ae2104 flight-mechanics-slides 3

69
1 Challenge the future Flight and Orbital Mechanics Lecture slides

Upload: tu-delft-opencourseware

Post on 01-Jun-2015

516 views

Category:

Education


0 download

DESCRIPTION

These are the lecture slides to the third lecture of the course AE2104 Flight and Orbital mechanics.

TRANSCRIPT

Page 1: Ae2104 flight-mechanics-slides 3

1Challenge the future

Flight and Orbital Mechanics

Lecture slides

Page 2: Ae2104 flight-mechanics-slides 3

Semester 1 - 2012

Challenge the future

DelftUniversity ofTechnology

Flight and Orbital MechanicsLecture hours 5, 6, 7 – Turning performance

Mark Voskuijl

Page 3: Ae2104 flight-mechanics-slides 3

2AE2104 Flight and Orbital Mechanics |

Question

Lockheed F-104 StarfighterTop speed Mach 2.2 (at 10 km altitude)

How large would the turning radius be if an aircraft performs a horizontal steady turn at this airspeed, with a bank angle of 30 deg?

Page 4: Ae2104 flight-mechanics-slides 3

3AE2104 Flight and Orbital Mechanics |

Turn at Mach 2.2, bank angle 30 deg

Circle with radius 75 km…

Page 5: Ae2104 flight-mechanics-slides 3

4AE2104 Flight and Orbital Mechanics |

Content

• Aim

• How to fly a turn

• Equations of motion

• Load factor and performance

diagrams

• Turning performance

• Example calculations

• Advanced manoeuvres

• Altitude effects

• Summary

• Example exam question

Page 6: Ae2104 flight-mechanics-slides 3

5AE2104 Flight and Orbital Mechanics |

Content

• Aim

• How to fly a turn

• Equations of motion

• Load factor and performance

diagrams

• Turning performance

• Example calculations

• Advanced manoeuvres

• Altitude effects

• Summary

• Example exam question

Page 7: Ae2104 flight-mechanics-slides 3

6AE2104 Flight and Orbital Mechanics |

Aim

Calculate turning performance of a given aircraft

• Minimum turn radius (tightest turn)

• Minimum time to turn (fastest turn)

• Maximum load factor (steepest turn)

• Rate one/two/three turn (civil operations)

• Assumption: sustained turns

Page 8: Ae2104 flight-mechanics-slides 3

7AE2104 Flight and Orbital Mechanics |

Content

• Aim

• How to fly a turn

• Equations of motion

• Load factor and performance

diagrams

• Turning performance

• Example calculations

• Advanced manoeuvres

• Altitude effects

• Summary

• Example exam question

Page 9: Ae2104 flight-mechanics-slides 3

8AE2104 Flight and Orbital Mechanics |

How to fly a turn?

Page 10: Ae2104 flight-mechanics-slides 3

9AE2104 Flight and Orbital Mechanics |

How to fly a turn

L

W

L W

T D

Steady horizontal flight

Page 11: Ae2104 flight-mechanics-slides 3

10AE2104 Flight and Orbital Mechanics |

How to fly a turn

W

Lcos

Only roll:Vertical component of the lift is smaller than the weight

cosL W Roll the aircraft

Page 12: Ae2104 flight-mechanics-slides 3

11AE2104 Flight and Orbital Mechanics |

How to fly a turn

cos

L W

L W

Lcos

Lcos

D

D T

Roll the aircraft(increase angle of attack)

Page 13: Ae2104 flight-mechanics-slides 3

12AE2104 Flight and Orbital Mechanics |

How to fly a turnRoll the aircraft and increase the pitch

Page 14: Ae2104 flight-mechanics-slides 3

13AE2104 Flight and Orbital Mechanics |

How to fly a turn

1. Roll the aircraft to start turning

2. Nose up to maintain altitude

3. Increase the thrust to maintain airspeed

Page 15: Ae2104 flight-mechanics-slides 3

14AE2104 Flight and Orbital Mechanics |

Content

• Aim

• How to fly a turn

• Equations of motion

• Load factor and performance

diagrams

• Turning performance

• Example calculations

• Advanced manoeuvres

• Altitude effects

• Summary

• Example exam question

Page 16: Ae2104 flight-mechanics-slides 3

15AE2104 Flight and Orbital Mechanics |

Equations of motion

0 T D

2

sin WV

LgR

T

Lcos

D

L

Lsin

W

V

Lsin

=d / dt

R

Free Body Diagram

0

mV2 / R

mV2 / R

0

Kinetic Diagram

F ma

Eq. of motion

2

sin

cos

T D

WVL

gR

L W

Horizontal sustained turn

0 cosL W

Page 17: Ae2104 flight-mechanics-slides 3

16AE2104 Flight and Orbital Mechanics |

Content

• Aim

• How to fly a turn

• Equations of motion

• Load factor and performance

diagrams

• Turning performance

• Example calculations

• Advanced manoeuvres

• Altitude effects

• Summary

• Example exam question

Page 18: Ae2104 flight-mechanics-slides 3

17AE2104 Flight and Orbital Mechanics |

Load factor and performance diagrams

1

cos costurn

Ln

L

cosW L

Ln

W

L nW

Load factor:

Apparent weight(C is a virtual / fictitious force)

Load factor during steady horizontal turn:

,30

,45

,60

1.15

1.41

2

turn

turn

turn

n

n

n

Load factor

Video 1 F22 high g turnhttp://www.youtube.com/watch?v=n34RwIUlnAo&feature=related

Video 2 (pilot’s perspective)http://www.youtube.com/watch?v=5LMVVey5bCM&feature=related

Page 19: Ae2104 flight-mechanics-slides 3

18AE2104 Flight and Orbital Mechanics |

Load factor and performance diagrams

Drag

V

Performance diagram

What will happen to this diagram in a turn?

Page 20: Ae2104 flight-mechanics-slides 3

19AE2104 Flight and Orbital Mechanics |

Load factor and performance diagrams

212LC V S nW

2 1

L

nWV

S C

, LV function n C

L nW L nWD D D

L L rP DV

Airspeed Aerodynamic drag Power required

Note:

a r

T D

P P

Conclusion:V, D, Pr are functions of lift coefficient and load factor(In symmetric flight, they only depend on the lift coefficient)

D

L

CD nW

C

, LD function n C

2 1Dr

L L

C nWP nW

C S C

23 3

3

2 Dr

L

Cn WP

S C

,r LP function n C

Performance diagram

Page 21: Ae2104 flight-mechanics-slides 3

20AE2104 Flight and Orbital Mechanics |

Load factor and performance diagrams

2 1

L

nWV n

S C

D

L

CD nW n

C

Effect of load factor (n) on airspeed (V)(at constant angle of attack)

rP DV n n

Effect of load factor (n) on aerodynamic drag (D)(at constant angle of attack)

Effect of load factor (n) on Power required (Pr)(at constant angle of attack)

Performance diagram

Page 22: Ae2104 flight-mechanics-slides 3

21AE2104 Flight and Orbital Mechanics |

Load factor and performance diagrams

Drag

V

Each point relates to 1 angle of attack (CL)

(note: this graph is purely qualitative)

Performance diagram

Page 23: Ae2104 flight-mechanics-slides 3

22AE2104 Flight and Orbital Mechanics |

Load factor and performance diagrams

Page 24: Ae2104 flight-mechanics-slides 3

23AE2104 Flight and Orbital Mechanics |

Load factor and performance diagrams

Tmax

Vnmax

T, D

V

1. Vmin increases when n increases

2. Vmin first aerodynamically limited then thrust limited

(safety: regulation for stick force/g)

3. Vmax decreases when n increases

4. At nmax Vmin = Vmax

Performance diagram

Page 25: Ae2104 flight-mechanics-slides 3

24AE2104 Flight and Orbital Mechanics |

Load factor and performance diagrams

Tmax

n limited by engine

T, D

V

n limited by CLmax

2 speed ranges

Performance diagram

Page 26: Ae2104 flight-mechanics-slides 3

25AE2104 Flight and Orbital Mechanics |

Content

• Aim

• How to fly a turn

• Equations of motion

• Load factor and performance

diagrams

• Turning performance

• Example calculations

• Advanced manoeuvres

• Altitude effects

• Summary

• Example exam question

Page 27: Ae2104 flight-mechanics-slides 3

26AE2104 Flight and Orbital Mechanics |

Turning performance

• Maximum load factor (steepest turn)

• Minimum turn radius (tightest turn)

• Minimum time to turn (fastest turn)

• Rate one/two/three turn (civil operations)

Assumption: sustained turns

Page 28: Ae2104 flight-mechanics-slides 3

27AE2104 Flight and Orbital Mechanics |

Turning performance

• Maximum load factor (steepest turn)

• Minimum turn radius (tightest turn)

• Minimum time to turn (fastest turn)

• Rate one/two/three turn (civil operations)

Assumption: sustained turns

Page 29: Ae2104 flight-mechanics-slides 3

28AE2104 Flight and Orbital Mechanics |

Steepest turn

Tmax

T, D

V

Tmax

T, D

V

Aim: For each airspeed nmax

V1V2V3V4 V5 V6 V7 V8 V9

Page 30: Ae2104 flight-mechanics-slides 3

29AE2104 Flight and Orbital Mechanics |

Steepest turn

V

n

1

Achievable load factor as function of airspeed

Page 31: Ae2104 flight-mechanics-slides 3

30AE2104 Flight and Orbital Mechanics |

Steepest turn

2max

2

2 1

LCL nW n V

W

S V

D L

L D

C CTT D nW n

C W C

• Range A:

• Range B:

maxL LC C

max Vary LT T C

Tmax

n limited by engine

T, D

Vn limited by CLmax

Calculation of nmax(V)

L

2 1 at every C ,

L

nWV n V

S C

Page 32: Ae2104 flight-mechanics-slides 3

31AE2104 Flight and Orbital Mechanics |

Steepest turn

max

L

D

C

C

Tmax

Vnmax

D at nmax

V

D, T

• Vnmax at Dmin

• D

L

CD nW

C

Solution for jet aircraft

Note: You must be able to derive the final step

0L DC C Ae

Page 33: Ae2104 flight-mechanics-slides 3

32AE2104 Flight and Orbital Mechanics |

Steepest turn

0

max

maxmax

max

max 2 1

opt

opt

D

L

L

D

L D

n

L

CT D nW

C

T Cn

W C

C C Ae

n WV

S C

Solution for jet aircraft

(A numerical example will follow later)

Page 34: Ae2104 flight-mechanics-slides 3

33AE2104 Flight and Orbital Mechanics |

Turning performance

• Maximum load factor (steepest turn)

• Minimum turn radius (tightest turn)

• Minimum time to turn (fastest turn)

• Rate one/two/three turn (civil operations)

• Assumption: sustained turns

Page 35: Ae2104 flight-mechanics-slides 3

34AE2104 Flight and Orbital Mechanics |

Do not confuse turn radius with time to turn!

Page 36: Ae2104 flight-mechanics-slides 3

35AE2104 Flight and Orbital Mechanics |

Minimum turn radius (tightest turn)

First we must have an equation for the turn radius

Using the equilibrium equations:

1

cos

Ln

W

2

sin

cos

W VL

g R

W L

2 2

2

1cos sin 1 sin 1x x

n

2 2

2 2

11

1

W V VnW R

n g R g n

Page 37: Ae2104 flight-mechanics-slides 3

36AE2104 Flight and Orbital Mechanics |

Minimum turn radius

For a given n, R decreases when V decreases. So, tighter turns are possible at lower airspeeds

An increase in n for a given V results in a decrease in R

(remember the example of the aircraft turning at Mach 2)

2

2 1

VR

g n

V

R

Page 38: Ae2104 flight-mechanics-slides 3

37AE2104 Flight and Orbital Mechanics |

2

2 1

VR

g n

nmax

R

V

V

Tightest turn

Page 39: Ae2104 flight-mechanics-slides 3

38AE2104 Flight and Orbital Mechanics |

Turn at Mach 2.2, bank angle 30 deg

Circle with radius 75 km…

Page 40: Ae2104 flight-mechanics-slides 3

39AE2104 Flight and Orbital Mechanics |

MMO

VMO

Page 41: Ae2104 flight-mechanics-slides 3

40AE2104 Flight and Orbital Mechanics |

Turning performance

• Maximum load factor (steepest turn)

• Minimum turn radius (tightest turn)

• Minimum time to turn (fastest turn)

• Rate one/two/three turn (civil operations)

• Assumption: sustained turns

Page 42: Ae2104 flight-mechanics-slides 3

41AE2104 Flight and Orbital Mechanics |

Fastest turn

V

n

1

V

R

V

T

2

2 RT

V

Minimize time to achieve fastest turnTime to complete a full circle:

(Circumference of turn: 2R)

Page 43: Ae2104 flight-mechanics-slides 3

42AE2104 Flight and Orbital Mechanics |

Turning performance

• Maximum load factor (steepest turn)

• Minimum turn radius (tightest turn)

• Minimum time to turn (fastest turn)

• Rate one/two/three turn (civil operations)

• Assumption: sustained turns

Page 44: Ae2104 flight-mechanics-slides 3

43AE2104 Flight and Orbital Mechanics |

Rate one turn

• Rate one turn: 180 deg/min

• Rate two turn: 360 deg/min

Standardized turns are useful for

air traffic control

Safety:< 200’ no turns light a/c< 1000’ no turns heavy a/c

Page 45: Ae2104 flight-mechanics-slides 3

44AE2104 Flight and Orbital Mechanics |

Rate one turn

Example:

Approach: V = 80 m/s, T = 60 [s]

801502 [m]

/ 60

V VR

R

22 2

21 1.09

1

V VR n

gRg n

V

R

1arccos 23

n

Page 46: Ae2104 flight-mechanics-slides 3

45AE2104 Flight and Orbital Mechanics |

Rate one turn

Page 47: Ae2104 flight-mechanics-slides 3

46AE2104 Flight and Orbital Mechanics |

Rate one turn

Page 48: Ae2104 flight-mechanics-slides 3

47AE2104 Flight and Orbital Mechanics |

Content

• Aim

• How to fly a turn

• Equations of motion

• Load factor and performance

diagrams

• Turning performance

• Example calculations

• Advanced manoeuvres

• Altitude effects

• Summary

• Example exam question

Page 49: Ae2104 flight-mechanics-slides 3

48AE2104 Flight and Orbital Mechanics |

Example calculations

Numerical example – turning performance at 7000 [m] altitude

Lift drag polar is known for this aircraft

Aircraft weight, maximum thrust and dimensions are known as well

0

2

LD D

CC C

Ae

Page 50: Ae2104 flight-mechanics-slides 3

49AE2104 Flight and Orbital Mechanics |

Example calculations

0

3

max

2

0.59 [kg/m ] (ISA)

8.67 [kN]

0.021

7 [-]

60000 [N]

30 [m ]

D

T

C

Ae

W

S

Aircraft and atmospheric data at 7000 [m]

Calculate:1. Maximum load factor and corresponding airspeed2. Radius of tightest turn (Rmin) and corresponding airspeed3. Time for fastest turn (T2,min) and corresponding airspeed

Page 51: Ae2104 flight-mechanics-slides 3

50AE2104 Flight and Orbital Mechanics |

Example calculations

max 8670 [N]T

maxmax

max

L

D

T Cn

W C

0

max

LL D

D

CC C Ae

C

0.021 7 0.68 [-]LC

0

2

LD D

CC C

Ae

max

8670 0.682.34

60000 0.042 n

maxmax

2 1

2.34 60000 2 1

30 0.59 0.68

152.7 [m/s]

n

L

n WV

S C

Maximum load factor20.68

0.021 0.042 [-]7

DC

Page 52: Ae2104 flight-mechanics-slides 3

51AE2104 Flight and Orbital Mechanics |

Example calculationsMaximum load factor

Page 53: Ae2104 flight-mechanics-slides 3

52AE2104 Flight and Orbital Mechanics |

Example calculations

Vnmax , “steepest turn”

Maximum load factor

Page 54: Ae2104 flight-mechanics-slides 3

53AE2104 Flight and Orbital Mechanics |

Example calculationsMinimum turn radius

Vrmin – “tightest turn”

Page 55: Ae2104 flight-mechanics-slides 3

54AE2104 Flight and Orbital Mechanics |

Example calculations

VTmin – fastest turn

Minimum time to turn (fastest turn)

Page 56: Ae2104 flight-mechanics-slides 3

55AE2104 Flight and Orbital Mechanics |

Example calculations

2

2tan

V

gT

max maxn

2

2 RT

V

All results combined

Page 57: Ae2104 flight-mechanics-slides 3

56AE2104 Flight and Orbital Mechanics |

Content

• Aim

• How to fly a turn

• Equations of motion

• Load factor and performance

diagrams

• Turning performance

• Example calculations

• Advanced manoeuvres

• Altitude effects

• Summary

• Example exam question

Page 58: Ae2104 flight-mechanics-slides 3

57AE2104 Flight and Orbital Mechanics |

Advanced manoeuvresImmelmann

Page 59: Ae2104 flight-mechanics-slides 3

58AE2104 Flight and Orbital Mechanics |

Advanced ManoeuvresThrust vectoring

http://www.youtube.com/watch?v=CGbOs0vgYOA&NR=1(thrust vecotring turn at 2:50)

Page 60: Ae2104 flight-mechanics-slides 3

59AE2104 Flight and Orbital Mechanics |

Content

• Aim

• How to fly a turn

• Equations of motion

• Load factor and performance

diagrams

• Turning performance

• Example calculations

• Advanced manoeuvres

• Altitude effects

• Summary

• Example exam question

Page 61: Ae2104 flight-mechanics-slides 3

60AE2104 Flight and Orbital Mechanics |

Altitude effects

0.75

max

max

L

D

CTn

W C

max

2 1

n

L

nWV

S C

max

2

2 if

1n

VR

g n

Equations

Page 62: Ae2104 flight-mechanics-slides 3

61AE2104 Flight and Orbital Mechanics |

Altitude effectsExample

Page 63: Ae2104 flight-mechanics-slides 3

62AE2104 Flight and Orbital Mechanics |

Altitude effectsExample

Page 64: Ae2104 flight-mechanics-slides 3

63AE2104 Flight and Orbital Mechanics |

Content

• Aim

• How to fly a turn

• Equations of motion

• Load factor and performance

diagrams

• Turning performance

• Example calculations

• Advanced manoeuvres

• Altitude effects

• Summary

• Example exam question

Page 65: Ae2104 flight-mechanics-slides 3

64AE2104 Flight and Orbital Mechanics |

Summary

• Be able to derive the equations of motion for a horizontal sustained

turn (what is the definition of horizontal and sustained?)

• Load factor is defined as n = L/W

• In a horizontal sustained turn, n = 1/cos

2

sin

cos

T D

mVL

R

L W

Page 66: Ae2104 flight-mechanics-slides 3

65AE2104 Flight and Orbital Mechanics |

Summary

• Maximum load factor for jet aircraft:

• Turn radius:

• You must be able to derive the equations mentioned above

• Time to turn 360 deg:

• Rate one turn is defined as 180 deg / min

2

2 RT

V

maxmax

max

L

D

T Cn

W C

2

21

VR

g n

Page 67: Ae2104 flight-mechanics-slides 3

66AE2104 Flight and Orbital Mechanics |

Content

• Aim

• How to fly a turn

• Equations of motion

• Load factor and performance

diagrams

• Turning performance

• Example calculations

• Advanced manoeuvres

• Altitude effects

• Summary

• Example exam question

Page 68: Ae2104 flight-mechanics-slides 3

67AE2104 Flight and Orbital Mechanics |

Example exam question

The following data is known for a small propeller aircraft (Cessna 172)

Pa = 100kW (independent of airspeed)

W = 10 kN

S = 15 m2

The maximum rate of climb in steady symmetric flight of this aircraft equals 6 m/s when

operating at sea level (0 m) in the International Standard Atmosphere.

a.Calculate the maximum load factor and corresponding bank angle of this aircraft in a horizontal

steady turn when operating at the same altitude, power setting and angle of attack

b. The aircraft performs a rate one turn with an airspeed of 180 km/h at sea level in the

international standard atmosphere. Calculate the required bank angle and corresponding turn

radius.

Page 69: Ae2104 flight-mechanics-slides 3

68AE2104 Flight and Orbital Mechanics |

Questions?