φ(t)

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    =

    Nr Nβ Np 0

    −1YβVN

    0 gVN

    Lr Lβ Lp 0

    0 0 1 0

    ⎢⎢⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥⎥⎥

    Δr(t)Δβ(t)Δp(t)Δφ(t)

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    +

    ~ 0 NδR0 0LδA ~ 00 0

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    ΔδAΔδR

    ⎣⎢

    ⎦⎥

    Δx1Δx2Δx3Δx4

    "

    #

    $$$$$

    %

    &

    '''''

    =

    ΔrΔβ

    ΔpΔφ

    "

    #

    $$$$$

    %

    &

    '''''

    =

    Yaw Rate PerturbationSideslip Angle PerturbationRoll Rate PerturbationRoll Angle Perturbation

    "

    #

    $$$$$

    %

    &

    '''''

    Δu1Δu2

    "

    #$$

    %

    &''=

    ΔδAΔδR

    "

    #$

    %

    &' =

    Aileron PerturbationRudder Perturbation

    "

    #$$

    %

    &''

    With idealized aileron and rudder effects (i.e., NδA = LδR = 0)

    2

    http://www.princeton.edu/~stengel/FlightDynamics.htmlhttp://adg.stanford.edu/aa241/AircraftDesign.html

  • 12/4/18

    2

    Lateral-Directional Characteristic Equation

    ΔLD (s) = s − λS( ) s − λR( ) s2 + 2ζωns +ωn2( )DR

    Typically factors into real spiral and roll roots and an oscillatory pair of Dutch roll roots

    ΔLD (s) = s4 + Lp + Nr +

    YβVN

    ⎛⎝⎜

    ⎞⎠⎟ s

    3

    + Nβ − LrNp + LpYβVN

    + NrYβVN

    + Lp⎛⎝⎜

    ⎞⎠⎟

    ⎡⎣⎢

    ⎤⎦⎥s2

    + Yβ VNLrNp − LpNr( ) + Lβ Np − gVN( )⎡⎣⎢ ⎤⎦⎥ s

    + gVNLβNr − LrNβ( )

    = s4 + a3s3 + a2s

    2 + a1s + a0 = 0

    3

    Business Jet Example of Lateral-Directional

    Characteristic Equation

    ΔLD (s) = s − 0.00883( ) s +1.2( ) s2 + 2 0.08( ) 1.39( )s +1.392#$ %&Slightly

    unstable SpiralStable Roll

    Lightly damped Dutch roll

    Dutch roll

    Spiral

    Dutch roll

    Roll

    4

  • 12/4/18

    3

    4th-Order Initial-Condition Responses of Business Jet

    • Initial roll angle and rate have little effect on yaw rate and sideslip angle responses

    • Roll angle is slightly divergent (spiral mode)• Initial yaw rate and sideslip angle have large effect on

    roll rate and roll angle responses

    Initial yaw rate

    Initial sideslip angle

    Initial roll rate

    Initial roll angle

    5

    ΔRS (s) = s s− Lp( )λS = 0λR = Lp

    Approximate Roll and Spiral Modes

    ΔpΔ φ

    #

    $%%

    &

    '((=

    Lp 0

    1 0

    #

    $%%

    &

    '((

    ΔpΔφ

    #

    $%%

    &

    '((+

    LδA0

    #

    $%%

    &

    '((ΔδA

    Characteristic polynomial has real roots

    • Roll rate is damped by Lp• Roll angle is a pure integral of roll rate

    Neutral stability

    Generally < 0

    6

  • 12/4/18

    4

    Approximate Dutch Roll Mode

    ΔrΔ β

    #

    $%%

    &

    '((=

    Nr NβYrVN

    −1*

    +,

    -

    ./

    YβVN

    #

    $

    %%%%

    &

    '

    ((((

    ΔrΔβ

    #

    $%%

    &

    '((+

    NδRYδRVN

    #

    $

    %%%

    &

    '

    (((ΔδR

    ωnDR = Nβ +NrYβVN

    ζDR = − Nr +YβVN

    %

    &'

    (

    )* 2 Nβ +Nr

    YβVN

    • With negligible side-force sensitivity to yaw rate, Yr

    • Characteristic polynomial, natural frequency, and damping ratio

    7

    ΔDR(s) = s2 − Nr +

    YβVN

    ⎛⎝⎜

    ⎞⎠⎟ s + Nβ 1−

    YrVN( )+ Nr Yβ VN⎡⎣⎢ ⎤⎦⎥

    ω nDR = Nβ 1−YrVN( )+ Nr Yβ VN

    ζDR = − Nr +YβVN

    ⎛⎝⎜

    ⎞⎠⎟ 2 Nβ 1−

    YrVN( )+ Nr Yβ VN

    Effects of Variation in Primary Stability

    Derivatives

    8

  • 12/4/18

    5

    Nβ Effect on 4th-Order Roots

    • Group Δ(s) terms multiplied by Nβ to form numerator

    • Denominator formed from remaining terms of Δ(s)

    ΔLD (s) = d(s)+ Nβn(s) = 0

    k n(s)d(s)

    = −1=Nβ s − z1( ) s − z2( )

    s − λ1( ) s − λ2( ) s2 + 2ζω ns +ω n2( )

    Nβ > 0

    Nβ < 0• Positive Nβ

    – Increases Dutch roll natural frequency – Damping ratio decreases but remains

    stable– Spiral mode drawn toward origin– Roll mode unchanged

    • Negative Nβ destabilizes Dutch roll mode

    Root Locus Gain = Directional Stability

    Roll Spiral

    Dutch Roll

    Dutch Roll

    Zero

    Zero

    9

    Nr Effect on 4th-Order Roots

    ΔLD (s) = d(s)+ Nrn(s) = 0

    k n(s)d(s)

    = −1=Nr s − z1( ) s2 + 2µνns +νn2( )

    s − λ1( ) s − λ2( ) s2 + 2ζω ns +ω n2( )• Negative Nr

    – Increases Dutch roll damping – Draws spiral and roll modes together

    • Positive Nr destabilizes Dutch roll mode

    Nr < 0 Nr > 0Root Locus Gain = Yaw Damping

    Roll Spiral

    Zero

    Dutch Roll

    Dutch Roll

    Zero

    Zero

    10

  • 12/4/18

    6

    Lp Effect on 4th-Order Roots

    ΔLD (s) = d(s)+ Lpn(s) = 0

    k n(s)d(s)

    = −1=Lps s

    2 + 2µνns +νn2( )

    s − λ1( ) s − λ2( ) s2 + 2ζω ns +ω n2( )Lp < 0 Lp > 0

    • Negative Lp– Roll mode time constant– Draws spiral mode toward origin

    • Positive Lp destabilizes roll mode• Lp: negligible effect on Dutch roll

    mode• Lp can become positive at high angle

    of attack

    Root Locus Gain = Roll Damping

    Roll SpiralZero

    Dutch Roll & Zero

    Dutch Roll & Zero

    11

    Coupling Stability Derivatives

    12

  • 12/4/18

    7

    Dihedral (Lβ) Effect on 4th-Order Roots

    • Negative Lβ– Stabilizes spiral and roll modes but ...– Destabilizes Dutch roll mode

    • Positive Lβ does the opposite

    Root Locus Gain = Dihedral Effect

    ΔLD (s) = d(s)+ LβgVN

    − Np( )n(s) = 0k n(s)d(s)

    = −1=Lβ

    gVN

    − Np( ) s − z1( )s − λS( ) s − λR( ) s2 + 2ζω nDR s +ω nDR2( )

    Lβ< 0 Lβ > 0

    Bizjet Example

    ΔLD (s) =

    s − 0.00883( ) s +1.2( ) s2 + 2 0.08( ) 1.39( )s +1.392#$ %&

    Roll SpiralZero

    Dutch Roll

    Dutch Roll

    13

    Stabilizing Lateral-Directional Motions

    • Provide sufficient Lβ (–) to stabilize the spiral mode• Provide sufficient Nr (–) to damp the Dutch roll mode

    How can Lβ and Nr be adjusted artificially , i.e., by closed-loop control?

    Original Root Locus Increased |Nr|

    Solar Impulse

    14

  • 12/4/18

    8

    Oscillatory Roll-Spiral ModeΔRSres = s − λS( ) s − λR( ) or s2 + 2ζω ns +ω n2( )RS

    The characteristic equation factors into real or complex roots

    Real roots are roll mode and spiral mode when

    LβNr > LrNβ and

    Np Lβ + LrYβ /VN( ) 2 gVN LβNr − LrNβ( )⎡

    ⎣⎢

    ⎦⎥

  • 12/4/18

    9

    4th-Order Frequency Response

    17

    Yaw Rate and Sideslip Angle Frequency Responses of Business Jet

    2nd-Order Response to Rudder

    Yawing response to aileron is not negligibleYaw rate response is poorly characterized by the 2nd-order model below the

    Dutch roll natural frequency Sideslip angle response is adequately characterized by the 2nd-order model

    4th-Order Response to Aileron and Rudder

    Δr jω( )ΔδA jω( )

    Δβ jω( )ΔδA jω( )

    Δr jω( )ΔδR jω( )

    Δβ jω( )ΔδR jω( )

    Δr jω( )ΔδR jω( )

    Δβ jω( )ΔδR jω( )

    18

  • 12/4/18

    10

    Roll Rate and Roll Angle Frequency Responses of Business Jet

    2nd-Order Response to Aileron

    Roll response to rudder is not negligibleRoll rate response is marginally well characterized by the 2nd-order model

    Roll angle response is poorly characterized at low frequency by the 2nd-order model

    Δp jω( )ΔδR jω( )

    Δφ jω( )ΔδR jω( )

    Δp jω( )ΔδA jω( )

    Δφ jω( )ΔδA jω( )

    Δp jω( )ΔδA jω( )

    Δφ jω( )ΔδA jω( )

    4th-Order Response to Aileron and Rudder

    19

    Frequency and Step Responses to Aileron Input

    Roll rate response is relatively benignRatio of roll angle to sideslip response is

    important to the pilot

    Yaw/sideslip sensitivity in the vicinity of the Dutch roll natural frequency

    Δr jω( )ΔδA jω( )

    Δβ jω( )ΔδA jω( )

    Δp jω( )ΔδA jω( )

    Δφ jω( )ΔδA jω( )

    Δv t( )

    Δy t( )

    Δr t( )

    Δp t( )

    Δψ t( )

    Δφ t( )

    20

  • 12/4/18

    11

    Frequency and Step Responses to Rudder Input

    Lightly damped yaw/sideslip responsewould be hard to control precisely

    Yaw response variability near and below the Dutch roll natural frequency

    Significant roll rate response near the Dutch roll natural frequency

    Δr jω( )ΔδR jω( )

    Δβ jω( )ΔδR jω( )

    Δp jω( )ΔδR jω( )

    Δφ jω( )ΔδR jω( )

    Δv t( ) Δy t( )

    Δr t( )

    Δp t( )Δψ t( )

    Δφ t( )

    21

    Reduction of Model Order by Residualization

    22

  • 12/4/18

    12

    Approximate Low-Order Response

    • Dynamic model order can be reduced when– One mode is stable and well-damped, and it and is

    faster than the other– The two modes are coupled

    Δx fastΔxslow

    "

    #

    $$

    %

    &

    ''=

    Ffast Fslowfast

    Ffastslow Fslow

    "

    #

    $$

    %

    &

    ''

    Δx fastΔxslow

    "

    #

    $$

    %

    &

    ''+

    G fastGslow

    "

    #

    $$

    %

    &

    ''Δu

    Δx f = FfΔx f + FsfΔxs +G fΔu

    Δxs = FfsΔx f + FsΔxs +GsΔu 23

    Express as 2 separate equations

    Approximation for Fast-Mode ResponseAssume that fast mode reaches steady state very quickly

    compared to slow-mode response

    Steady-state solution for Δxfast

    Δx f = −Ff−1 Fs

    fΔxs +G fΔu( )24

    Δ!x f ≈ 0 ≈ FfΔx f + FsfΔxs +G fΔu

    Δ!xs = FfsΔx f + FsΔxs +GsΔu

    0 ≈ FfΔx f + FsfΔxs +G fΔu

    FfΔx f = −FsfΔxs −G fΔu

  • 12/4/18

    13

    Substitute quasi-steady Δxfast in differential equation for Δxslow

    Residualized differential equation for Δxslow

    Δxs = F 's Δxs +G 's Δu

    F 's = Fs − FfsFf

    −1Fsf⎡⎣ ⎤⎦

    G 's = Gs − FfsFf

    −1G f⎡⎣ ⎤⎦

    where

    Adjust Slow-Mode Equation for Fast-Mode Steady State

    25

    Δ!xs = −Ffs Ff

    −1 FsfΔxs +G fΔu( )⎡⎣ ⎤⎦ + FsΔxs +GsΔu

    = Fs − FfsFf

    −1Fsf⎡⎣ ⎤⎦Δxs + Gs − Ff

    sFf−1−1G f⎡⎣ ⎤⎦Δu

    Model of the ResidualizedRoll-Spiral Mode

    Residualized roll/spiral equation

    Δ!pΔ !φ

    ⎣⎢⎢

    ⎦⎥⎥"

    Lp −Np Lr

    YβVN

    + Lβ⎛⎝⎜

    ⎞⎠⎟

    Nβ + NrYβVN

    ⎛⎝⎜

    ⎞⎠⎟

    ⎢⎢⎢⎢

    ⎥⎥⎥⎥

    gVN

    LrNβ − LβNr( )Nβ + Nr

    YβVN

    ⎛⎝⎜

    ⎞⎠⎟

    ⎢⎢⎢⎢

    ⎥⎥⎥⎥

    1 0

    ⎢⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥⎥

    ΔpΔφ

    ⎣⎢⎢

    ⎦⎥⎥+#

    =f11 f121 0

    ⎣⎢⎢

    ⎦⎥⎥

    ΔpΔφ

    ⎣⎢⎢

    ⎦⎥⎥+#

    26

    Yawing motion is assumed to be instantaneous compared to rolling motions

  • 12/4/18

    14

    ΔRSres = s2 +1.0894s − 0.0108 = 0

    = s − 0.0098( ) s +1.1( ) = s − λS( ) s − λR( )

    Roots of the 2nd-Order Residualized Roll-Spiral Mode

    For the business jet model

    Slightly unstable spiral modeSimilar to 4th-order roll-spiral results

    ΔLD (s) = s − 0.00883( ) s +1.2( ) s2 + 2 0.08( ) 1.39( )s +1.392#$ %& 27

    sI− F 'RS = s1 00 1

    ⎣⎢

    ⎦⎥ −

    f11 f121 0

    ⎣⎢⎢

    ⎦⎥⎥= ΔRSres

    = s2 − Lp − NpLβ + LrYβ /VNNβ + NrYβ /VN

    ⎝⎜⎞

    ⎠⎟⎡

    ⎣⎢⎢

    ⎦⎥⎥s + g

    VN

    LβNr − LrNβNβ + NrYβ /VN

    ⎝⎜⎞

    ⎠⎟

    = s − λS( ) s − λR( ) or s2 + 2ζω ns +ω n2( )RS = 0

    28

    Next:Flying Qualities

  • 12/4/18

    15

    Supplemental Material

    29

    • 2nd-order-model eigenvalues are close to those of the 4th-order model• Eigenvalue magnitudes of Dutch roll and roll roots are similar

    Bizjet Fourth- and Second-Order Models and Eigenvalues

    Fourth-Order ModelF = G = Eigenvalue Damping Freq. (rad/s)

    -0.1079 1.9011 0.0566 0 0 -1.1196 0.00883

    -1 -0.1567 0 0.0958 0 0 -1.20.2501 -2.408 -1.1616 0 2.3106 0 -1.16e-01 + 1.39e+00j 8.32E-02 1.39E+00

    0 0 1 0 0 0 -1.16e-01 - 1.39e+00j 8.32E-02 1.39E+00

    Dutch Roll ApproximationF = G = Eigenvalue Damping Freq. (rad/s)

    -0.1079 1.9011 -1.1196 -1.32e-01 + 1.38e+00j 9.55E-02 1.38E+00

    -1 -0.1567 0 -1.32e-01 - 1.38e+00j 9.55E-02 1.38E+00

    Roll-Spiral ApproximationF = G = Eigenvalue Damping Freq. (rad/s)

    -1.1616 0 2.3106 0

    1 0 0 -1.16

    Unstable

    30

  • 12/4/18

    16

    Roll Acceleration Due to Yaw Rate, Lr

    Lr ≈ClrρVN

    2

    2Ixx

    ⎛⎝⎜

    ⎞⎠⎟Sb

    = Clr̂b2VN

    ⎛⎝⎜

    ⎞⎠⎟

    ρVN2

    2Ixx

    ⎛⎝⎜

    ⎞⎠⎟Sb = Clr̂

    ρVN4Ixx

    ⎛⎝⎜

    ⎞⎠⎟Sb2

    31

    ΔLD (s) = d(s)+ LrNpn(s) = 0

    kn(s)d(s)

    = −1=LrNp s − z1( ) s − z2( )

    s − λ1( ) s − λ2( ) s2 + 2ζω ns +ω n2( )

    Root Locus Gain = Roll Due to Yaw Rate Lr < 0 Lr > 0

    Yaw Acceleration Due to Roll Rate, Np

    Np ≈ CnpρVN

    2

    2Izz

    #

    $%&

    '(Sb

    = Cnp̂b2VN

    #

    $%&

    '(ρVN

    2

    2Izz

    #

    $%&

    '(Sb = Cnp̂

    ρVN4Ixx

    #

    $%&

    '(Sb2

    32

    ΔLD (s) = d(s)+ Npn(s) = 0

    kn(s)d(s)

    = −1=Nps s − z1( )

    s − λ1( ) s − λ2( ) s2 + 2ζω ns +ω n2( )

    Np > 0 Np < 0 Root Locus Gain = Yaw due to Roll Rate

  • 12/4/18

    17

    Steady-State ResponseΔxS = −F

    −1GΔuS

    33

    Equilibrium Response of2nd-Order Dutch Roll Model

    ΔrSSΔβSS

    #

    $%%

    &

    '((= −

    YβVN

    −Nβ

    1 Nr

    #

    $

    %%%

    &

    '

    (((

    YβVN

    Nr +Nβ*

    +,

    -

    ./

    NδR0

    #

    $%%

    &

    '((ΔδRSS

    ΔrS = −

    YβVN

    NδR%

    &'

    (

    )*

    YβVN

    Nr +Nβ%

    &'

    (

    )*

    ΔδRS

    ΔβS = −NδR

    YβVN

    Nr +Nβ%

    &'

    (

    )*

    ΔδRS

    Equilibrium response to constant rudder

    Steady yaw rate and sideslip angle are not zero

    34

  • 12/4/18

    18

    Equilibrium Response of 2nd-Order Roll-Spiral Model

    ΔpS = −LδALp

    ΔδAS

    Δφ(t)S = −LδALp

    Δδ AS dt0

    t

    ΔpSSΔφSS

    #

    $%%

    &

    '((= −

    Lp 0

    1 0

    #

    $%%

    &

    '((

    −1LδA0

    #

    $%%

    &

    '((ΔδASS

    Lp 0

    1 0

    !

    "##

    $

    %&&

    −1

    =

    0 0−1 Lp

    !

    "##

    $

    %&&

    0

    but

    • Steady roll rate proportional to aileron

    • Roll angle, integral of roll rate, continually increases

    Equilibrium state with constant aileron

    ΔpS = −Lp−1LδAΔδAS

    taken alone

    35

    Equilibrium Response of 4th-Order Model

    Equilibrium state with constant aileron and rudder deflection

    ΔrSΔβSΔpSΔφS

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    = −

    Nr Nβ Np 0

    −1YβVN

    0 gVN

    Lr Lβ Lp 0

    0 0 1 0

    ⎢⎢⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥⎥⎥

    −1

    ~ 0 NδR0 0LδA ~ 00 0

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    ΔδASΔδRS

    ⎣⎢⎢

    ⎦⎥⎥

    36

    ΔrSΔβSΔpSΔφS

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    =

    gVN

    LδANβ −gVN

    LβNδR

    gVN

    LδANrgVN

    LrNδR

    0 0

    Nβ + NrYβVN

    ⎛⎝⎜

    ⎞⎠⎟LδA − Lβ + Lr

    YβVN

    ⎛⎝⎜

    ⎞⎠⎟NδR

    ⎢⎢⎢⎢⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥⎥⎥⎥⎥

    gVN

    LβNr − LrNβ( )ΔδASΔδRS

    ⎣⎢⎢

    ⎦⎥⎥

  • 12/4/18

    19

    37

    NTSB Simulation of American Flight 587

    Flight simulation derived from digital flight data recorder (DFDR) tape

    38