aedes aegypti indices

Upload: imamoto-kinu

Post on 31-Oct-2015

17 views

Category:

Documents


0 download

DESCRIPTION

Indeks larva

TRANSCRIPT

Aedes aegypti indicesClassical methodsBecause of the importance of Aedes aegypti as a vector of yellow fever inAfrica and the Americas and of dengue and haemorrhagic dengue in thewider tropics and subtropics, considerable attention has been paid to larvalsurveys. So-called Stegomyia indices were developed in the early 1920s(Connor and Monroe 1923) in conjunction with the Rockefeller Foundationsefforts to eradicate yellow fever from coastal cities in Brazil. Thefirst two indices proposed were:1. House (=Premise) Index = percentage of houses (including examinationof surrounding compound) examined that have larvae of Aedesaegypti in at least some containers.2. Container (=Receptacle) Index = percentage of water-holding containersexamined that contain larvae of Aedes aegypti.3. These two indices were supplemented with a third, the Breteau Index,some thirty years later. Breteau Index = total number of containerswith larvae of Aedes aegypti per 100 houses.These three indices remain the most commonly used measurements inAedes aegypti surveys to this day.The house index has been used for many years and it is probably themost widely employed single index, although increasing use is being madeof the Breteau index. For example, the Breteau index has recently beenused to study the spread of Aedes albopictus in So Paulo state, Brazil(Neto 1996, 2002), in investigations of a dengue outbreak in Taiwan (Lienet al. 1993), and in a study of large water drums as Aedes aegypti larvalhabitats in Trinidad (Chadee and Rahaman 2000).In the original type of survey the presence of Aedes aegypti larvae inwater-holding containers found in or outside houses was recorded. Sometimes,especially in small hamlets and villages, all houses are inspected forAedes aegypti breeding, but usually only a percentage of the houses aresearched. The selection of houses that are sampled can either be systematic,e.g. say every 2nd or 3rd house (Anon 1956) or every other house inevery 4th block of houses (Tinker 1967) or at random (Reid 1954; Tinkerand Hayes 1959). Whatever method is used samples should be taken fromhouses in different suburbs or areas of towns, from different types of housesand from houses whose occupiers come from a range of socio-economicbackgrounds in order to get a representative incidence of breeding in theChapter 3 Sampling the Larval Population257whole town or village. Vezzani et al. (2001) used a similar surveymethod to calculate infestation levels (container index) for Aedes aegyptiin cemeteries in Argentina and attempted to relate these to environmentalvariables. Chambers et al. (1986) gave a useful account of how to undertakea survey of potential and actual breeding places of mosquitoes inpeoples backyards in relation to their income levels. They showed theusefulness of using census tracts (i.e. small geographical more or lesshomogenous political subdivisions of a town) and their accompanyingeconomic and social statistics, to objectively select areas for artificial containermosquito production studies. More recently Focks et al. (1993) proposeda methodology for conducting household surveys that incorporates abrief demographic survey alongside collections of adult and immaturemosquitoes from inside and outside the household.The method of Focks et al. (1993) was used to undertake an analysis ofthe spatial pattern of Aedes aegypti adults and immatures in two areas ofhouses in Maynas zone and 510 houses in Tupac Amaru zone. Householdswere surveyed in sequence daily along the block from a designated starthouse between 0700 and 1300 h. Unoccupied or closed houses and houseswhere residents did not provide permission for the survey, businesses, offices,and schools were not sampled. 95% of houses were surveyed in eachzone. Collecting teams were rotated among blocks each day in order to reducebias. Access to closed houses was attempted a minimum of threetimes. In each household, one member of the collecting team administeredthe demographic survey questionnaire and the other member carried outthe entomological survey. Adult mosquitoes were collected from indoorsand outdoors using a backpack aspirator (John W. Hock Company,Gainesville, Florida, USA). Collections were made from walls, under furniture,inside closets, and other likely adult mosquito resting sites in allrooms of the house (when permitted). Outdoor collections were made fromexterior walls, under eaves, vegetation, and in and around outdoor storedmaterials. Larval and pupal collections were also made from inside andoutside houses. The spatial patterns of four variables were examined,namely adult Aedes aegypti, pupae, all water-holding containers, andwater-holding containers positive for larvae and/or pupae. Global Kfunctions,point and weighted, were used to identify clustering in each ofthe two zones and the local statistic, Gi*, was used to determine the magnitudeof each variable in each household for each neighborhood. These statisticsare components of the suite of spatial statistical programs availableas part of the Point Pattern Analysis (PPA) program, an online version ofwhich is available. To investigate the presence or absence of a variable ina unique code to each property, which was painted on the front of 550Iquitos, Peru (Getis et al. 2003). Households were sampled by assigningAedes aegypti indices258a household for each neighbourhood, chi-square tests were used. TheK-function describes the number of pairs of observations between apoint, which is located at the centre of a disk and other points that are distanced away. For a stationary, isotropic process, (d) is the expectednumber of points within distance d of an arbitrary point. The estimator of is N/A where N is the number of points in the study area A. The estimatorof K(d) is: ( ) / 2 1 ( ), i j ij d ij K d = A N u I d d i j (3.17)where dij is the distance between the ith and jth observed points andId(dij d) is an indicator function that is 1 if dij is less than or equal to dand 0 otherwise. For a circle centered on i passing through point j, uij is theproportion of the circumference of the circle that lies within A. When dij isless than the distance from i to one or more borders of the study area, uij is 1.The border correction makes K (d) an approximately unbiased estimatorof K(d) provided that d is less than the circumference of A. A square-rootscale makes the function linear and stabilizes the variance.L(d) [K (d) / ] (3.18)which is the estimator of L(d) [K(d) / ] . The mean of L(d) is d andthe approximate variance is (N 2). The expectation of L(d) given the hypothesisof complete spatial randomness (CSR) is d. CSR is a homogenousplanar Poisson process where all points are independent of all other pointsand all locations are equally likely to contain a point. For CSR, a plot ofL(d) against d on similarly scaled axes yields a 45-degree line beginningat the natural origin. A clustered pattern occurs when L(d) is greater than dand a dispersed pattern can be identified when L(d) is less than d. Statisticalsignificance at the P < 0.05 level is assumed to exist when the observedL(d) function falls outside of an envelope containing 19 permutations ofthe location of the N objects where each permutation is based on CSR.L(d) is usually calculated for a series of distances d. Instead of consideringeach point as a nominal scale variable, points can be weighted accordingto some measure of size or intensity,L d A u I d d x x x xi i j w i j ij d ij i j i i i ( ) = [{ 1 ( ) }/{ [( )2 2 ]}]1/ 2, (3.19)Chapter 3 Sampling the Larval Population259where X is a random variable having values x for adult mosquitoes inhouses at sites i. Equation (3.19) is the estimator for Lw(d), which is equalto E[L (d)] w . In the cases discussed in their paper, the weights are in turnnumbers of adult mosquitoes, pupae, water-holding containers, andpositive containers. For each xi, there are (N 1) values xj. In this case,the numerator of L (d) w represents the product of the pairs of values xi xjwithin distance d of each x. The denominator is scaled such that if all x areof equal value, then L(d) will be approximately equal to L (d) w . Thus,equation (3.19) represents a measure of clustering or dispersion identifiedin equation (3.18). If the number of adult mosquitoes, for example, is independentlydistributed within the plots of houses, L(d) will be approximatelyequal to L (d) w . Upper and lower significance boundaries forL (d) w can be determined by a permutation procedure in which the variousobserved values for number of adult mosquitoes, xi, are permuted amongthe house locations a specified number of times. The authors also exploredthe increments to L(d) and L (d) w observed for each equal increase ofdistance. In a CSR pattern of adult mosquitoes, these successive valueswill be the same for each equal increase of d. The focus is on the noncumulativeproperties of these pattern indicators. When the change inL(d) is greater or less than the change in L (d) w for a given distance band,the adult mosquitoes are less concentrated or more concentrated, respectively,than that expected in the observed pattern, no matter how clusteredthe pattern of houses. That is, the number of adult mosquitoes is not randomlydistributed among the houses. In essence, L(d) with L (d) w arecompared for a given small change in d.In addition to L(d), the local statistic, Gi* was used to identify individualmembers of clusters. For Gi* each house is taken as a centre, one at atime, and the nearby area is searched for occurrences of more or feweradult mosquitoes than expected. In this way, specific houses are identifiedas members or non-members of clusters. The Gi* statistic is defined as:*( ) [ ( ) * ] /[ {[ * *2 ] /( 1)}1/ 2 ]Gi d = j wij d x jWi x s NS1i Wi N all j (3.20)where wij(d) is the i, jth element of a one/zero spatial weights matrix withones if the jth house is within d of a given ith house; all other elements arezero; Wi * = (d) ij , where wii is included, and S1i* = w2ij (all j).Aedes aegypti indices260deviation. The value of Gi*(d) is given in normal standard deviates. Notethat this statistic has as its expectation, Wi x , which controls for the numberof houses within d of each house. Also note that Gi*(d) = 0 whereadult mosquitoes are randomly distributed within d of house i. For thisstudy, values greater than an arbitrary value of 2.575 (the 0.01 level ofconfidence) were defined as representing houses that were members ofclusters of adult mosquitoes. Results of the survey indicated that adultsclustered strongly within houses and weakly to a distance of 30 m beyondthe household. Clustering was not detected beyond 10 m for positive containersor pupae. One hundred and sixty-four (31.1%) of the houses hadone or more adult mosquitoes present; however, only 35 of them (21.3%)were members of statistically significant house clusters. This indicated thatclusters were made up mainly of household concentrations, and that 79.7%of the households with mosquitoes were located randomly among allhouseholds. Pupae were observed to cluster strongly within houses, buthouseholds infested with pupae were dispersed evenly throughout theneighbourhood.Morrison et al. (2004a) reported the results of a long-term large-scaleAedes aegypti survey in Iquitos, Peru, in which daily mosquito surveyswere carried out over a period of 3 years and seven months between January1999 and August 2002. The entomological sampling was one componentof a prospective longitudinal cohort study of dengue virus infectionsin approximately 2400 students and their families. Entomological surveycircuits were established that ensured that each serological study participantshousehold as well as neighbouring households were sampled. Eachcircuit contained 17 short (12-week) surveys. The duration of a completecircuit was approximately 4 months and around 6000 households (range57216466) were sampled per circuit. The methodology of the entomologicalsurveys was as described by Getis et al. (2003) and Morrison et al.(2004b) All containers were described and categorised by measuring theirdiameter, length, width, and height, and assigning them to 64 containertypes comprising 14 broad categories. Containers were also scored for solarexposure (proportion of day with direct sunlight) method by which containerwas filled with water (manual, rain-filled, rain-filled with aid of arain gutter or roof), and whether the container had a lid. For Aedes aegyptipositivecontainers, the number of larvae was estimated (110, 11100,and > 100), and the total number of pupae was counted. All entomologicaldata were linked to specific houses and entered into a GIS. Differences inmean abundance of water-holding, positive, and pupae positive containersand absolute numbers of pupae were analsed using analysis of varianceChapter 3 Sampling the Larval PopulationThe mean of the adult mosquitoes in houses is x and s is the standard261(ANOVA) with the general linear models procedure (PROC GLM) ofSAS. A total of 289 941 wet containers were observed and characterizedand the mean number of wet containers per household surveyed was 4.85(308 containers per hectare). Of these, 7.3% contained Aedes aegypti and3.6% were positive for pupae. Most wet containers were found insidehouses (57.4%), did not have lids (68.0%), and were filled manually byoccupants of the household with water from a pipe or well (85.0%). However,only 17.9% of positive containers were located inside houses, 97.5%did not have a lid, and only 19.5% were manually filled. Wet container,positive container, pupae-positive container, pupal abundance, and housedensity all varied significantly among the eight geographic zones studied.Using a definition of a key container as one that contained >500 pupae,approximately 2% of pupae-positive large tanks and non-traditional containerswere classified as key containers. Of these, three of seven contained> 1000 pupae on the day of the survey. Plastic containers accounted for37% of all positive and pupae-positive containers and 25% of all pupae.However, the plastic container category was not considered an appropriatecategory for directing control efforts at the infestation rate (3.6%) was lowand there were very many plastic containers present in the area.Also in Iquitos, Peru, Morrison et al. (2004b) used a survey methodologybased on that proposed by Focks et al. (1993) and enabling the traditional larvalindices (PAHO 1994), and pupal indices (Focks and Chadee 1997) tobe obtained. In addition, adult mosquito collections were made using abackpack aspirator (John W. Hock Company, Gainesville, Florida, USA).1999. One member of each two-person entomology team conducted abrief demographic survey to determine key features of the property, includingthe number of occupants, property size, construction materials,method of cooking, water use patterns, type of sewage disposal, and insecticideuse. The other member of the team began collecting adult mosquitoesusing the backpack aspirator from all rooms to which access wasgranted. Aspiration collections were also made outside the house from ex-Aedes aegypti containers both inside and outside the house were examinedfor water, larvae, and pupae. All pupae and a sample of larvae collectedwere placed in a twist-top plastic bag and labelled with a house and containercode. The following entomological indices were calculated in eachof the four surveys: house index (HI); container index (CI); Breteau index(BI); pupae per hectare; pupae per person; pupae per house; adult indexDecember 1998 and the second from mid-December 1998 to mid-JanuaryTupac Amaru were surveyed twice, the first from mid-November to mid-Six hundred houses on 20 city blocks in Maynas and on 14 city blocks inoutside. After completion of the demographic questionnaire all potentialternal walls, under eaves, and amongst vegetation and materials storedAedes aegypti indices262 Chapter 3 Sampling the Larval Population(AI = number of houses positive for adult Aedes aegypti divided by thenumber of houses inspected multiplied by 100); adults per hectare; adultsper person; and adults per house. Results of the demographic and entomologicalcensus surveys were as follows: in the first survey, the house indexwas 28.8% (142/562) in Tupac Amaru and 44.7% (260/582) in Maynas (2 =30.8, d.f. = 1, P < 0.0001). During the second survey period, the house indiceswere 22.7% (124/545) and 38.1% (216/567) in Tupac Amaru and Maynasrespectively (2 = 30.8, d.f. = 1, P < 0.0001). All other indices were higherin Maynas than in Tupac Amaru. Larval indices (HI, CI, and BI) were 1.5to 1.9 times higher in Maynas than in Tupac Amaru. Differences in pupalindices were even greater, ranging from 2.2 to 2.8 times higher in Maynasthan Tupac Amaru. Adult indices reflected an intermediate magnitude of differencebetween the two study areas. Simulations of a standard rapid assessmentsurvey used by the Ministry of Health in Peru were conducted on thedemographic and entomological data maintained within a GIS. The samplingmethodology used by the Ministry of Health consists of a systematic samplingstrategy carried out from a randomly selected starting block and continuingalong a transect running from northwest to southeast. The samplesize used for each simulation was 10% of the total houses, as recommendedby the Pan American Health Organization (1994), and in this caseequivalent to 60 houses. The means of the 10 simulated surveys were similarto the indices calculated for each index using the full census data setsfor both periods and in both neighbourhoods, but the range of estimatesamong the individual simulations was wide. Indices calculated from censusdata and from simulations are presented as table 3.4. Morrison et al. (2004a)concluded that individual households are the appropriate spatial unit for entomologicalsurveys and the rapid assessment transect sampling technique is anefficient and appropriate study design. They further recommended that, logisticalconsiderations aside, pupal or adult counts per hectare should be used asthe best estimate of immediate risk for dengue virus transmission. A potentialdrawback of the rapid assessment transect approach is that random selectionof starting blocks can result in overlapping routes among collecting groups.In an eight-city larval survey in the USA Moore et al. (1990) used both randomand non-random sampling methods. Although the study focused onAedes albopictus the methodology applies also to Aedes aegypti, consequentlya brief description of their strategy is merited. Non-random sites included speciallyselected high risk premises such as tyre dumps and salvage yards, while

Aedes aegypti indeksMetode klasikKarena pentingnya Aedes aegypti sebagai vektor demam kuning diAfrika dan Amerika dan demam berdarah dengue haemorrhagic dan ditropis dan subtropis yang lebih luas, perhatian telah dibayarkan kepada larvasurvei. Jadi yang disebut indeks Stegomyia dikembangkan pada awal 1920-an(Connor dan Monroe 1923) dalam hubungannya dengan Rockefeller Foundationupaya pemberantasan demam kuning dari kota-kota pantai di Brazil. Itupertama dua indeks yang diusulkan adalah:1. Rumah (= Premise) Index = persentase rumah (termasuk pemeriksaansenyawa sekitarnya) diperiksa yang memiliki larva Aedesaegypti di setidaknya beberapa kontainer.2. Wadah (= Lubang) Indeks = persentase kontainer penahan airdiperiksa yang mengandung larva Aedes aegypti.3. Kedua indeks tersebut dilengkapi dengan ketiga, Indeks Breteau,sekitar tiga puluh tahun kemudian. Breteau Indeks = jumlah kontainerdengan larva Aedes aegypti per 100 rumah.Ketiga indeks tetap pengukuran yang paling umum digunakan dalamAedes aegypti survei sampai hari ini.Indeks rumah telah digunakan selama bertahun-tahun dan itu mungkin adalahpaling banyak digunakan indeks tunggal, meskipun meningkatkan penggunaan sedang dibuatdari indeks Breteau. Sebagai contoh, indeks Breteau baru-baru inidigunakan untuk mempelajari penyebaran Aedes albopictus di negara bagian So Paulo, Brasil(Neto 1996, 2002), dalam penyelidikan wabah demam berdarah di Taiwan (Lienet al. 1993), dan dalam studi drum air besar seperti Aedes aegypti larvahabitat di Trinidad (Chadee dan Rahaman 2000).Pada jenis asli survei keberadaan larva Aedes aegypti diwadah penahan air ditemukan di atau di luar rumah tercatat. Kadang-kadang,terutama di dusun kecil dan desa, semua rumah yang diperiksa untukAedes aegypti berkembang biak, tetapi biasanya hanya sebagian dari rumah-rumahdicari. Pemilihan rumah yang dapat menjadi sampel sistematis,misalnya mengatakan setiap rumah 2 atau 3 (Anon 1956) atau setiap rumah lainnya disetiap blok 4 rumah (Tinker 1967) atau secara acak (Reid 1954; Tinkerdan Hayes 1959). Sampel Apapun metode yang digunakan harus diambil darirumah di pinggiran kota yang berbeda atau daerah kota, dari berbagai jenis rumahdan dari rumah yang penjajah datang dari berbagai sosio-ekonomilatar belakang untuk mendapatkan insiden perwakilan peternakan diBab 3 Sampling Populasi larva257seluruh kota atau desa. Vezzani et al. (2001) menggunakan survei serupaMetode untuk menghitung tingkat infestasi (indeks kontainer) untuk Aedes aegyptidi pemakaman di Argentina dan mencoba untuk berhubungan ini untuk lingkunganvariabel. Chambers et al. (1986) memberikan laporan yang berguna tentang bagaimana untuk melakukansurvei potensial dan aktual tempat perindukan nyamuk dihalaman belakang orang dalam kaitannya dengan tingkat pendapatan mereka. Mereka menunjukkankegunaan menggunakan saluran sensus (yaitu kecil lebih geografis atau kurangketatanegaraannya homogen dari kota) dan menyertainyastatistik ekonomi dan sosial, untuk objektif memilih area untuk wadah buatanstudi produksi nyamuk. Baru-baru ini Focks et al. (1993) mengusulkanmetodologi untuk melakukan survei rumah tangga yang menggabungkansurvei demografi singkat bersama koleksi dewasa dan belum dewasanyamuk dari dalam dan luar rumah tangga.Metode Focks et al. (1993) digunakan untuk melakukan analisispola spasial Aedes aegypti dewasa dan belum dewasa di dua daerahrumah di zona Maynas dan 510 rumah di zona Amaru Tupac. Rumah Tanggadisurvei secara berurutan setiap hari bersama blok dari awal ditunjukrumah antara 0700 dan 1300 h. Rumah yang tidak dihuni atau tertutup dan rumahdi mana warga tidak memberikan izin untuk survei, bisnis, kantor,dan sekolah tidak sampel. 95% rumah yang disurvei di setiapzona. Mengumpulkan tim yang diputar di antara blok setiap hari untuk mengurangiBias. Akses ke rumah tertutup dicoba minimal tigakali. Dalam setiap rumah tangga, salah satu anggota tim mengumpulkan diberikankuesioner survei demografi dan anggota lainnya yang dilakukansurvei entomologis. Nyamuk dewasa dikumpulkan dari ruangandan di luar ruangan dengan menggunakan aspirator ransel (John W. Hock Perusahaan,Gainesville, Florida, USA). Koleksi yang terbuat dari dinding, di bawah perabotan,dalam lemari, dan situs nyamuk dewasa kemungkinan lainnya beristirahat dalam semuaKamar-kamar di rumah (bila diijinkan). Koleksi luar terbuat daridinding eksterior, di bawah atap, vegetasi, dan di dan di sekitar ruangan disimpanbahan. Koleksi larva dan kepompong juga dilakukan dari dalam danrumah di luar. Pola spasial empat variabel diperiksa,yaitu dewasa Aedes aegypti, pupa, semua kontainer memegang air, danwadah penahan air positif bagi larva dan / atau pupa. Kfunctions global,titik dan berbobot, yang digunakan untuk mengidentifikasi pengelompokan di setiapdua zona dan statistik lokal, Gi *, digunakan untuk menentukan besarnyamasing-masing variabel dalam setiap rumah tangga untuk masing-masing lingkungan. Statistik iniadalah komponen dari suite program statistik spasial yang tersediasebagai bagian dari Analisis Pola (PPA) Program Point, versi onlineyang tersedia. Untuk menyelidiki ada tidaknya variabel dalamkode unik untuk masing-masing properti, yang dilukis di depan 550Iquitos, Peru (Getis et al. 2003). Rumah tangga sampel dengan menetapkanAedes aegypti indeks258rumah tangga untuk setiap lingkungan, tes chi-square digunakan. ItuK-fungsi menggambarkan jumlah pasangan observasi antaratitik, yang terletak di pusat disk dan titik lain yang jarakd pergi. Untuk stasioner, proses isotropik, (d) adalah diharapkanjumlah titik dalam jarak d dari sembarang titik. Estimator adalah N / A di mana N adalah jumlah titik di daerah A. studi estimator iniK (d) adalah:() / 2 1 (), ij ij ij d K d = AN u - I d di j (3.17)dimana dij adalah jarak antara titik-titik dan mengamati engan dan jId (dij d) adalah fungsi indikator yaitu 1 jika dij kurang dari atau sama dengan ddan 0 sebaliknya. Untuk lingkaran berpusat pada saya melewati huruf j, uij adalahproporsi keliling lingkaran yang terletak di dalam A. Ketika dij adalahkurang dari jarak dari i ke satu atau lebih batas wilayah studi, uij adalah 1.The "Koreksi perbatasan" membuat K (d) estimator sekitar objektifK (d) asalkan d kurang dari lingkar A. Sebuah akar kuadratskala membuat fungsi linear dan menstabilkan varians.L (d) [K (d) / ] (3.18)yang merupakan estimator L (d) [K (d) / ]. Rerata L (d) adalah d danvarians perkiraan adalah (N 2). Harapan L (d) diberikan hipotesiskeacakan spasial yang lengkap (CSR) adalah d. CSR adalah homogenplanar proses Poisson di mana semua titik independen dari semua titik lainnyadan semua lokasi sama-sama mungkin mengandung titik. Untuk CSR, sebidangL (d) terhadap d pada skala sumbu sama menghasilkan garis awal 45 derajatpada asal alam. Pola berkerumun terjadi ketika L (d) lebih besar dari ddan pola tersebar dapat diidentifikasi ketika L (d) kurang dari d. Statistiksignifikansi pada P 100), dan jumlah pupa dihitung. Semua entomologisData yang terkait dengan rumah-rumah tertentu dan dimasukkan ke dalam GIS. Perbedaanberarti kelimpahan air-holding, positif, dan wadah positif pupadan angka absolut pupa yang analsed menggunakan analisis variansBab 3 Sampling Populasi larvaRerata nyamuk dewasa di rumah-rumah adalah x dan s adalah standar261(ANOVA) dengan model umum prosedur linier (PROC GLM) dariSAS. Sebanyak 289 941 kontainer basah diamati dan ditandaidan jumlah rata-rata kontainer basah per rumah tangga yang disurvei adalah 4.85(308 kontainer per hektar). Dari jumlah tersebut, 7,3% terkandung Aedes aegypti dan3,6% positif terhadap pupa. Kontainer yang paling basah yang ditemukan di dalamrumah (57,4%), tidak memiliki kelopak (68,0%), dan diisi secara manual olehpenghuni rumah tangga dengan air dari pipa atau sumur (85,0%). Namun,hanya 17,9% dari wadah positif terletak di dalam rumah, 97,5%tidak memiliki tutup, dan hanya 19,5% yang diisi secara manual. Kontainer basah,wadah positif, kontainer pupa-positif, kelimpahan pupa, dan rumahdensity semua bervariasi secara signifikan di antara zona geografis delapan dipelajari.Menggunakan definisi wadah kunci sebagai salah satu yang berisi> 500 pupa,sekitar 2% dari tangki besar pupa-positif dan wadah non-tradisionaldiklasifikasikan sebagai wadah kunci. Dari jumlah tersebut, tiga dari tujuh terkandung> 1000 pupa pada hari survei. Wadah plastik menyumbang37% dari semua kontainer yang positif dan kepompong-positif dan 25% dari semua pupa.Namun, kategori wadah plastik tidak dianggap tepatkategori untuk mengarahkan upaya pengendalian di tingkat infestasi (3,6%) adalah rendahdan ada sangat banyak wadah plastik hadir di daerah tersebut.Juga di Iquitos, Peru, Morrison et al. (2004b) menggunakan metodologi surveiberdasarkan yang diusulkan oleh Focks et al. (1993) dan memungkinkan larva tradisionalindeks (PAHO 1994), dan indeks pupa (Focks dan Chadee 1997) menjadiakan diperoleh. Selain itu, koleksi nyamuk dewasa dibuat menggunakanransel aspirator (John W. Hock Company, Gainesville, Florida, USA).1999. Salah satu anggota masing-masing tim entomologi dua orang melakukansurvei demografi singkat untuk menentukan fitur kunci dari properti, termasukjumlah penghuni, ukuran properti, bahan bangunan,metode memasak, pola penggunaan air, jenis pembuangan limbah, dan insektisidagunakan. Para anggota lain dari tim mulai mengumpulkan nyamuk dewasamenggunakan aspirator ransel dari semua kamar yang aksesnya adalahdiberikan. Koleksi Aspirasi juga dilakukan di luar rumah dari mantanAedes aegypti wadah dalam maupun di luar rumah diperiksauntuk air, larva, pupa dan. Semua pupa dan sampel larva dikumpulkanditempatkan dalam kantong plastik twist-top dan diberi label dengan rumah dan kontainerkode. Indeks entomologis berikut ini dihitung di setiapdari empat survei: Indeks house (HI), indeks kontainer (CI); indeks Breteau(BI), kepompong per hektar, kepompong per orang, kepompong per rumah; indeks dewasaDesember 1998 dan yang kedua dari pertengahan Desember 1998 sampai pertengahan JanuariTupac Amaru disurvei dua kali, pertama dari pertengahan November sampai pertengahanEnam ratus rumah di 20 blok kota di Maynas dan 14 blok kota diluar. Setelah selesai kuesioner demografi seluruh potensidinding ternal, di bawah atap, dan di antara vegetasi dan bahan yang disimpanAedes aegypti indeks262 Bab 3 Sampling Populasi larva(AI = jumlah rumah positif Aedes aegypti dewasa dibagi denganjumlah rumah diperiksa dikalikan dengan 100); dewasa per hektar; dewasaper orang, dan orang dewasa per rumah. Hasil demografi dan entomologissurvei sensus adalah sebagai berikut: dalam survei pertama, indeks rumahadalah 28,8% (142/562) di Tupac Amaru, dan 44,7% (260/582) di Maynas (2 =30,8, d.f. = 1, P