algebraic relativism: encoding the higher structure of ...sma.epfl.ch/~hessbell/crm.pdf ·...

79
Algebraic Relativism Kathryn Hess Algebra in monoidal categories Operads and “relative operads” Existence theorems Algebraic Relativism: Encoding the Higher Structure of Morphisms Kathryn Hess Institute of Geometry, Algebra and Topology Ecole Polytechnique Fédérale de Lausanne CRM-University of Ottawa Distinguished Lecture 23 February 2007

Upload: others

Post on 01-Jun-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

Existencetheorems

Algebraic Relativism:Encoding the Higher Structure of

Morphisms

Kathryn Hess

Institute of Geometry, Algebra and TopologyEcole Polytechnique Fédérale de Lausanne

CRM-University of Ottawa Distinguished Lecture23 February 2007

Page 2: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

Existencetheorems

Slogan

Operadsparametrize n-ary operations, andgovern the identities that they must satisfy.

Co-rings over operadsparametrize higher, “up to homotopy” structure onhomomorphisms, andgovern the relations among the “higher homotopies"and the n-ary operations.

Co-rings over operads should therefore be considered asrelative operads.

Page 3: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

Existencetheorems

Slogan

Operadsparametrize n-ary operations, andgovern the identities that they must satisfy.

Co-rings over operadsparametrize higher, “up to homotopy” structure onhomomorphisms, andgovern the relations among the “higher homotopies"and the n-ary operations.

Co-rings over operads should therefore be considered asrelative operads.

Page 4: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

Existencetheorems

Slogan

Operadsparametrize n-ary operations, andgovern the identities that they must satisfy.

Co-rings over operadsparametrize higher, “up to homotopy” structure onhomomorphisms, andgovern the relations among the “higher homotopies"and the n-ary operations.

Co-rings over operads should therefore be considered asrelative operads.

Page 5: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

Existencetheorems

Outline

1 Algebra in monoidal categoriesMonoids and modulesCo-rings

2 Operads and “relative operads”Operads(Co)algebras and their morphismsCo-rings as “relative operads”

3 Existence theoremsSetting the stageDiffraction and cobar dualityExistence of parametrized morphisms

Page 6: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Monoidal categories: definition

Let M be a category.

A monoidal structure on M is given bya bifunctor −⊗− : M×M → M,a distinguished object I

such thatA⊗ I ∼= A ∼= I ⊗ A

and(A⊗ B)⊗ C ∼= A⊗ (B ⊗ C)

naturally.

(M,⊗, I) is symmetric if A⊗ B ∼= B ⊗ A naturally.

Page 7: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Monoidal categories: definition

Let M be a category.

A monoidal structure on M is given bya bifunctor −⊗− : M×M → M,a distinguished object I

such thatA⊗ I ∼= A ∼= I ⊗ A

and(A⊗ B)⊗ C ∼= A⊗ (B ⊗ C)

naturally.

(M,⊗, I) is symmetric if A⊗ B ∼= B ⊗ A naturally.

Page 8: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Monoidal categories: examples

Set or Top, together with cartesian product ×

Ab, together with ⊗Z

Vectk, together with tensor product ⊗k

Ch, together with graded tensor product ⊗k

All of these examples are symmetric.

Page 9: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Monoids: definition

Let (M,⊗, I) be a monoidal category.

A monoid in M is an object A in C, together with twomorphisms in C:

µ : A⊗ A → A and η : I → A

such that

A⊗ A⊗ A

µ⊗IdA

IdA⊗µ // A⊗ A

µ

A A⊗ Aµ //µoo A

A⊗ Aµ // A A⊗ I

IdA⊗η

::vvvvvvvvv∼=

OO

I ⊗ Aη⊗IdA

ddHHHHHHHHH∼=

OO

commute.

Page 10: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Monoids: examples

In (Set,×): monoids (of sets) (e.g., (N,+,0) )

In (Top,×): topological monoids (e.g., Lie groups,H-spaces)

In (Ab,⊗Z): rings!

In (Vectk,⊗k): k-algebras (e.g., group rings k[G])

In (Ch,⊗k): differential graded algebras (e.g., thecochains on topological space)

Page 11: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Morphisms of monoids

Let (A, µ, η) and (A′, µ′, η′) be monoids in a monoidalcategory (M,⊗, I).

A morphism of monoids from (A, µ, η) to (A′, µ′, η′) is amorphism f : A → A′ such that the diagrams

A⊗ A

µ

f⊗f // A′ ⊗ A′

µ′

Iη′

===

====

Af // A′ A

f // A′

commute.

Page 12: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Modules

Let (A, µ, η) be a monoid in (M,⊗, I).

A right A-module is an object M in M together with amorphism in M

ρ : M ⊗ A → M

such that

M ⊗ A⊗ A

ρ⊗IdA

IdA⊗µ // M ⊗ A

ρ

M M ⊗ Aρoo

M ⊗ Aρ // A M ⊗ I

IdM⊗η

::uuuuuuuuu∼=

OO

commute.

Dually, (M, λ), with λ : A⊗M → M is a left A-module ifthe analogous diagrams commute.

Page 13: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Modules

Let (A, µ, η) be a monoid in (M,⊗, I).

A right A-module is an object M in M together with amorphism in M

ρ : M ⊗ A → M

such that

M ⊗ A⊗ A

ρ⊗IdA

IdA⊗µ // M ⊗ A

ρ

M M ⊗ Aρoo

M ⊗ Aρ // A M ⊗ I

IdM⊗η

::uuuuuuuuu∼=

OO

commute.

Dually, (M, λ), with λ : A⊗M → M is a left A-module ifthe analogous diagrams commute.

Page 14: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Modules: homomorphisms

Let (M, ρ) and (M ′, ρ′) be right A-modules.

A morphism of right A-modules from (M, ρ) to (M ′, ρ′) is amorphism g : M → M ′ in M such that

M ⊗ A

ρ

g⊗IdA // M ′ ⊗ A

ρ′

M

g // M ′

commutes. The category of right A-modules and theirmorphisms is denoted ModA.

There is an analogous definition of AMod, the category ofleft A-modules and their morphisms.

Page 15: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Modules: homomorphisms

Let (M, ρ) and (M ′, ρ′) be right A-modules.

A morphism of right A-modules from (M, ρ) to (M ′, ρ′) is amorphism g : M → M ′ in M such that

M ⊗ A

ρ

g⊗IdA // M ′ ⊗ A

ρ′

M

g // M ′

commutes. The category of right A-modules and theirmorphisms is denoted ModA.

There is an analogous definition of AMod, the category ofleft A-modules and their morphisms.

Page 16: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Bimodules

Suppose that λ : A⊗M → M and ρ : M ⊗ A → M are leftand right actions of A.

(M, λ, ρ) is an A-bimodule if

A⊗M ⊗ A

λ⊗IdA

IdA⊗ρ // A⊗M

λ

M ⊗ Aρ // M

commutes.

A morphism g : M → M ′ that is a morphism of both leftA-modules and right A-modules is a morphism ofA-bimodules. The category of A-bimodules and theirmorphisms is denoted AModA.

Page 17: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Bimodules

Suppose that λ : A⊗M → M and ρ : M ⊗ A → M are leftand right actions of A.

(M, λ, ρ) is an A-bimodule if

A⊗M ⊗ A

λ⊗IdA

IdA⊗ρ // A⊗M

λ

M ⊗ Aρ // M

commutes.A morphism g : M → M ′ that is a morphism of both leftA-modules and right A-modules is a morphism ofA-bimodules.

The category of A-bimodules and theirmorphisms is denoted AModA.

Page 18: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Bimodules

Suppose that λ : A⊗M → M and ρ : M ⊗ A → M are leftand right actions of A.

(M, λ, ρ) is an A-bimodule if

A⊗M ⊗ A

λ⊗IdA

IdA⊗ρ // A⊗M

λ

M ⊗ Aρ // M

commutes.A morphism g : M → M ′ that is a morphism of both leftA-modules and right A-modules is a morphism ofA-bimodules. The category of A-bimodules and theirmorphisms is denoted AModA.

Page 19: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Monoidal products of bimodules

Let (M,⊗, I) be a bicomplete, closed monoidal category.Let (A, µ, η) be a monoid in M.

RemarkThe category of A-bimodules is also monoidal, withmonoidal product ⊗

Agiven by the coequalizer

M ⊗ A⊗ Nρ⊗N⇒

M⊗λM ⊗ N −→ M ⊗

AN.

Page 20: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Definition of co-rings

An A-co-ring is a comonoid (R, ψ) in the category ofA-bimodules, i.e.,

ψ : R −→ R ⊗A

R

is a coassociative morphism of A-bimodules.

CoRingA is the category of A-co-rings and theirmorphisms.

Page 21: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Example: the canonical co-ringIf ϕ : B → A is a monoid morphism, then

R = A⊗B

A

is an A-co-ring, where

ψ : R → R ⊗A

R

is the following composite of A-bimodule maps.

A⊗B

A ∼= //

ψ

A⊗B

B ⊗B

A

A⊗Bϕ⊗

BA

(A⊗

BA)⊗

A(A⊗

BA) A⊗

BA⊗

BA∼=oo

This example arose in Galois theory.

Page 22: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

(A,R)Mod

Ob (A,R)Mod = Ob AMod

(A,R)Mod(M,N) = AMod(R ⊗A

M,N)

Given

ϕ ∈ (A,R)Mod(M,M ′) and ϕ′ ∈ (A,R)Mod(M ′,M ′′)

their composite in (A,R)Mod,

ϕ′ϕ ∈ (A,R)Mod(M,M ′′),

is given by

R ⊗A

Mψ⊗

AM

−−−→ R ⊗A

R ⊗A

MR⊗

−−−→ R ⊗A

M ′ ϕ′−→ M ′′.

Page 23: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

(A,R)Mod

Ob (A,R)Mod = Ob AMod

(A,R)Mod(M,N) = AMod(R ⊗A

M,N)

Given

ϕ ∈ (A,R)Mod(M,M ′) and ϕ′ ∈ (A,R)Mod(M ′,M ′′)

their composite in (A,R)Mod,

ϕ′ϕ ∈ (A,R)Mod(M,M ′′),

is given by

R ⊗A

Mψ⊗

AM

−−−→ R ⊗A

R ⊗A

MR⊗

−−−→ R ⊗A

M ′ ϕ′−→ M ′′.

Page 24: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Mod(A,R)

Ob Mod(A,R) = Ob ModA

Mod(A,R)(M,N) = ModA(M ⊗A

R,N)

Given

ϕ ∈ Mod(A,R)(M,M ′) and ϕ′ ∈ Mod(A,R)(M ′,M ′′)

their composite in Mod(A,R),

ϕ′ϕ ∈ Mod(A,R)(M,M ′),

is given by

M ⊗A

RM⊗

−−−→ M ⊗A

R ⊗A

Rϕ⊗

AR

−−−→ M ′ ⊗A

Rϕ′−→ M ′′.

Page 25: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategoriesMonoids and modules

Co-rings

Operads and“relativeoperads”

Existencetheorems

Mod(A,R)

Ob Mod(A,R) = Ob ModA

Mod(A,R)(M,N) = ModA(M ⊗A

R,N)

Given

ϕ ∈ Mod(A,R)(M,M ′) and ϕ′ ∈ Mod(A,R)(M ′,M ′′)

their composite in Mod(A,R),

ϕ′ϕ ∈ Mod(A,R)(M,M ′),

is given by

M ⊗A

RM⊗

−−−→ M ⊗A

R ⊗A

Rϕ⊗

AR

−−−→ M ′ ⊗A

Rϕ′−→ M ′′.

Page 26: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Generating n-ary operations

A binary operation

µ : X × X → X : (x , y) 7→ x · y

on a set X gives rise to numerous n-ary operations, e.g.,

X × X → X : (x , y) 7→ y · x ,

X × X × X → X : (x , y , z) 7→ (x · y) · z,

X × X × X → X : (x , y , z) 7→ x · (y · z),

X × X × X × X → X : (w , x , y , z) 7→ w · ((z · x) · y),

X×X×X×X×X → X : (v ,w , x , y , z) 7→ ((x ·v)·z)·(y ·w),

Etc.!

Page 27: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Generating n-ary operations

A binary operation

µ : X × X → X : (x , y) 7→ x · y

on a set X gives rise to numerous n-ary operations, e.g.,

X × X → X : (x , y) 7→ y · x ,

X × X × X → X : (x , y , z) 7→ (x · y) · z,

X × X × X → X : (x , y , z) 7→ x · (y · z),

X × X × X × X → X : (w , x , y , z) 7→ w · ((z · x) · y),

X×X×X×X×X → X : (v ,w , x , y , z) 7→ ((x ·v)·z)·(y ·w),

Etc.!

Page 28: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Generating n-ary operations

A binary operation

µ : X × X → X : (x , y) 7→ x · y

on a set X gives rise to numerous n-ary operations, e.g.,

X × X → X : (x , y) 7→ y · x ,

X × X × X → X : (x , y , z) 7→ (x · y) · z,

X × X × X → X : (x , y , z) 7→ x · (y · z),

X × X × X × X → X : (w , x , y , z) 7→ w · ((z · x) · y),

X×X×X×X×X → X : (v ,w , x , y , z) 7→ ((x ·v)·z)·(y ·w),

Etc.!

Page 29: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Generating n-ary operations

A binary operation

µ : X × X → X : (x , y) 7→ x · y

on a set X gives rise to numerous n-ary operations, e.g.,

X × X → X : (x , y) 7→ y · x ,

X × X × X → X : (x , y , z) 7→ (x · y) · z,

X × X × X → X : (x , y , z) 7→ x · (y · z),

X × X × X × X → X : (w , x , y , z) 7→ w · ((z · x) · y),

X×X×X×X×X → X : (v ,w , x , y , z) 7→ ((x ·v)·z)·(y ·w),

Etc.!

Page 30: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Parametrizing n-ary operations

Need to organize and systematize all this information,i.e., to

enumerate in a reasonable way all possible n-aryoperations;encode relations among various n-ary operations.

Page 31: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

A helpful descriptive tool

Planar trees labeled with permutations are useful forencoding n-ary operations.

Operads formalize this parametrization via trees.

Page 32: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

A helpful descriptive tool

Planar trees labeled with permutations are useful forencoding n-ary operations.

Operads formalize this parametrization via trees.

Page 33: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Symmetric sequences

Let (M,⊗, I) be a bicomplete, closed, symmetric monoidalcategory.

MΣ is the category of symmetric sequences in M.

X ∈ Ob MΣ =⇒ X = X(n) ∈ Ob M | n ≥ 0,

where X(n) admits a right action of the symmetric groupΣn, for all n.

Page 34: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

The level monoidal structure

Let−⊗− : MΣ ×MΣ −→ MΣ

be the functor given by(X⊗ Y

)(n) = X(n)⊗ Y(n), with

diagonal Σn-action.

Proposition(MΣ,⊗,C) is a closed, symmetric monoidal category,where C(n) = I with trivial Σn-action, for all n.

Page 35: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

The level monoidal structure

Let−⊗− : MΣ ×MΣ −→ MΣ

be the functor given by(X⊗ Y

)(n) = X(n)⊗ Y(n), with

diagonal Σn-action.

Proposition(MΣ,⊗,C) is a closed, symmetric monoidal category,where C(n) = I with trivial Σn-action, for all n.

Page 36: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

The graded monoidal structure

Let−− : MΣ ×MΣ −→ MΣ

be the functor given by(X Y

)(n) =

∐i+j=n

(X(i)⊗ Y(j)

)⊗

Σi×Σj

I[Σn],

where I[Σn] is the free Σn-object on I.

Proposition(MΣ,,U) is a closed, symmetric monoidal category,where U(0) = I and U(n) = O (the 0-object), for all n > 0.

Page 37: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

The graded monoidal structure

Let−− : MΣ ×MΣ −→ MΣ

be the functor given by(X Y

)(n) =

∐i+j=n

(X(i)⊗ Y(j)

)⊗

Σi×Σj

I[Σn],

where I[Σn] is the free Σn-object on I.

Proposition(MΣ,,U) is a closed, symmetric monoidal category,where U(0) = I and U(n) = O (the 0-object), for all n > 0.

Page 38: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

The composition monoidal structure

Let− − : MΣ ×MΣ −→ MΣ

be the functor given by(X Y

)(n) =

∐m≥0

X(m) ⊗Σm

(Ym)(n).

Proposition(MΣ, , J) is a right-closed, monoidal category, whereJ(1) = I and J(n) = O (the 0-object), for all n 6= 1.

Page 39: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

The composition monoidal structure

Let− − : MΣ ×MΣ −→ MΣ

be the functor given by(X Y

)(n) =

∐m≥0

X(m) ⊗Σm

(Ym)(n).

Proposition(MΣ, , J) is a right-closed, monoidal category, whereJ(1) = I and J(n) = O (the 0-object), for all n 6= 1.

Page 40: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Operads as monoids

An operad in M is a monoid (P, γ, η) in (MΣ, , J).

More explicitly, there is a family of morphisms in M

γ~n : P(k)⊗(

P(n1)⊗ · · · ⊗ P(nk )

)→ P

( k∑i=1

ni),

for all k ≥ 0 and all ~n = (n1, ...,nk ) ∈ Nk , that areappropriately equivariant, associative and unital.

Page 41: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Operads as monoids

An operad in M is a monoid (P, γ, η) in (MΣ, , J).

More explicitly, there is a family of morphisms in M

γ~n : P(k)⊗(

P(n1)⊗ · · · ⊗ P(nk )

)→ P

( k∑i=1

ni),

for all k ≥ 0 and all ~n = (n1, ...,nk ) ∈ Nk , that areappropriately equivariant, associative and unital.

Page 42: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

The associative operad A

For all n ∈ N,A(n) = I[Σn],

on which Σn acts by right multiplication, and

γ~n : A(k)⊗(

A(n1)⊗ · · · ⊗A(nk )

)→ A

( k∑i=1

ni)

is given by “block permutation.”

Page 43: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

The endomorphism operad EX

Let X be an object of M.

Let hom(Y ,−) denote the right adjoint to −⊗ Y .

For all n ∈ N,EX (n) = hom(X⊗n,X )

on which Σn acts by permuting inputs, and

γ~n : EX (k)⊗(

EX (n1)⊗ · · · ⊗ EX (nk )

)→ EX

( k∑i=1

ni)

is given by “composition of functions”.

Page 44: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

The coendomorphism operad EX

Let X be an object of M.

Let hom(Y ,−) denote the right adjoint to −⊗ Y .

For all n ∈ N,EX (n) = hom(X ,X⊗n)

on which Σn acts by permuting outputs, and

γ~n : EX (k)⊗(

EX (n1)⊗ · · · ⊗ EX (nk )

)→ EX

( k∑i=1

ni)

is given by “composition of functions”.

Page 45: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Algebras and coalgebras over operads

Let (P, γ, η) be an operad in M.A P-algebra consists of an object A of M, togetherwith a morphism of operads µ : P → EA.

⇐⇒ ∃ µn : P(n)⊗ A⊗n → An≥0

–appropriately equivariant, associative and unital.

A P-coalgebra consists of an object C of M, togetherwith a morphism of operads δ : P → EC .

⇐⇒ ∃ δn : C ⊗ P(n) → C⊗nn≥0

–appropriately equivariant, associative and unital.

Page 46: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Algebras and coalgebras over operads

Let (P, γ, η) be an operad in M.A P-algebra consists of an object A of M, togetherwith a morphism of operads µ : P → EA.

⇐⇒ ∃ µn : P(n)⊗ A⊗n → An≥0

–appropriately equivariant, associative and unital.

A P-coalgebra consists of an object C of M, togetherwith a morphism of operads δ : P → EC .

⇐⇒ ∃ δn : C ⊗ P(n) → C⊗nn≥0

–appropriately equivariant, associative and unital.

Page 47: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Algebras and coalgebras over operads

Let (P, γ, η) be an operad in M.A P-algebra consists of an object A of M, togetherwith a morphism of operads µ : P → EA.

⇐⇒ ∃ µn : P(n)⊗ A⊗n → An≥0

–appropriately equivariant, associative and unital.

A P-coalgebra consists of an object C of M, togetherwith a morphism of operads δ : P → EC .

⇐⇒ ∃ δn : C ⊗ P(n) → C⊗nn≥0

–appropriately equivariant, associative and unital.

Page 48: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Example

A-algebras are monoids in M.

A-coalgebras are comonoids in M.

Page 49: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Morphisms of P-(co)algebrasA P-algebra morphism from (A, µ) to (A′, µ′) is amorphism ϕ : A → A′ in M such that the followingdiagram commutes for all n.

P(n)⊗ A⊗n µn //

P(n)⊗ϕ⊗n

A

ϕ

P(n)⊗ (A′)⊗n µ′n // A′

A P-coalgebra morphism from (C, δ) to (C′, δ′) is amorphism ϕ : C → C′ in M such that the followingdiagram commutes for all n.

C ⊗ P(n)δn //

ϕ⊗P(n)

C⊗n

ϕ⊗n

C′ ⊗ P(n)

δ′n // (C′)⊗n

Page 50: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Morphisms of P-(co)algebrasA P-algebra morphism from (A, µ) to (A′, µ′) is amorphism ϕ : A → A′ in M such that the followingdiagram commutes for all n.

P(n)⊗ A⊗n µn //

P(n)⊗ϕ⊗n

A

ϕ

P(n)⊗ (A′)⊗n µ′n // A′

A P-coalgebra morphism from (C, δ) to (C′, δ′) is amorphism ϕ : C → C′ in M such that the followingdiagram commutes for all n.

C ⊗ P(n)δn //

ϕ⊗P(n)

C⊗n

ϕ⊗n

C′ ⊗ P(n)

δ′n // (C′)⊗n

Page 51: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

P-algebras as left P-modules

Let z : M → MΣ be the functor defined on objects byz(X )(0) = X and z(X )(n) = O for all n > 0.

Proposition (Kapranov-Manin,?)The functor z restricts and corestricts to a full and faithfulfunctor

z : P-Alg → PMod.

Page 52: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

P-coalgebras as right P-modules

Let T : M → MΣ be the functor defined on objects byT(X )(n) = X⊗n, where Σn acts by permuting factors.

Proposition (H.-Parent-Scott)The functor T restricts and corestricts to a full and faithfulfunctor

T : P-Coalg → AModP.

Page 53: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Co-rings over operads

Given a co-ring (R, ψ) over an operad P, i.e.,R is a P-bimodule,

ψ : R → R P

R is a coassociative, counital morphism

of P-bimodules,

get “fattened” categories of modules

(P,R)Mod and Mod(P,R)

giving rise to “fattened” categories of P-algebras and ofP-coalgebras

(P,R)-Alg and (P,R)-Coalg.

Page 54: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

Co-rings over operads

Given a co-ring (R, ψ) over an operad P, i.e.,R is a P-bimodule,

ψ : R → R P

R is a coassociative, counital morphism

of P-bimodules,get “fattened” categories of modules

(P,R)Mod and Mod(P,R)

giving rise to “fattened” categories of P-algebras and ofP-coalgebras

(P,R)-Alg and (P,R)-Coalg.

Page 55: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

How co-rings parametrize morphisms I

Let (A, µ) and (A′, µ′) be P-algebras.

A morphism in (P,R)-Alg from (A, µ) to (A′, µ′) is amorphism of left P-modules

R P

z(A) → z(A′),

i.e., a collection of morphisms in MR(n)⊗ A⊗n → A′ | n ≥ 1

that are “appropriately compatible” with the P-actions onR, A and A′.

Page 56: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”Operads

(Co)algebras and theirmorphisms

Co-rings as “relativeoperads”

Existencetheorems

How co-rings parametrize morphisms II

Let (C, δ) and (C′, δ′) be P-algebras.

A morphism in (P,R)-Coalg from (C, δ) to (C′, δ′) is amorphism of right P-modules

T(C) P

R → T(C′),

i.e., a collection of morphisms in MC ⊗ R(n) → (C′)⊗n | n ≥ 1

that are “appropriately compatible” with the P-actions onR, C and C′.

Page 57: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

Chain complexes

Ch is the category of chain complexes over acommutative ring R that are bounded below.Ch is closed, symmetric monoidal with respect to thetensor product:

(C,d)⊗ (C′,d ′) := (C′′,d ′′)

whereC′′

n =⊕

i+j=n

Ci ⊗R C′j

andd ′′ = d ⊗R C′ + C ⊗R d ′.

Page 58: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

The cobar constructionLet C denote the category of chain coalgebras, i.e., ofcomonoids in Ch. Let A denote the category of chainalgebras, i.e., of monoids in Ch.

The cobar construction is a functor

Ω : C −→ A : C 7−→ ΩC =(T (s−1C),dΩ

),

whereT is the free tensor algebra functor on gradedR-modules,(s−1C)n = Cn+1 for all n, anddΩ is the derivation specified by

dΩs−1 = −s−1d + (s−1 ⊗ s−1)∆,

where d and ∆ are the differential and coproduct onC.

Page 59: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

The cobar constructionLet C denote the category of chain coalgebras, i.e., ofcomonoids in Ch. Let A denote the category of chainalgebras, i.e., of monoids in Ch.

The cobar construction is a functor

Ω : C −→ A : C 7−→ ΩC =(T (s−1C),dΩ

),

whereT is the free tensor algebra functor on gradedR-modules,(s−1C)n = Cn+1 for all n, anddΩ is the derivation specified by

dΩs−1 = −s−1d + (s−1 ⊗ s−1)∆,

where d and ∆ are the differential and coproduct onC.

Page 60: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

The category DCSH

Ob DCSH = Ob C.DCSH(C,C′) := A(ΩC,ΩC′).

Morphisms in DCSH are called

strongly homotopy-comultiplicative maps.

ϕ ∈ DCSH(C,C′) ⇐⇒ ϕk : C → (C′)⊗kk≥1 + relations!

The chain map ϕ1 : C → C′ is called a DCSH-map.

Page 61: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

The category DCSH

Ob DCSH = Ob C.DCSH(C,C′) := A(ΩC,ΩC′).

Morphisms in DCSH are called

strongly homotopy-comultiplicative maps.

ϕ ∈ DCSH(C,C′) ⇐⇒ ϕk : C → (C′)⊗kk≥1 + relations!

The chain map ϕ1 : C → C′ is called a DCSH-map.

Page 62: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

The category DCSH

Ob DCSH = Ob C.DCSH(C,C′) := A(ΩC,ΩC′).

Morphisms in DCSH are called

strongly homotopy-comultiplicative maps.

ϕ ∈ DCSH(C,C′) ⇐⇒ ϕk : C → (C′)⊗kk≥1 + relations!

The chain map ϕ1 : C → C′ is called a DCSH-map.

Page 63: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

Topological significance

Let K be a simplicial set.

Theorem (Gugenheim-Munkholm)The natural coproduct ∆K : C∗K → C∗K ⊗ C∗K isnaturally a DCSH-map

Thus, there exists a chain algebra map

ϕK : ΩC∗K → Ω(C∗K ⊗ C∗K

)such that (ϕK )1 = ∆K .

Page 64: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

The diffracting functorComon⊗ is the category of comonoids in (ChΣ,⊗,C).

Theorem (H.-P.-S.)There is a functor

Φ : Comon⊗ → CoRingA

such that the underlying A-bimodule of Φ(X) is free, forall objects X in Comon⊗.

Corollary

There are functors from Comonop⊗ to the category of

small categories, given on objects by:

X 7−→ (A,Φ(X)

)Mod and X 7−→ Mod(A,Φ(X)

).

Page 65: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

The diffracting functorComon⊗ is the category of comonoids in (ChΣ,⊗,C).

Theorem (H.-P.-S.)There is a functor

Φ : Comon⊗ → CoRingA

such that the underlying A-bimodule of Φ(X) is free, forall objects X in Comon⊗.

Corollary

There are functors from Comonop⊗ to the category of

small categories, given on objects by:

X 7−→ (A,Φ(X)

)Mod and X 7−→ Mod(A,Φ(X)

).

Page 66: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

Induction

Let C and C′ be chain coalgebras. Let X be an object inComon⊗.

A (transposed tensor) morphism of right A-modules

θ : T(C) A

Φ(X) −→ T(C′)

naturally induces a (multiplicative) morphism ofsymmetric sequences

Ind(θ) : T(ΩC) X −→ T(ΩC′).

Page 67: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

Linearization

Let C and C′ be chain coalgebras. Let X be an object inComon⊗.

A (multiplicative) morphism of symmetric sequences

θ : T(ΩC) X −→ T(ΩC′)

can be naturally linearized to a (transposed tensor)morphism of right A-modules

Lin(θ) : T(C) A

Φ(X) −→ T(C′).

Page 68: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

The Cobar Duality Theorem

Theorem (H.-P.-S.)Induction and linearization define mutually inverse,natural bijections

(A,Φ(X))-Coalg(C,C′)Ind−−→ ChΣ

mult(T(ΩC) X,T(ΩC′)

)and

ChΣmult

(T(ΩC) X,T(ΩC′)

) Lin−−→ (A,Φ(X))-Coalg(C,C′)

Page 69: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

The Alexander-Whitney co-ring

The Alexander-Whitney co-ring is F = Φ(J).

The level comultiplication J → J⊗ J is composed of theisomorphisms I

∼=−→ I ⊗ I and O∼=−→ O ⊗O.

Theorem (H.-P.-S.)F admits a counit ε : F → A inducing a homologyisomorphism in each level. (In fact, F is exactly thetwo-sided Koszul resolution of A.)F admits a coassociative, level coproduct, i.e., F isan object in Comon⊗.

Page 70: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

The Alexander-Whitney co-ring

The Alexander-Whitney co-ring is F = Φ(J).

The level comultiplication J → J⊗ J is composed of theisomorphisms I

∼=−→ I ⊗ I and O∼=−→ O ⊗O.

Theorem (H.-P.-S.)F admits a counit ε : F → A inducing a homologyisomorphism in each level. (In fact, F is exactly thetwo-sided Koszul resolution of A.)F admits a coassociative, level coproduct, i.e., F isan object in Comon⊗.

Page 71: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

An operadic description of DCSH

Theorem (H.-P.-S.)DCSH is isomorphic to (A,F)-Coalg, where

Ob (A,F)-Coalg = Ob C, and

(A,F)-Coalg(C,C′) = Mod(A,F)

(T(C),T(C′)

).

Remark(A,F)-Coalg inherits a monoidal structure from the levelcomonoidal structure of F.

Page 72: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

Acyclic models

Let D be a category, and let M be a set of objects in D.Let X : D → Ch be a functor.

X is free with respect to M if there is a setxm ∈ X (m) | m ∈ M such that

X (f )(xm) | f ∈ D(m,d),m ∈ M

is a Z-basis of X (d) for all objects d in D.X is acyclic with respect to M if X (m) is acyclic for allm ∈ M.

More generally, if C is a category with a forgetful functorU to Ch and X : D → C is a functor, we say that X is free,respectively acyclic, with respect to M if UX is.

Page 73: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

Acyclic models

Let D be a category, and let M be a set of objects in D.Let X : D → Ch be a functor.

X is free with respect to M if there is a setxm ∈ X (m) | m ∈ M such that

X (f )(xm) | f ∈ D(m,d),m ∈ M

is a Z-basis of X (d) for all objects d in D.X is acyclic with respect to M if X (m) is acyclic for allm ∈ M.

More generally, if C is a category with a forgetful functorU to Ch and X : D → C is a functor, we say that X is free,respectively acyclic, with respect to M if UX is.

Page 74: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

The general existence theorem

Theorem (H.-P.-S.)Let D be a small category, and let F ,G : D → C befunctors. Let U : C → Ch be the forgetful functor.

If there is a set of models in D with respect to which F isfree and G is acyclic, then for all level comonoids X underJ and for all natural transformations τ : UF → UG, thereexists a multiplicative natural transformation

θX : T(ΩF ) X → T(ΩG)

extending s−1τ .

Page 75: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

Proof of the existence theorem

Proof.Since Φ(X) admits a particularly nice differential filtration,acyclic models methods suffice to prove the existence ofa (transposed tensor) natural transformation

τX : T(F ) A

Φ(X) → T(G),

extending τ .

We can then apply the Cobar Duality Theorem and setθX = Ind(τX).

Page 76: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

Existence of DCSH maps

Theorem (H.-P.-S.)Let D be a small category, and let F ,G : D → C befunctors. Let U : C → Ch be the forgetful functor.

If there is a set of models in D with respect to which F isfree and G is acyclic, then for all natural transformationsτ : UF → UG, there exists a natural transformation offunctors into A

θX : ΩF → ΩG

extending s−1τ

Thus, for all d ∈ Ob D, the chain map

τd : UF (d) → UG(d)

is naturally a DCSH-map.

Page 77: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

Topological consequences I

Theorem (H.-Parent-Scott-Tonks)There is a natural, coassociative coproduct ψK on ΩC∗K ,given by the composite

ΩC∗KϕK−−→ Ω

(C∗K ⊗ C∗K

) q−→ ΩC∗K ⊗ ΩC∗K ,

where q is Milgram’s natural transformation.

Furthermore, Szczarba’s natural equivalence of chainalgebras

Sz : ΩC∗K'−→ C∗GK

is a DCSH-map with respect to ψK and to the naturalcoproduct ∆GK on C∗GK .

Page 78: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

Topological consequences I

Theorem (H.-Parent-Scott-Tonks)There is a natural, coassociative coproduct ψK on ΩC∗K ,given by the composite

ΩC∗KϕK−−→ Ω

(C∗K ⊗ C∗K

) q−→ ΩC∗K ⊗ ΩC∗K ,

where q is Milgram’s natural transformation.

Furthermore, Szczarba’s natural equivalence of chainalgebras

Sz : ΩC∗K'−→ C∗GK

is a DCSH-map with respect to ψK and to the naturalcoproduct ∆GK on C∗GK .

Page 79: Algebraic Relativism: Encoding the Higher Structure of ...sma.epfl.ch/~hessbell/CRM.pdf · categories Operads and “relative operads” Existence theorems Slogan Operads parametrize

AlgebraicRelativism

Kathryn Hess

Algebra inmonoidalcategories

Operads and“relativeoperads”

ExistencetheoremsSetting the stage

Diffraction and cobarduality

Existence of parametrizedmorphisms

Topological consequences II

The DCSH-existence theorem has also been applied inconstructions of models of homotopy orbit spaces and ofdouble loop spaces.