ae2104 flight-mechanics-slides 6

73
1 Challenge the future Flight and Orbital Mechanics Lecture slides

Upload: tu-delft-opencourseware

Post on 06-May-2015

549 views

Category:

Business


1 download

DESCRIPTION

These are the lecture slides to the fifth lecture of the course AE2104 Flight and Orbital mechanics.

TRANSCRIPT

Page 1: Ae2104 flight-mechanics-slides 6

1Challenge the future

Flight and Orbital Mechanics

Lecture slides

Page 2: Ae2104 flight-mechanics-slides 6

Semester 1 - 2012

Challenge the future

DelftUniversity ofTechnology

Flight and Orbital MechanicsLecture hours 11, 12 – Cruise

Mark Voskuijl

Page 3: Ae2104 flight-mechanics-slides 6

2AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 4: Ae2104 flight-mechanics-slides 6

3AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 5: Ae2104 flight-mechanics-slides 6

4AE2104 Flight and Orbital Mechanics |

IntroductionTypical cruise flight

Page 6: Ae2104 flight-mechanics-slides 6

5AE2104 Flight and Orbital Mechanics |

Introduction

• Range (distance)

• Endurance (Maximum time)

Objective

Page 7: Ae2104 flight-mechanics-slides 6

6AE2104 Flight and Orbital Mechanics |

Introduction

General 2D equations of motion and power equation

Unsteady curved symmetric flight

cos sin

cos sin

T

T

a r

W dVT D W

g dt

W dL W T V

g dt

P P V dVRC

W g dt

Cruise flight

Quasi steady (dV/dt 0), quasi-rectilinear, (d/dt 0)

Weight of the aircraft is not constant

Small flight path angle cos = 1, sin 0

Assume that the thrust vector acts in the direction of flight (T 0)

Equations of motion

Page 8: Ae2104 flight-mechanics-slides 6

7AE2104 Flight and Orbital Mechanics |

Introduction

Equations of motion cruise flight

0 sin

( quasi rectilinear )

gT D W

W

L W

cos

sin

dsV

dt

dHV

dt

Kinematic equations

, ,dW

F V Hdt

Additional equation

Equations of motion

Page 9: Ae2104 flight-mechanics-slides 6

8AE2104 Flight and Orbital Mechanics |

Introduction

Pilot can choose a certain airspeed and altitude: H(t), V(t)

What is the best flight condition?

1. Optimal initial conditions (V, H at initial weight)2. Optimal flying strategy (V, H at decreasing weight)

Problem definition

Page 10: Ae2104 flight-mechanics-slides 6

9AE2104 Flight and Orbital Mechanics |

Introduction

2. Maximum range R:Specific range (V/F)max at every point in time

3. Given range, minimum fuel: Specific range (V/F)max at every point in time

1. Maximum endurance E: Fuel flow Fmin at every point in time

Criteria for optimal flight

Page 11: Ae2104 flight-mechanics-slides 6

10AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 12: Ae2104 flight-mechanics-slides 6

11AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

Thrust, Drag

Airspeed

For basic flight mechanics applications, thrust of a turbojet can be assumed to be constant with airspeed for a given flight altitude

0

2

LD D

CC C

Ae Drag follows from:

Performance diagram - Jet

Page 13: Ae2104 flight-mechanics-slides 6

12AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

Power

Airspeed

For basic flight mechanics applications, thrust of a turbojet can be assumed to be constant with airspeed for a given flight altitude

Performance diagram - Jet

a

r

P TV

P DV

Page 14: Ae2104 flight-mechanics-slides 6

13AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

T T

V V V

F c T c D

D, T

VVopt

Specific range

TF c T

Thrust specific fuel consumption

max min

if V D

F V

Additional assumption: cT constant

What is the corresponding airspeed?

D

T

Page 15: Ae2104 flight-mechanics-slides 6

14AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

(D/V)min CLX / CD

Y CL

Optimumcriterion

Lift over dragratio

Angle ofattack

Method to calculate the best airspeed

Airspeed(for given H,W)

V

Optimal airspeed for given altitude and weight

Page 16: Ae2104 flight-mechanics-slides 6

15AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

min max

D V

V D

2

max max

L

D

CV

D C

2 1

L

WV

S C

2

1L

D

CV

D C

D

L

CLD D W

L C

L W

2

2 1

1 2L L

D D

L

W

S C CV

CD W S CWC

1. Optimum criterion

2. Airspeed

3. Drag

4. Ratio

5. For a given weight

6. Angle of attack for given altitude

Airspeed

Page 17: Ae2104 flight-mechanics-slides 6

16AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

0

2

max max max

13opt

L

D

lift drag polar

L D

CV V

F D C

C C Ae

0

0

2 2

max

2

4

4

2

1 12 2

13

0

2 1

0

2

0

2

L L

D L D

DL D D

L

D

D L

L

D

LD

L D

L L

L D

C Cd

C dC C

dCC C C

dC

C

dC C

dC Ae

C

CC

C C Ae

Ae C C

C C Ae

First year:

,

2 1

L opt

L W

WV

S C

Airspeed for given altitude and weight

Airspeed

Page 18: Ae2104 flight-mechanics-slides 6

17AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

Aircraft Weight W = 300.000 [N] (start of cruise)

What is the best airspeed to fly (for max range) at 9000 [m] altitude?

(ρ = 0.4663 [kg/m3], T = 229.65 [K])

Example question

Page 19: Ae2104 flight-mechanics-slides 6

18AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 20: Ae2104 flight-mechanics-slides 6

19AE2104 Flight and Orbital Mechanics |

Effect of altitude

2 1 1

L

WV

S C Increasing H

D

V

0D

L

CD W

C

Angle of attack is constantfor a given point on the drag curve

Performance diagram

Page 21: Ae2104 flight-mechanics-slides 6

20AE2104 Flight and Orbital Mechanics |

Page 22: Ae2104 flight-mechanics-slides 6

21AE2104 Flight and Orbital Mechanics |

Effect of altitude

Altitude 0 m

T at cruise

T at cruise

V

T, DOptimum cruise level

Specific range

Page 23: Ae2104 flight-mechanics-slides 6

22AE2104 Flight and Orbital Mechanics |

Effect of altitude

At increasing altitude:

- V/F increases

- V increases

- Engine more efficient

Thus: fly as high as possible ! (up to the limits of the engine)

Conclusion

Page 24: Ae2104 flight-mechanics-slides 6

23AE2104 Flight and Orbital Mechanics |

Effect of altitudeTheoretical ceiling at cruise

Optimum cruise level at cruise

Tcruise

Tth

Hcr < Hth (at cruise)Optimum Hcr Hs (service ceiling)

Page 25: Ae2104 flight-mechanics-slides 6

24AE2104 Flight and Orbital Mechanics |

Effect of altitude

VVlim

D

Increasing H

In the presence of speed limits (e.g. MMO )

Page 26: Ae2104 flight-mechanics-slides 6

25AE2104 Flight and Orbital Mechanics |

Effect of altitude

• Optimum V/F at V = Vlim

• In case of speed limits, the optimum altitude is

not determined by the engine

0

0

min

max

2

lim

2 1

LL D

D

opt

D

CD C C Ae

C

W

S V C Ae

0

0

max

2

2

2

0

1

0

2

0

2

L L

D L D

DL D

L

D

D L

L

D

LD

L D

L L

L D

C Cd

C dC C

dCC C

dC

C

dC C

dC Ae

C

CC

C C AeAe C C

C C Ae

First year:

In the presence of speed limits (e.g. MMO )

Page 27: Ae2104 flight-mechanics-slides 6

26AE2104 Flight and Orbital Mechanics |

Summary – Jet aircraft

• Choose V such that (V/F)max (CL / CD2)max

• H as high as possible (limited by the engine)

• If the speed limit is reached at lower altitude:

• V = Vlim

• H is such that CL / CD is max

Page 28: Ae2104 flight-mechanics-slides 6

27AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 29: Ae2104 flight-mechanics-slides 6

28AE2104 Flight and Orbital Mechanics |

Effect of weight

2

3

2 1

at constant

at constant

L

D

L

r

r

WV W

S C

CD W W

C

P DV W W

D V

P V

D

VDecreasing W

Page 30: Ae2104 flight-mechanics-slides 6

29AE2104 Flight and Orbital Mechanics |

Page 31: Ae2104 flight-mechanics-slides 6

30AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 32: Ae2104 flight-mechanics-slides 6

31AE2104 Flight and Orbital Mechanics |

Page 33: Ae2104 flight-mechanics-slides 6

32AE2104 Flight and Orbital Mechanics |

Best flying strategy

W1, H1W2 < W1, H1

W2, H2 > H1

V

D

Strategies:I: constant altitude and engine settingII: constant altitude and airspeedIII: constant angle of attackIV: Climb and constant VV: Climb and change of V

Page 34: Ae2104 flight-mechanics-slides 6

33AE2104 Flight and Orbital Mechanics |

Best flying strategy

Constant altitude

I. = constant: (V/F) << (V/F)opt but V

II. V = constant (V/F) < (V/F)opt

III. = constant, V but (V/F) = (V/F)opt

Climb

IV. = constant, V = constant, (V/F) = (V/F)opt, even > (V/F)0

V. = constant, changing V?

Page 35: Ae2104 flight-mechanics-slides 6

34AE2104 Flight and Orbital Mechanics |

Best flying strategy

Strategy IV 2 = 1 (CL is constant) and V2 = V1

Optimum cruise climb possible?

11

1

22

2

2 1

constant2 1

L

L

D

L

WV

S C W

WV

S C

CT D W

C

Is this possible? Are the engines capable of providing enough thrust at higher altitude and lower weight?

Page 36: Ae2104 flight-mechanics-slides 6

35AE2104 Flight and Orbital Mechanics |

Best flying strategyTypical turbojet performance

Page 37: Ae2104 flight-mechanics-slides 6

36AE2104 Flight and Orbital Mechanics |

Best flying strategy

Strategy IV 2 = 1 (CL is constant) and V2 = V1

Optimum cruise climb possible?

2 1

2 1

2

2 2 2

1 1 11

= constant

D

L

D

L

D

L

W WW

CT D W

C

CW

T C W

CT WW

C

• This is exactly how a typical turbojet behaves above 11km. So there will be enough thrust.

• Strategy V is not feasible• Below 11km there will be

enough thrust as well

Page 38: Ae2104 flight-mechanics-slides 6

37AE2104 Flight and Orbital Mechanics |

Best flying strategy

Strategy IV 2 = 1 (CL is constant) and V2 = V1

The engines can provide just enough thrust

(strategy V not possible)

What happens in case of Mlim?

Mach number is constant at constant airspeed above 11km

No problem

Optimum cruise climb possible?

Page 39: Ae2104 flight-mechanics-slides 6

38AE2104 Flight and Orbital Mechanics |

Best flying strategy

Page 40: Ae2104 flight-mechanics-slides 6

39AE2104 Flight and Orbital Mechanics |

Best flying strategy

Page 41: Ae2104 flight-mechanics-slides 6

40AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 42: Ae2104 flight-mechanics-slides 6

41AE2104 Flight and Orbital Mechanics |

Analytic range equations

• Range

Breguet range equation

dW dWV F

dt ds

01

0 1

Ws

s W

VR ds dW

F

Page 43: Ae2104 flight-mechanics-slides 6

42AE2104 Flight and Orbital Mechanics |

Analytic range equations

• Jet aircraft optimum climb cruise (, V and cT are constant during variation of W

Breguet range equation for jet aircraft

0

1

W

W

VR dW

F

0

1

W

TW

VR dW

c D

0

1

W

L

T DW

CV dWR

c C W

0

1

W

L

T D W

CV dWR

c C W

0

1

lnL

T D

WCVR

c C W

Page 44: Ae2104 flight-mechanics-slides 6

43AE2104 Flight and Orbital Mechanics |

Analytic range equationsBreguet range equation for jet aircraft

• If V is not limited: Rmax at (V CL / CD)max

(CL / CD2)max and min

• If V is limited:

Rmax at V = Vlim and such that (CL / CD)max

0

1

lnL

T D

WCVR

c C W

Page 45: Ae2104 flight-mechanics-slides 6

44AE2104 Flight and Orbital Mechanics |

Analytic range equationsBreguet range equation for propeller aircraft

Cruise flight with constant , cp and j:

0

1

W

W

VR dW

F

p p

p br a

j j

c cF c P P TV

1 1 1j j j L

p p p D

CV

F c T c D c C W

0

1

lnj L

p D

WCR

c C W

Page 46: Ae2104 flight-mechanics-slides 6

45AE2104 Flight and Orbital Mechanics |

Analytic range equations

Conclusion: Altitude is not important w.r.t V/F

But V is larger at high altitude

P

V

Pr Dmin

Breguet range equation for propeller aircraft

Page 47: Ae2104 flight-mechanics-slides 6

46AE2104 Flight and Orbital Mechanics |

Analytic range equationsUnified Breguet range equation

• Jet aircraft

• Propeller aircraft

• Both:

tot

T

TV V g

F c HH

g

j

tot

p

TV g

F c HH

g

0

1

lnLtot

D

WCHR

g C W

Fuel quality Propulsion efficiency aerodynamic quality

Structural characteristics

Page 48: Ae2104 flight-mechanics-slides 6

47AE2104 Flight and Orbital Mechanics |

Analytic equations

Time 1920 Lindbergh Present

H 43000 kJ/kg 43000 kJ/kg 43000 kJ/kg

tot 0.20 0.20 – 0.30 >0.40

L/D 10 11 16-18

W1/W0 0.6 – 0.7 0.5 0.5

Unified Breguet range equation

Page 49: Ae2104 flight-mechanics-slides 6

48AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 50: Ae2104 flight-mechanics-slides 6

49AE2104 Flight and Orbital Mechanics |

StoryHistory

• 1919: Alcock / Brown: Newfoundland Ireland

• Fonck, Nungesser/Coli, Lindbergh: New York Paris

Passengers

Fuel

OEW (OperationalEmpty Weight)

Overload

- Structural safety factor- Take – off length (W2)- Climb gradient after take off- Tailwind west east

Page 51: Ae2104 flight-mechanics-slides 6

50AE2104 Flight and Orbital Mechanics |

StorySpirit of St. Louis

• Charles Lindbergh, 1927

• First solo, nonstop flight across

the Atlantic Ocean

Page 52: Ae2104 flight-mechanics-slides 6

51AE2104 Flight and Orbital Mechanics |

StorySpirit of St. Louis

• Charles Lindbergh had to decrease airspeed to achieve maximum

range

Pr, for decreasing weight

V

Pr

Page 53: Ae2104 flight-mechanics-slides 6

52AE2104 Flight and Orbital Mechanics |

Page 55: Ae2104 flight-mechanics-slides 6

54AE2104 Flight and Orbital Mechanics |

Story

• First part of flight: insufficient strength to withstand gusts

• Best glide ratio: 1:37

• ( CL / CD )max = 37

• CD0 = 0.018 e = 0.85

• Hcr = 45000 ft = 13.716 m = 0.2377

• Distance flown 38000 km

• Time 66 hrs

• Fuel lost 2600 lbs actual fuel fraction 71%

Global flyer

Page 56: Ae2104 flight-mechanics-slides 6

55AE2104 Flight and Orbital Mechanics |

Story

• (V/F)max :

• V for (V/F)max, 45000 ft, Wgross: V = 175 m/s

• Time for 40.000 km at constant V: 64 hrs

• Guesstimate of tot :

• High bypass fans at 1000 km/h: tot = 40%

• Medium bypass fans tot = 35%, th = 50%, j = 70% Vj / V = 1.86

• Correction for lower flight speed:

• Vj / V = 3 j = 0.5 tot = 25%

• Range in ideal climbing cruise: R = 53000 km

0

13

0.72

0.024 30

L D

LD

D

C C Ae

CC

C

Global flyer

Page 57: Ae2104 flight-mechanics-slides 6

56AE2104 Flight and Orbital Mechanics |

Story

• Cruise at V = constant and Hcr = constant: R = 37.500 km

• At fuel fraction 70%: R = 28000 km

• Influence wind ?

Global flyer

Page 58: Ae2104 flight-mechanics-slides 6

57AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 59: Ae2104 flight-mechanics-slides 6

58AE2104 Flight and Orbital Mechanics |

Weight breakdown

Total fuel

OEW

Payload

Payload

Total fuel

OEW

Wide-body airplane with turbofan engines

Supersonic transport with turbojet engines

Useful load

Page 60: Ae2104 flight-mechanics-slides 6

59AE2104 Flight and Orbital Mechanics |

Weight breakdown

Fuel tank capacity

Design range

Weight

fuelMZFW

Reserve fuelOEW

MTOW

R

Payload

Ultimate range

Payload

R

Payload

MTOW = maximum take-off weightMZFW = maximum zero fuel weightOEW = operational empty weight

Payload range diagram

Page 61: Ae2104 flight-mechanics-slides 6

60AE2104 Flight and Orbital Mechanics |

Weight breakdown

MZFW limited, amongst others by bending moment of the wing

MTOW > MZFW at same bending moment. MTOW limited e.g. by landing gear

MZFW

L/2L/2

MZFW

L/2L/2

Wf / 2Wf / 2

Maximum zero fuel weight

Page 62: Ae2104 flight-mechanics-slides 6

61AE2104 Flight and Orbital Mechanics |

Weight breakdown

• Reserve fuel

• In general:

• Fuel to alternate

• 45 minutes holding at altitude

• Fuel shortage:

• In general:

• Management problem

• CRM Cockpit resource management

Reserve fuel

Page 63: Ae2104 flight-mechanics-slides 6

62AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 64: Ae2104 flight-mechanics-slides 6

63AE2104 Flight and Orbital Mechanics |

Economics

Key Parameters

Range R

Payload P

Block time EB

Block speed VB

Transport product PR

Transport productivity Ph

Revenue earning capacity Py

Block time and block speed

Page 65: Ae2104 flight-mechanics-slides 6

64AE2104 Flight and Orbital Mechanics |

Economics

Page 66: Ae2104 flight-mechanics-slides 6

65AE2104 Flight and Orbital Mechanics |

Economics

! Cost (direct operating cost) must be considered as well of course

Conclusion:Maximum transport productivity is achieved at the design range

Transport productivity

Page 67: Ae2104 flight-mechanics-slides 6

66AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 68: Ae2104 flight-mechanics-slides 6

67AE2104 Flight and Orbital Mechanics |

Summary

Key parameter:Specific range V/F[V]/[F] = [m/s]/[kg/s] = [m/kg]So it is the distance travelled per unit of fuel

The objective is to minimize fuel for a given range

Performance diagram for jet aircraft

Page 69: Ae2104 flight-mechanics-slides 6

68AE2104 Flight and Orbital Mechanics |

SummaryEffect of weight and altitude

Page 70: Ae2104 flight-mechanics-slides 6

69AE2104 Flight and Orbital Mechanics |

Summary

Propeller aircraft (analytical approximation)1. Conclusion: Altitude is not important

w.r.t V/F2. But V is larger at high altitude

Jet aircraft (analytical approximation)1. Choose V such that (V/F)max (CL /

CD2)max

2. H as high as possible (limited by the engine)3. If the speed limit is reached at lower

altitude: V = Vlim, H is such that CL / CD is max

Key conclusions

Page 71: Ae2104 flight-mechanics-slides 6

70AE2104 Flight and Orbital Mechanics |

Summary

01

0 1

WW

W W

VR ds dW

F

0

1

W

L

T DW

CV dWR

c C W

0

1

W

j L

p DW

C dWR

c C W

Jet aircraft(analytical approximation)

Propeller aircraft(analytical approximation)

0

1

lnL

T D

WCVR

c C W

0

1

lnj L

p D

WCR

c C W

Optimum cruise climb Cruise flight with constant , cp and j:

Breguet range equation

Page 72: Ae2104 flight-mechanics-slides 6

71AE2104 Flight and Orbital Mechanics |

SummaryUnified Breguet range equation

• Jet aircraft

• Propeller aircraft

• Both:

tot

T

TV V g

F c HH

g

j

tot

p

TV g

F c HH

g

0

1

lnLtot

D

WCHR

g C W

Fuel quality Propulsion efficiency aerodynamic quality

Structural characteristics

Page 73: Ae2104 flight-mechanics-slides 6

72AE2104 Flight and Orbital Mechanics |

Questions?