aircraft design day3

42
DAY 3

Upload: arunsanga1233515

Post on 17-Nov-2014

5.429 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Aircraft Design Day3

DAY 3

Page 2: Aircraft Design Day3

AIRCRAFT AS SEEN BY DIFFERENT GROUPS

Aerodynamic group

Stress group

Production group

Page 3: Aircraft Design Day3

FLOW CHART OF AN A/C DESIGN

Design Specification

Design Criteria

Basic Loads

Laboratory Development

Test Data

Flight Test Data

Airplane Design

Approved Type Certificate

Certification Test Program

Page 4: Aircraft Design Day3

DESIGN CYCLE OF AN A/C

Page 5: Aircraft Design Day3

LOAD FACTOR

L=W L+L=W+F

LOAD FACTOR :

A factor which defines load in terms of weight

W

L

g

An

11

zAg

WF L

g

AW z1LL

Page 6: Aircraft Design Day3

DESIGN LOAD FACTOR

(2 to 3)

(6 to 8)

Page 7: Aircraft Design Day3

WING LOAD CASES• CASE A

– Large angles of attack corresponding to CL max while reaching a load factor of nmax (steep climb)

• CASE A’– Reaching a load factor of nmax at

maximum airspeed

• CASE B– Reaching a load factor of 0.5nmax

at maximum airspeed with Ailerons deflected

• CASE C– Ailerons deflected at maximum

airspeed (dive)

• CASE D & D’– Acrobatic maneuvers with a

negative load factor

Page 8: Aircraft Design Day3

WING LOAD REGIONS

Region I : n=nmax

Region II : 0n<nmax

Region III : 0nnmin

Region IV : n=nmin

Page 9: Aircraft Design Day3

CONSTRUCTION OF V-n DIAGRAM

From (1)

From (1) & (3) we get

296

VL

2s1SCW

maxL

maxLCS

W296Vs1

………….(1)

296

V2snSCnW

maxL

………….(2)

S/WCn

maxL 296

V2s

………….(3)

………….(4)

………….(5)

ns1sn VV

Page 10: Aircraft Design Day3

V-n DIAGRAM

Page 11: Aircraft Design Day3

MANEUVERING V-n DIAGRAM

Page 12: Aircraft Design Day3

GUST V-n DIAGRAM

Page 13: Aircraft Design Day3

LIMITING LOAD FACTOR VALUES

lim

24,0002.1

10,000itto

nW

S.No Weight of the airplane

Limiting load factor

1 < 4118 3.8

2 4118 - 50000

3 > 50000 2.1

Page 14: Aircraft Design Day3

AIRCRAFT STRUCTURAL DESIGN

Page 15: Aircraft Design Day3

PHASES OF AIRCRAFT STRUCTURAL DESIGN

• Specification of function and design criteria

• Determination of basic external loads

• Calculation of internal element loads

• Determination of allowable element strengths and margins of safety

• Experimental demonstration or subtantiation test program

Page 16: Aircraft Design Day3

CLASSIFICATION• CRITICAL

– ALL PRIMARY STRUCTURESFUSELAGEWING

EMPENNAGEAILERON / FLAPS/STABILIZERS

• NEAR CRITICAL PARTS– TRAILING EDGE PANELS OF WINGS &

EMPENNAGE – RADOME

• NON-CRITICAL PARTS– FAIRINGS / INTERIOR PANELS

Page 17: Aircraft Design Day3

CRITERIA FOR MATERIAL SELECTION

• Light weight

• Stiffness

• Toughness

• Resistance to corrosion

• Fatigue

• Environmental heat

• Availability

• Easy to fabricate

Page 18: Aircraft Design Day3

MATERIALS

• Aluminum alloy

• Titanium

• Steel

• Composites

Page 19: Aircraft Design Day3

SIGN CONVENTIONS

C) BENDING MOMENTB) SHEAR FORCEA) AXIAL FORCE

F) ANGLE & ROTATIOND) TORQUE E) SHEAR FLOW

Page 20: Aircraft Design Day3

SIGN CONVENTIONS (REACTION LOADS)

A) AXIAL & SHEAR

C) TORQUE

B) BENDING MOMENT

Page 21: Aircraft Design Day3

• STRUCTURAL INDEX OFFERS THE DESIGNER A GUIDE TO DESIGN THE OPTIMUM TYPE OF STRUCTURE

• STRUCTURAL INDEX IS USEFUL IN DESIGN WORK BECAUSE IT CONTAINS– THE INTENSITY OF THE LOAD– DIMENSIONS, WHICH LIMIT THE SIZE OF THE

STRUCTURE

STRUCTURAL INDEX

Page 22: Aircraft Design Day3

STRUCTURAL INDEX

A) SHEAR

G) WING BOXF) TUBEE) PANEL

D) WIDE COLUMNC) COLUMNB) TORSION

Page 23: Aircraft Design Day3

SEQUENCE OF STRESS WORK

• PRELIMINARY SIZING

• PRODUCTION STRESS ANALYSIS

• FORMAL STRESS ANALYSIS FOR CERTIFICATION

Page 24: Aircraft Design Day3

PRELIMINARY SIZINGStep1 : Recognize the function and configuration of the

component

Step2 : Basic loads (static / fatigue / fail safe / crash)

Step3 : Material selection (static / fatigue / fracture toughness)

Step4 : Fastener and repairability

Step5 : Efficient structure (Fabrication / Configuration / assembly / installation / stiffness)

Step6 : Cost ( Manufacturing / assembly/ performance / market)

Page 25: Aircraft Design Day3

EQUILIBRIUM OF FORCES• THE FORCE EQUILIBRIUM EQUATIONS ARE

0

0

0

M

F

F

Y

X

STRUCTURE

FREE BODY DIAGRAM

PL

1200 lb40000 lb-in

W=8000 lb

A BC T

lb 1200

0

T

Fx

506P

0067 15P

400006*8000150*10*1200

0

P

M B

9447 L

8000

0

PL

FY

Page 26: Aircraft Design Day3

TRUSSTRUSSES ARE CLASSIFIED AS

- STATICALLY DETERMINATE- STATICALLY INDETERMINATE

32 jm m= Number of membersj= Number of joints

m 2j-3 Structure is unstablem 2j-3 Structure is statically indeterminate

Page 27: Aircraft Design Day3

TRUSSES (Contd…)• Identify whether the structure is statically

determinate / indeterminate

C

A B

RAH

RAV

RBH

RBV

P PPPPP

A B C D

Page 28: Aircraft Design Day3

ASSUMPTIONS IN TRUSS ANALYSIS

• The members of the truss are straight, weightless and lie in one plane

• The members of the truss meeting at a point are considered as joined together by a frictionless pin

• All the members axis intersect at the centre of the pin

• All the external loads are only applied to the joints and in the plane of truss

Page 29: Aircraft Design Day3

TRUSS ANALYSISTRUSSES CAN BE ANALYSED BY

- METHOD OF JOINTS- METHOD OF SECTIONS

STRUCTURE

FREE BODY DIAGRAM

B CA

D GE

R1

H

1000 lb

2000 lb

4000 lb

A

20001

0

R

FX

lb 4500 3

20*310*200010*400030*1000

0

R

R

MD

lb 500 2

500032

0

R

RR

FY

R3R2

Page 30: Aircraft Design Day3

TRUSS ANALYSIS (Contd …)

A

D

E

2000

500

2000 lb

5000 ADY FF

20000 DEX FFJOINT D

JOINT E

JOINT A

lbF

FSinFF

AE

ADAEY

707

450

lb 2500

2000450

AB

ABAEX

F

FCosFF

lb 2500

450

EG

EGDEAEX

F

FFCosFF lbF

FSinFF

BE

BEAEY

500

450

FDE

FAD

FEG

FBE

FAB

FAEFAD=500

FDE=2000

FAE=707

Page 31: Aircraft Design Day3

TRUSS ANALYSIS (Contd …)

B

G

4500

H

1000 lb

4000 lbJOINT B

JOINT G

lbF

FSinFF

BG

BEBGY

4950

4000450

lb 1000

450

BC

BCABBGX

F

FFCosFF

lb 1000

450

GH

GHEGBGX

F

FFCosFF

lbF

FSinFF

CG

CGBGY

1000

4500450

lbF

SinFF

CH

CHY

1414

1000450

JOINT H

FAB=2500FBC

FBG=4950

FBE=500

FCH

FGH=1000

FGHFEG=2500

FCG

Page 32: Aircraft Design Day3

TRUSS ANALYSIS (METHOD OF SECTIONS)

B CA

D E

R1

R2 R3=4500

H

1000 lb

2000 lb

4000 lb

GG

Page 33: Aircraft Design Day3

TRUSS ANALYSIS (METHOD OF SECTIONS)

lb 1000

10*20*50010*400010*2000

0

BC

BC

G

F

F

M

BA

D E

R1=2000 lb

2000 lb

4000 lb

G lbF

SinF

F

BG

BG

Y

4950

500400045

0

R2 =500 lb

FBC

FBG

FEG

lb 2500

10002000200045

0

EG

BGEG

X

F

CosFF

F

Page 34: Aircraft Design Day3

TRUSS ANALYSIS (METHOD OF SECTIONS)

R3=4500

H

1000 lb

G

FBC

FBG

FEG

CB

lb 2500

10*20*100010*4500

0

EG

EG

B

F

F

M

lb 1000

45

0

BC

EGBGBC

X

F

FCosFF

F

lbF

SinF

F

BG

BG

Y

4950

1000450045

0

Page 35: Aircraft Design Day3

TRUSS WITH MEMBERS IN BENDING

RAX

RBY1=100 lbRAY=100 lb

RBX1

RCXRBX1

RBY2=100 lb

200 lb

200 lb

A

E

D

CB

RCY=100 lb

100 lb 200 lb 100 lb

Page 36: Aircraft Design Day3

TRUSS WITH MEMBERS IN BENDING

A

E

D

C

B

100 lb

200 lb

100 lb

FCE

FBC

lbF

SinF

F

CE

CE

Y

200

10030

0

lb 2.173

30

0

BC

CEBC

X

F

CosFF

F

FABFBC

lb 2.173

0

BCAB

X

FF

F

lb 200

0

BE

Y

F

F

FAE

FABFAX

lbF

SinF

F

AE

AE

Y

200

10030

0

lb 4.346

30 Cos

0

AX

AEABAX

X

F

FFF

F

FBE

FAE=200 lb

FBE=200 lbFCE=200 lb

FED

lbFF EDD 400

lbF

CosFCosFFF

ED

BEAECEED

400

6060

FED

FD

Page 37: Aircraft Design Day3

FINITE ELEMENT METHOD• A GENRALIZED MATHEMATICAL

PROCEDURE FOR CONTINUUM PROBLEMS POSED BY MATHEMATICALLY DEFINED STATEMENTS

4

321

1110

875

5

6

6

9

9

1 2

3 4

7 8

9

65

10

11 12

Page 38: Aircraft Design Day3

TRUSS ELEMENT

r=-1 r=1

Y

X

x2

x1 U2U1

Natural coordinate system rGlobal coordinate system X

rh

rh

XhX ii

12

1

12

1

2

1

2

1

rh

rh

UhU ii

12

1

12

1

2

1

2

1

Page 39: Aircraft Design Day3

TRUSS ELEMENT (Contd…)

1 1L

1B

L

UU

LXX

dr

dXdr

dUdX

dr

dr

dU

dX

dU

12

12 22

12

1

1 1-

1- 1K

1

11 1K

1

1

L

11 1

L

1K

K

L

AE

drLL

AE

JdrAE

dXBDBT

2

1

12

1

1

1

1

Page 40: Aircraft Design Day3

STATIC ANALYSIS

FKU

SOLUTION METHODSA) SPARSE DECOMPOSITIONB) CHOLESKEY FACTORIZATIONC) PCG METHODD) FRONTAL SOLVER

K-STIFFNESS MATRIXU–DISPLACEMENT VECTORF- FORCE VECTOR

Page 41: Aircraft Design Day3

PRACTICEWORK

Prob. 1 : Solve the given truss using method of joints, method of sections and compare

Page 42: Aircraft Design Day3

PRACTICEWORK

2. Solve the given aircraft structure using method of joints, method of sections and compare