amp research cluster pprc · polymer extrusion e.g. freeflow kearns, mccourt, hornsby polymer co 2...

29
School of Mechanical & Aerospace Engineering Aerospace & Manufacturing Clean Energy Research AMP Research Cluster PPRC UK Research Assessment Exercise (RAE) Awarded top rated score of 5* in previous RAEs (1996 & 2001) At 2008 RAE 65% of staff rated world leading or internationally excellent with 30% internationally recognised.

Upload: others

Post on 03-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

School of Mechanical amp Aerospace Engineering

Aerospace amp Manufacturing

Clean Energy Research

AMP Research Cluster

PPRC

UK Research Assessment Exercise (RAE)

bull Awarded top rated score of 5 in previous RAEs (1996 amp 2001)

bull At 2008 RAE 65 of staff rated world leading or

internationally excellent with 30 internationally recognised

Advanced Materials amp Processing Research Cluster

Nicholas Dunne (Director)

Fraser Buchanan Chi Wai Chan

Eoin Cunningham Saurav Goel

Andrew Hamilton Alex Lennon

Savko Malinov Peter Martin Gary Menary

John Orr (Emeritus) Dan Sun

42 Postdoctoral and PhD Researchers

Academic Partners PPRC Core Staff

Nicholas Dunne (Director) Moulding Mark Kearns ndash Manager Paul Hanna ndash Process Engineer Mark McCourt ndash Process Engineer Extrusion Alan Clarke ndash Manager Mark Billham ndash Process Engineer Characterisation Bronagh Millar ndash Manager Paula Douglas ndash Research Assistant Graham Garrett ndash Technician Administration Denise Price ndash Business Manager Sharon Mills ndash Accounts William Courtney ndash Clerical

Key Strengths Free surface moulding processes for polymers and influence of processing on structuring of compositesnanocomposite systems

Biomaterials Polymer Processing Nanomaterials Modelling amp Control

Structure amp property

relationships

Melt blending

of nanofillers Thermoforming

Polymer amp ceramic

based cements

Bioresorbable

polymers amp ceramics

Free surface

moulding

Surface functionalisation

of nanofillers

Modification of textile fibre

using nanofillers

Stretch blow

moulding

Marine

biomaterials

Dental

materials

Polymer

blends

Medical

polymers

Polymer foams reinforced

With nanofillers

Rotational

moulding

Soft sensor viscosity

control of

polymer extrusion

Research Themes

All projects have either direct industrial involvement or are commercially relevant

In addition to industrially funded work sources of income for the research and development

undertaken include

bull EPSRC

bull EU (Framework Programmes)

bull Invest NI

bull Technology Strategy Board

bull InterTrade Ireland

bull Knowledge Transfer Partnership

bull Charities

bull MoD

Research amp Development Funding Sources

Current AMP research portfolio over pound25million

Collaborated with over 220 companies and funding agencieshellip

40

12

7

2

26

6

5

10

Direct Sales Invoices - inc Membership Training Invest NI Start

Invest NI Proof of Concept Knowledge Transfer KTP

Knowledge Transfer Fusion EU

EPSRC School of Mechanical amp Aero Engineering

Other Sources

Research amp Development Funding Sources

Average Annual PPRC Industrially derived Income (2005-2012) pound500k

Advanced Materials and Processes Overview - Research Activities

Rotational Moulding Examples of Projects (Multi-company and RTD partners)

bull lsquoDevelopment Of Advanced Retro-Fit Processing Technologies For Rotational Moulding

To Reduce Product Cost and Processing Time and Increase Surface Qualityrsquo (FP7 -

Micromelt euro255m)

bull lsquoInnovative rotomoulding development to improve cycle times and process efficiency

whilst facilitating greater flexibility in product design and integrity for the SME-

rotomoulding sectorrsquo (FP7 - Rotoflex euro123m)

bull lsquoDevelopment of an automated process to extract natural fibres from the waste food

production for exploitation as a sustainable reinforcement in injection and rotomoulded

productsrsquo (FP7 - Badana euro700k)

bull Development of an efficient heating and cooling technology system for the reduction of

cycle time product cost and energy consumption (FP7 - Rotofast euro266m)

Rotational Moulding eg MICROMELT

Generator

Cavity

Mould

Generator

Cavity

Mould

Generator

Cavity

Mould

Microwave heating

25 reduction in cycle time 24 energy cost saving

Internal water cooling 18 reduction in cycle time

Kearns McCourt Hornsby

Extrusion Examples of Projects

bull ldquoAn integrated system of inferential measurement and control of polymer extrusion for self-

tuning optimization and response to disturbancesrdquo (EPSRC - Measurement amp Control)

bull ldquoA new control system that will allow recycled polymers to be processed with a higher level of

product quality and with greater efficiency than previously possiblerdquo(EU - Ultravisc)

bull ldquoTo enhance knowledge of high performance polymers and insulation materials to enable

improvements to manufacturing processes and develop new products for beverage

construction and IT industriesrdquo (KTP - Valpar)

bull ldquoSupercritical fluid assisted technology for polymer processingrdquo (EU - FREEFLOW)

bull ldquoDevelop novel process monitoring and control products for the production of bioresorbable

medical devicesrdquo (FP7-SME ndash Bio-PolyTec euro1m)

Polymer Extrusion eg FREEFLOW

Kearns McCourt Hornsby

Polymer CO2 Level (wt)

Viscosity Reduction

()

Polystyrene 04 70

Poly methyl methacrylate

29 182

Polycarbonate 36 554

Polyethylene 24 153

Polypropylene 34 175

Advantages bull Lower processing temperatures bull Easier processing of highly viscous polymers bull Reduced die pressures

bull Increased throughput

bull Reduced energy usage

CO2 Injection System

CO

2 c

ylin

der

Low

Pressure

Delivery

CO

2 c

ylin

der

Low

Pressure

Delivery

Dual Syringe

Pump

High pressure

Constant flow

Dual Syringe

Pump

High pressure

Constant flow

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

One-way

Injection

valve

P2

One-way

Injection

valve

P2

0

10

20

30068wt CO2 065wt CO2

06wt CO2 058wt CO2

068wt CO2 271 214

065wt CO2 231 186 189

06wt CO2 179 171 176

058wt CO2 154 152 122

Pressure

reduction ()

Motor current

reduction ()

Output rate

increase ()

Int Patent Application PCTGB2009050249

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 2: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Advanced Materials amp Processing Research Cluster

Nicholas Dunne (Director)

Fraser Buchanan Chi Wai Chan

Eoin Cunningham Saurav Goel

Andrew Hamilton Alex Lennon

Savko Malinov Peter Martin Gary Menary

John Orr (Emeritus) Dan Sun

42 Postdoctoral and PhD Researchers

Academic Partners PPRC Core Staff

Nicholas Dunne (Director) Moulding Mark Kearns ndash Manager Paul Hanna ndash Process Engineer Mark McCourt ndash Process Engineer Extrusion Alan Clarke ndash Manager Mark Billham ndash Process Engineer Characterisation Bronagh Millar ndash Manager Paula Douglas ndash Research Assistant Graham Garrett ndash Technician Administration Denise Price ndash Business Manager Sharon Mills ndash Accounts William Courtney ndash Clerical

Key Strengths Free surface moulding processes for polymers and influence of processing on structuring of compositesnanocomposite systems

Biomaterials Polymer Processing Nanomaterials Modelling amp Control

Structure amp property

relationships

Melt blending

of nanofillers Thermoforming

Polymer amp ceramic

based cements

Bioresorbable

polymers amp ceramics

Free surface

moulding

Surface functionalisation

of nanofillers

Modification of textile fibre

using nanofillers

Stretch blow

moulding

Marine

biomaterials

Dental

materials

Polymer

blends

Medical

polymers

Polymer foams reinforced

With nanofillers

Rotational

moulding

Soft sensor viscosity

control of

polymer extrusion

Research Themes

All projects have either direct industrial involvement or are commercially relevant

In addition to industrially funded work sources of income for the research and development

undertaken include

bull EPSRC

bull EU (Framework Programmes)

bull Invest NI

bull Technology Strategy Board

bull InterTrade Ireland

bull Knowledge Transfer Partnership

bull Charities

bull MoD

Research amp Development Funding Sources

Current AMP research portfolio over pound25million

Collaborated with over 220 companies and funding agencieshellip

40

12

7

2

26

6

5

10

Direct Sales Invoices - inc Membership Training Invest NI Start

Invest NI Proof of Concept Knowledge Transfer KTP

Knowledge Transfer Fusion EU

EPSRC School of Mechanical amp Aero Engineering

Other Sources

Research amp Development Funding Sources

Average Annual PPRC Industrially derived Income (2005-2012) pound500k

Advanced Materials and Processes Overview - Research Activities

Rotational Moulding Examples of Projects (Multi-company and RTD partners)

bull lsquoDevelopment Of Advanced Retro-Fit Processing Technologies For Rotational Moulding

To Reduce Product Cost and Processing Time and Increase Surface Qualityrsquo (FP7 -

Micromelt euro255m)

bull lsquoInnovative rotomoulding development to improve cycle times and process efficiency

whilst facilitating greater flexibility in product design and integrity for the SME-

rotomoulding sectorrsquo (FP7 - Rotoflex euro123m)

bull lsquoDevelopment of an automated process to extract natural fibres from the waste food

production for exploitation as a sustainable reinforcement in injection and rotomoulded

productsrsquo (FP7 - Badana euro700k)

bull Development of an efficient heating and cooling technology system for the reduction of

cycle time product cost and energy consumption (FP7 - Rotofast euro266m)

Rotational Moulding eg MICROMELT

Generator

Cavity

Mould

Generator

Cavity

Mould

Generator

Cavity

Mould

Microwave heating

25 reduction in cycle time 24 energy cost saving

Internal water cooling 18 reduction in cycle time

Kearns McCourt Hornsby

Extrusion Examples of Projects

bull ldquoAn integrated system of inferential measurement and control of polymer extrusion for self-

tuning optimization and response to disturbancesrdquo (EPSRC - Measurement amp Control)

bull ldquoA new control system that will allow recycled polymers to be processed with a higher level of

product quality and with greater efficiency than previously possiblerdquo(EU - Ultravisc)

bull ldquoTo enhance knowledge of high performance polymers and insulation materials to enable

improvements to manufacturing processes and develop new products for beverage

construction and IT industriesrdquo (KTP - Valpar)

bull ldquoSupercritical fluid assisted technology for polymer processingrdquo (EU - FREEFLOW)

bull ldquoDevelop novel process monitoring and control products for the production of bioresorbable

medical devicesrdquo (FP7-SME ndash Bio-PolyTec euro1m)

Polymer Extrusion eg FREEFLOW

Kearns McCourt Hornsby

Polymer CO2 Level (wt)

Viscosity Reduction

()

Polystyrene 04 70

Poly methyl methacrylate

29 182

Polycarbonate 36 554

Polyethylene 24 153

Polypropylene 34 175

Advantages bull Lower processing temperatures bull Easier processing of highly viscous polymers bull Reduced die pressures

bull Increased throughput

bull Reduced energy usage

CO2 Injection System

CO

2 c

ylin

der

Low

Pressure

Delivery

CO

2 c

ylin

der

Low

Pressure

Delivery

Dual Syringe

Pump

High pressure

Constant flow

Dual Syringe

Pump

High pressure

Constant flow

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

One-way

Injection

valve

P2

One-way

Injection

valve

P2

0

10

20

30068wt CO2 065wt CO2

06wt CO2 058wt CO2

068wt CO2 271 214

065wt CO2 231 186 189

06wt CO2 179 171 176

058wt CO2 154 152 122

Pressure

reduction ()

Motor current

reduction ()

Output rate

increase ()

Int Patent Application PCTGB2009050249

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 3: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Biomaterials Polymer Processing Nanomaterials Modelling amp Control

Structure amp property

relationships

Melt blending

of nanofillers Thermoforming

Polymer amp ceramic

based cements

Bioresorbable

polymers amp ceramics

Free surface

moulding

Surface functionalisation

of nanofillers

Modification of textile fibre

using nanofillers

Stretch blow

moulding

Marine

biomaterials

Dental

materials

Polymer

blends

Medical

polymers

Polymer foams reinforced

With nanofillers

Rotational

moulding

Soft sensor viscosity

control of

polymer extrusion

Research Themes

All projects have either direct industrial involvement or are commercially relevant

In addition to industrially funded work sources of income for the research and development

undertaken include

bull EPSRC

bull EU (Framework Programmes)

bull Invest NI

bull Technology Strategy Board

bull InterTrade Ireland

bull Knowledge Transfer Partnership

bull Charities

bull MoD

Research amp Development Funding Sources

Current AMP research portfolio over pound25million

Collaborated with over 220 companies and funding agencieshellip

40

12

7

2

26

6

5

10

Direct Sales Invoices - inc Membership Training Invest NI Start

Invest NI Proof of Concept Knowledge Transfer KTP

Knowledge Transfer Fusion EU

EPSRC School of Mechanical amp Aero Engineering

Other Sources

Research amp Development Funding Sources

Average Annual PPRC Industrially derived Income (2005-2012) pound500k

Advanced Materials and Processes Overview - Research Activities

Rotational Moulding Examples of Projects (Multi-company and RTD partners)

bull lsquoDevelopment Of Advanced Retro-Fit Processing Technologies For Rotational Moulding

To Reduce Product Cost and Processing Time and Increase Surface Qualityrsquo (FP7 -

Micromelt euro255m)

bull lsquoInnovative rotomoulding development to improve cycle times and process efficiency

whilst facilitating greater flexibility in product design and integrity for the SME-

rotomoulding sectorrsquo (FP7 - Rotoflex euro123m)

bull lsquoDevelopment of an automated process to extract natural fibres from the waste food

production for exploitation as a sustainable reinforcement in injection and rotomoulded

productsrsquo (FP7 - Badana euro700k)

bull Development of an efficient heating and cooling technology system for the reduction of

cycle time product cost and energy consumption (FP7 - Rotofast euro266m)

Rotational Moulding eg MICROMELT

Generator

Cavity

Mould

Generator

Cavity

Mould

Generator

Cavity

Mould

Microwave heating

25 reduction in cycle time 24 energy cost saving

Internal water cooling 18 reduction in cycle time

Kearns McCourt Hornsby

Extrusion Examples of Projects

bull ldquoAn integrated system of inferential measurement and control of polymer extrusion for self-

tuning optimization and response to disturbancesrdquo (EPSRC - Measurement amp Control)

bull ldquoA new control system that will allow recycled polymers to be processed with a higher level of

product quality and with greater efficiency than previously possiblerdquo(EU - Ultravisc)

bull ldquoTo enhance knowledge of high performance polymers and insulation materials to enable

improvements to manufacturing processes and develop new products for beverage

construction and IT industriesrdquo (KTP - Valpar)

bull ldquoSupercritical fluid assisted technology for polymer processingrdquo (EU - FREEFLOW)

bull ldquoDevelop novel process monitoring and control products for the production of bioresorbable

medical devicesrdquo (FP7-SME ndash Bio-PolyTec euro1m)

Polymer Extrusion eg FREEFLOW

Kearns McCourt Hornsby

Polymer CO2 Level (wt)

Viscosity Reduction

()

Polystyrene 04 70

Poly methyl methacrylate

29 182

Polycarbonate 36 554

Polyethylene 24 153

Polypropylene 34 175

Advantages bull Lower processing temperatures bull Easier processing of highly viscous polymers bull Reduced die pressures

bull Increased throughput

bull Reduced energy usage

CO2 Injection System

CO

2 c

ylin

der

Low

Pressure

Delivery

CO

2 c

ylin

der

Low

Pressure

Delivery

Dual Syringe

Pump

High pressure

Constant flow

Dual Syringe

Pump

High pressure

Constant flow

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

One-way

Injection

valve

P2

One-way

Injection

valve

P2

0

10

20

30068wt CO2 065wt CO2

06wt CO2 058wt CO2

068wt CO2 271 214

065wt CO2 231 186 189

06wt CO2 179 171 176

058wt CO2 154 152 122

Pressure

reduction ()

Motor current

reduction ()

Output rate

increase ()

Int Patent Application PCTGB2009050249

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 4: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

All projects have either direct industrial involvement or are commercially relevant

In addition to industrially funded work sources of income for the research and development

undertaken include

bull EPSRC

bull EU (Framework Programmes)

bull Invest NI

bull Technology Strategy Board

bull InterTrade Ireland

bull Knowledge Transfer Partnership

bull Charities

bull MoD

Research amp Development Funding Sources

Current AMP research portfolio over pound25million

Collaborated with over 220 companies and funding agencieshellip

40

12

7

2

26

6

5

10

Direct Sales Invoices - inc Membership Training Invest NI Start

Invest NI Proof of Concept Knowledge Transfer KTP

Knowledge Transfer Fusion EU

EPSRC School of Mechanical amp Aero Engineering

Other Sources

Research amp Development Funding Sources

Average Annual PPRC Industrially derived Income (2005-2012) pound500k

Advanced Materials and Processes Overview - Research Activities

Rotational Moulding Examples of Projects (Multi-company and RTD partners)

bull lsquoDevelopment Of Advanced Retro-Fit Processing Technologies For Rotational Moulding

To Reduce Product Cost and Processing Time and Increase Surface Qualityrsquo (FP7 -

Micromelt euro255m)

bull lsquoInnovative rotomoulding development to improve cycle times and process efficiency

whilst facilitating greater flexibility in product design and integrity for the SME-

rotomoulding sectorrsquo (FP7 - Rotoflex euro123m)

bull lsquoDevelopment of an automated process to extract natural fibres from the waste food

production for exploitation as a sustainable reinforcement in injection and rotomoulded

productsrsquo (FP7 - Badana euro700k)

bull Development of an efficient heating and cooling technology system for the reduction of

cycle time product cost and energy consumption (FP7 - Rotofast euro266m)

Rotational Moulding eg MICROMELT

Generator

Cavity

Mould

Generator

Cavity

Mould

Generator

Cavity

Mould

Microwave heating

25 reduction in cycle time 24 energy cost saving

Internal water cooling 18 reduction in cycle time

Kearns McCourt Hornsby

Extrusion Examples of Projects

bull ldquoAn integrated system of inferential measurement and control of polymer extrusion for self-

tuning optimization and response to disturbancesrdquo (EPSRC - Measurement amp Control)

bull ldquoA new control system that will allow recycled polymers to be processed with a higher level of

product quality and with greater efficiency than previously possiblerdquo(EU - Ultravisc)

bull ldquoTo enhance knowledge of high performance polymers and insulation materials to enable

improvements to manufacturing processes and develop new products for beverage

construction and IT industriesrdquo (KTP - Valpar)

bull ldquoSupercritical fluid assisted technology for polymer processingrdquo (EU - FREEFLOW)

bull ldquoDevelop novel process monitoring and control products for the production of bioresorbable

medical devicesrdquo (FP7-SME ndash Bio-PolyTec euro1m)

Polymer Extrusion eg FREEFLOW

Kearns McCourt Hornsby

Polymer CO2 Level (wt)

Viscosity Reduction

()

Polystyrene 04 70

Poly methyl methacrylate

29 182

Polycarbonate 36 554

Polyethylene 24 153

Polypropylene 34 175

Advantages bull Lower processing temperatures bull Easier processing of highly viscous polymers bull Reduced die pressures

bull Increased throughput

bull Reduced energy usage

CO2 Injection System

CO

2 c

ylin

der

Low

Pressure

Delivery

CO

2 c

ylin

der

Low

Pressure

Delivery

Dual Syringe

Pump

High pressure

Constant flow

Dual Syringe

Pump

High pressure

Constant flow

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

One-way

Injection

valve

P2

One-way

Injection

valve

P2

0

10

20

30068wt CO2 065wt CO2

06wt CO2 058wt CO2

068wt CO2 271 214

065wt CO2 231 186 189

06wt CO2 179 171 176

058wt CO2 154 152 122

Pressure

reduction ()

Motor current

reduction ()

Output rate

increase ()

Int Patent Application PCTGB2009050249

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 5: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Collaborated with over 220 companies and funding agencieshellip

40

12

7

2

26

6

5

10

Direct Sales Invoices - inc Membership Training Invest NI Start

Invest NI Proof of Concept Knowledge Transfer KTP

Knowledge Transfer Fusion EU

EPSRC School of Mechanical amp Aero Engineering

Other Sources

Research amp Development Funding Sources

Average Annual PPRC Industrially derived Income (2005-2012) pound500k

Advanced Materials and Processes Overview - Research Activities

Rotational Moulding Examples of Projects (Multi-company and RTD partners)

bull lsquoDevelopment Of Advanced Retro-Fit Processing Technologies For Rotational Moulding

To Reduce Product Cost and Processing Time and Increase Surface Qualityrsquo (FP7 -

Micromelt euro255m)

bull lsquoInnovative rotomoulding development to improve cycle times and process efficiency

whilst facilitating greater flexibility in product design and integrity for the SME-

rotomoulding sectorrsquo (FP7 - Rotoflex euro123m)

bull lsquoDevelopment of an automated process to extract natural fibres from the waste food

production for exploitation as a sustainable reinforcement in injection and rotomoulded

productsrsquo (FP7 - Badana euro700k)

bull Development of an efficient heating and cooling technology system for the reduction of

cycle time product cost and energy consumption (FP7 - Rotofast euro266m)

Rotational Moulding eg MICROMELT

Generator

Cavity

Mould

Generator

Cavity

Mould

Generator

Cavity

Mould

Microwave heating

25 reduction in cycle time 24 energy cost saving

Internal water cooling 18 reduction in cycle time

Kearns McCourt Hornsby

Extrusion Examples of Projects

bull ldquoAn integrated system of inferential measurement and control of polymer extrusion for self-

tuning optimization and response to disturbancesrdquo (EPSRC - Measurement amp Control)

bull ldquoA new control system that will allow recycled polymers to be processed with a higher level of

product quality and with greater efficiency than previously possiblerdquo(EU - Ultravisc)

bull ldquoTo enhance knowledge of high performance polymers and insulation materials to enable

improvements to manufacturing processes and develop new products for beverage

construction and IT industriesrdquo (KTP - Valpar)

bull ldquoSupercritical fluid assisted technology for polymer processingrdquo (EU - FREEFLOW)

bull ldquoDevelop novel process monitoring and control products for the production of bioresorbable

medical devicesrdquo (FP7-SME ndash Bio-PolyTec euro1m)

Polymer Extrusion eg FREEFLOW

Kearns McCourt Hornsby

Polymer CO2 Level (wt)

Viscosity Reduction

()

Polystyrene 04 70

Poly methyl methacrylate

29 182

Polycarbonate 36 554

Polyethylene 24 153

Polypropylene 34 175

Advantages bull Lower processing temperatures bull Easier processing of highly viscous polymers bull Reduced die pressures

bull Increased throughput

bull Reduced energy usage

CO2 Injection System

CO

2 c

ylin

der

Low

Pressure

Delivery

CO

2 c

ylin

der

Low

Pressure

Delivery

Dual Syringe

Pump

High pressure

Constant flow

Dual Syringe

Pump

High pressure

Constant flow

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

One-way

Injection

valve

P2

One-way

Injection

valve

P2

0

10

20

30068wt CO2 065wt CO2

06wt CO2 058wt CO2

068wt CO2 271 214

065wt CO2 231 186 189

06wt CO2 179 171 176

058wt CO2 154 152 122

Pressure

reduction ()

Motor current

reduction ()

Output rate

increase ()

Int Patent Application PCTGB2009050249

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 6: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

40

12

7

2

26

6

5

10

Direct Sales Invoices - inc Membership Training Invest NI Start

Invest NI Proof of Concept Knowledge Transfer KTP

Knowledge Transfer Fusion EU

EPSRC School of Mechanical amp Aero Engineering

Other Sources

Research amp Development Funding Sources

Average Annual PPRC Industrially derived Income (2005-2012) pound500k

Advanced Materials and Processes Overview - Research Activities

Rotational Moulding Examples of Projects (Multi-company and RTD partners)

bull lsquoDevelopment Of Advanced Retro-Fit Processing Technologies For Rotational Moulding

To Reduce Product Cost and Processing Time and Increase Surface Qualityrsquo (FP7 -

Micromelt euro255m)

bull lsquoInnovative rotomoulding development to improve cycle times and process efficiency

whilst facilitating greater flexibility in product design and integrity for the SME-

rotomoulding sectorrsquo (FP7 - Rotoflex euro123m)

bull lsquoDevelopment of an automated process to extract natural fibres from the waste food

production for exploitation as a sustainable reinforcement in injection and rotomoulded

productsrsquo (FP7 - Badana euro700k)

bull Development of an efficient heating and cooling technology system for the reduction of

cycle time product cost and energy consumption (FP7 - Rotofast euro266m)

Rotational Moulding eg MICROMELT

Generator

Cavity

Mould

Generator

Cavity

Mould

Generator

Cavity

Mould

Microwave heating

25 reduction in cycle time 24 energy cost saving

Internal water cooling 18 reduction in cycle time

Kearns McCourt Hornsby

Extrusion Examples of Projects

bull ldquoAn integrated system of inferential measurement and control of polymer extrusion for self-

tuning optimization and response to disturbancesrdquo (EPSRC - Measurement amp Control)

bull ldquoA new control system that will allow recycled polymers to be processed with a higher level of

product quality and with greater efficiency than previously possiblerdquo(EU - Ultravisc)

bull ldquoTo enhance knowledge of high performance polymers and insulation materials to enable

improvements to manufacturing processes and develop new products for beverage

construction and IT industriesrdquo (KTP - Valpar)

bull ldquoSupercritical fluid assisted technology for polymer processingrdquo (EU - FREEFLOW)

bull ldquoDevelop novel process monitoring and control products for the production of bioresorbable

medical devicesrdquo (FP7-SME ndash Bio-PolyTec euro1m)

Polymer Extrusion eg FREEFLOW

Kearns McCourt Hornsby

Polymer CO2 Level (wt)

Viscosity Reduction

()

Polystyrene 04 70

Poly methyl methacrylate

29 182

Polycarbonate 36 554

Polyethylene 24 153

Polypropylene 34 175

Advantages bull Lower processing temperatures bull Easier processing of highly viscous polymers bull Reduced die pressures

bull Increased throughput

bull Reduced energy usage

CO2 Injection System

CO

2 c

ylin

der

Low

Pressure

Delivery

CO

2 c

ylin

der

Low

Pressure

Delivery

Dual Syringe

Pump

High pressure

Constant flow

Dual Syringe

Pump

High pressure

Constant flow

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

One-way

Injection

valve

P2

One-way

Injection

valve

P2

0

10

20

30068wt CO2 065wt CO2

06wt CO2 058wt CO2

068wt CO2 271 214

065wt CO2 231 186 189

06wt CO2 179 171 176

058wt CO2 154 152 122

Pressure

reduction ()

Motor current

reduction ()

Output rate

increase ()

Int Patent Application PCTGB2009050249

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 7: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Advanced Materials and Processes Overview - Research Activities

Rotational Moulding Examples of Projects (Multi-company and RTD partners)

bull lsquoDevelopment Of Advanced Retro-Fit Processing Technologies For Rotational Moulding

To Reduce Product Cost and Processing Time and Increase Surface Qualityrsquo (FP7 -

Micromelt euro255m)

bull lsquoInnovative rotomoulding development to improve cycle times and process efficiency

whilst facilitating greater flexibility in product design and integrity for the SME-

rotomoulding sectorrsquo (FP7 - Rotoflex euro123m)

bull lsquoDevelopment of an automated process to extract natural fibres from the waste food

production for exploitation as a sustainable reinforcement in injection and rotomoulded

productsrsquo (FP7 - Badana euro700k)

bull Development of an efficient heating and cooling technology system for the reduction of

cycle time product cost and energy consumption (FP7 - Rotofast euro266m)

Rotational Moulding eg MICROMELT

Generator

Cavity

Mould

Generator

Cavity

Mould

Generator

Cavity

Mould

Microwave heating

25 reduction in cycle time 24 energy cost saving

Internal water cooling 18 reduction in cycle time

Kearns McCourt Hornsby

Extrusion Examples of Projects

bull ldquoAn integrated system of inferential measurement and control of polymer extrusion for self-

tuning optimization and response to disturbancesrdquo (EPSRC - Measurement amp Control)

bull ldquoA new control system that will allow recycled polymers to be processed with a higher level of

product quality and with greater efficiency than previously possiblerdquo(EU - Ultravisc)

bull ldquoTo enhance knowledge of high performance polymers and insulation materials to enable

improvements to manufacturing processes and develop new products for beverage

construction and IT industriesrdquo (KTP - Valpar)

bull ldquoSupercritical fluid assisted technology for polymer processingrdquo (EU - FREEFLOW)

bull ldquoDevelop novel process monitoring and control products for the production of bioresorbable

medical devicesrdquo (FP7-SME ndash Bio-PolyTec euro1m)

Polymer Extrusion eg FREEFLOW

Kearns McCourt Hornsby

Polymer CO2 Level (wt)

Viscosity Reduction

()

Polystyrene 04 70

Poly methyl methacrylate

29 182

Polycarbonate 36 554

Polyethylene 24 153

Polypropylene 34 175

Advantages bull Lower processing temperatures bull Easier processing of highly viscous polymers bull Reduced die pressures

bull Increased throughput

bull Reduced energy usage

CO2 Injection System

CO

2 c

ylin

der

Low

Pressure

Delivery

CO

2 c

ylin

der

Low

Pressure

Delivery

Dual Syringe

Pump

High pressure

Constant flow

Dual Syringe

Pump

High pressure

Constant flow

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

One-way

Injection

valve

P2

One-way

Injection

valve

P2

0

10

20

30068wt CO2 065wt CO2

06wt CO2 058wt CO2

068wt CO2 271 214

065wt CO2 231 186 189

06wt CO2 179 171 176

058wt CO2 154 152 122

Pressure

reduction ()

Motor current

reduction ()

Output rate

increase ()

Int Patent Application PCTGB2009050249

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 8: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Rotational Moulding Examples of Projects (Multi-company and RTD partners)

bull lsquoDevelopment Of Advanced Retro-Fit Processing Technologies For Rotational Moulding

To Reduce Product Cost and Processing Time and Increase Surface Qualityrsquo (FP7 -

Micromelt euro255m)

bull lsquoInnovative rotomoulding development to improve cycle times and process efficiency

whilst facilitating greater flexibility in product design and integrity for the SME-

rotomoulding sectorrsquo (FP7 - Rotoflex euro123m)

bull lsquoDevelopment of an automated process to extract natural fibres from the waste food

production for exploitation as a sustainable reinforcement in injection and rotomoulded

productsrsquo (FP7 - Badana euro700k)

bull Development of an efficient heating and cooling technology system for the reduction of

cycle time product cost and energy consumption (FP7 - Rotofast euro266m)

Rotational Moulding eg MICROMELT

Generator

Cavity

Mould

Generator

Cavity

Mould

Generator

Cavity

Mould

Microwave heating

25 reduction in cycle time 24 energy cost saving

Internal water cooling 18 reduction in cycle time

Kearns McCourt Hornsby

Extrusion Examples of Projects

bull ldquoAn integrated system of inferential measurement and control of polymer extrusion for self-

tuning optimization and response to disturbancesrdquo (EPSRC - Measurement amp Control)

bull ldquoA new control system that will allow recycled polymers to be processed with a higher level of

product quality and with greater efficiency than previously possiblerdquo(EU - Ultravisc)

bull ldquoTo enhance knowledge of high performance polymers and insulation materials to enable

improvements to manufacturing processes and develop new products for beverage

construction and IT industriesrdquo (KTP - Valpar)

bull ldquoSupercritical fluid assisted technology for polymer processingrdquo (EU - FREEFLOW)

bull ldquoDevelop novel process monitoring and control products for the production of bioresorbable

medical devicesrdquo (FP7-SME ndash Bio-PolyTec euro1m)

Polymer Extrusion eg FREEFLOW

Kearns McCourt Hornsby

Polymer CO2 Level (wt)

Viscosity Reduction

()

Polystyrene 04 70

Poly methyl methacrylate

29 182

Polycarbonate 36 554

Polyethylene 24 153

Polypropylene 34 175

Advantages bull Lower processing temperatures bull Easier processing of highly viscous polymers bull Reduced die pressures

bull Increased throughput

bull Reduced energy usage

CO2 Injection System

CO

2 c

ylin

der

Low

Pressure

Delivery

CO

2 c

ylin

der

Low

Pressure

Delivery

Dual Syringe

Pump

High pressure

Constant flow

Dual Syringe

Pump

High pressure

Constant flow

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

One-way

Injection

valve

P2

One-way

Injection

valve

P2

0

10

20

30068wt CO2 065wt CO2

06wt CO2 058wt CO2

068wt CO2 271 214

065wt CO2 231 186 189

06wt CO2 179 171 176

058wt CO2 154 152 122

Pressure

reduction ()

Motor current

reduction ()

Output rate

increase ()

Int Patent Application PCTGB2009050249

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 9: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Rotational Moulding eg MICROMELT

Generator

Cavity

Mould

Generator

Cavity

Mould

Generator

Cavity

Mould

Microwave heating

25 reduction in cycle time 24 energy cost saving

Internal water cooling 18 reduction in cycle time

Kearns McCourt Hornsby

Extrusion Examples of Projects

bull ldquoAn integrated system of inferential measurement and control of polymer extrusion for self-

tuning optimization and response to disturbancesrdquo (EPSRC - Measurement amp Control)

bull ldquoA new control system that will allow recycled polymers to be processed with a higher level of

product quality and with greater efficiency than previously possiblerdquo(EU - Ultravisc)

bull ldquoTo enhance knowledge of high performance polymers and insulation materials to enable

improvements to manufacturing processes and develop new products for beverage

construction and IT industriesrdquo (KTP - Valpar)

bull ldquoSupercritical fluid assisted technology for polymer processingrdquo (EU - FREEFLOW)

bull ldquoDevelop novel process monitoring and control products for the production of bioresorbable

medical devicesrdquo (FP7-SME ndash Bio-PolyTec euro1m)

Polymer Extrusion eg FREEFLOW

Kearns McCourt Hornsby

Polymer CO2 Level (wt)

Viscosity Reduction

()

Polystyrene 04 70

Poly methyl methacrylate

29 182

Polycarbonate 36 554

Polyethylene 24 153

Polypropylene 34 175

Advantages bull Lower processing temperatures bull Easier processing of highly viscous polymers bull Reduced die pressures

bull Increased throughput

bull Reduced energy usage

CO2 Injection System

CO

2 c

ylin

der

Low

Pressure

Delivery

CO

2 c

ylin

der

Low

Pressure

Delivery

Dual Syringe

Pump

High pressure

Constant flow

Dual Syringe

Pump

High pressure

Constant flow

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

One-way

Injection

valve

P2

One-way

Injection

valve

P2

0

10

20

30068wt CO2 065wt CO2

06wt CO2 058wt CO2

068wt CO2 271 214

065wt CO2 231 186 189

06wt CO2 179 171 176

058wt CO2 154 152 122

Pressure

reduction ()

Motor current

reduction ()

Output rate

increase ()

Int Patent Application PCTGB2009050249

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 10: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Extrusion Examples of Projects

bull ldquoAn integrated system of inferential measurement and control of polymer extrusion for self-

tuning optimization and response to disturbancesrdquo (EPSRC - Measurement amp Control)

bull ldquoA new control system that will allow recycled polymers to be processed with a higher level of

product quality and with greater efficiency than previously possiblerdquo(EU - Ultravisc)

bull ldquoTo enhance knowledge of high performance polymers and insulation materials to enable

improvements to manufacturing processes and develop new products for beverage

construction and IT industriesrdquo (KTP - Valpar)

bull ldquoSupercritical fluid assisted technology for polymer processingrdquo (EU - FREEFLOW)

bull ldquoDevelop novel process monitoring and control products for the production of bioresorbable

medical devicesrdquo (FP7-SME ndash Bio-PolyTec euro1m)

Polymer Extrusion eg FREEFLOW

Kearns McCourt Hornsby

Polymer CO2 Level (wt)

Viscosity Reduction

()

Polystyrene 04 70

Poly methyl methacrylate

29 182

Polycarbonate 36 554

Polyethylene 24 153

Polypropylene 34 175

Advantages bull Lower processing temperatures bull Easier processing of highly viscous polymers bull Reduced die pressures

bull Increased throughput

bull Reduced energy usage

CO2 Injection System

CO

2 c

ylin

der

Low

Pressure

Delivery

CO

2 c

ylin

der

Low

Pressure

Delivery

Dual Syringe

Pump

High pressure

Constant flow

Dual Syringe

Pump

High pressure

Constant flow

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

One-way

Injection

valve

P2

One-way

Injection

valve

P2

0

10

20

30068wt CO2 065wt CO2

06wt CO2 058wt CO2

068wt CO2 271 214

065wt CO2 231 186 189

06wt CO2 179 171 176

058wt CO2 154 152 122

Pressure

reduction ()

Motor current

reduction ()

Output rate

increase ()

Int Patent Application PCTGB2009050249

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 11: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Polymer Extrusion eg FREEFLOW

Kearns McCourt Hornsby

Polymer CO2 Level (wt)

Viscosity Reduction

()

Polystyrene 04 70

Poly methyl methacrylate

29 182

Polycarbonate 36 554

Polyethylene 24 153

Polypropylene 34 175

Advantages bull Lower processing temperatures bull Easier processing of highly viscous polymers bull Reduced die pressures

bull Increased throughput

bull Reduced energy usage

CO2 Injection System

CO

2 c

ylin

der

Low

Pressure

Delivery

CO

2 c

ylin

der

Low

Pressure

Delivery

Dual Syringe

Pump

High pressure

Constant flow

Dual Syringe

Pump

High pressure

Constant flow

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

Regulated higher pressure

Back

Pressure

Regulator

Lower pressure

regulated by

extruder

One-way

Injection

valve

P2

One-way

Injection

valve

P2

0

10

20

30068wt CO2 065wt CO2

06wt CO2 058wt CO2

068wt CO2 271 214

065wt CO2 231 186 189

06wt CO2 179 171 176

058wt CO2 154 152 122

Pressure

reduction ()

Motor current

reduction ()

Output rate

increase ()

Int Patent Application PCTGB2009050249

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 12: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Contact Dr Peter Martin pjmartinqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

bullFE Simulation of Thermoforming and bullBlow Moulding Processes12

bullHigh Temperature Strain and bullStrain Rate Biaxial Testing3 bullViscoelasticVisco-plastic Material Models4 bullHeat Transfer Modelling bullFriction Modelling5 bullFE Modelling of Product Design amp Performance bullTool Design and Modelling bullControl of Extrusion amp Thermoforming6

Applications Food and medical packaging Structural automotive and aerospace parts

1McCool R et al Plast Rubber Compos 35(8) 340-347 2006

2McCool R amp Martin PJ P IMechE E J Process Mech Eng 2012 3Martin PJ et al Plast Rubber Compos 34(5) 276-282 2005

4OrsquoConnor C et al J Mater Process Technol 2012 5Martin PJ et al Polym Eng Sci 2012 6Abeykoon C et al Control Eng Pract 19(8) 862-874 2011

Research Themes

Thermoforming (Modelling of Polymer Materials

Processes amp Products)

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 13: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Material characterisation and modelling

High speed DI Correlation for Simulation Validation

EB Stretching of TF9 sample at 100degC Influence of

strain rates

0

2

4

6

8

10

12

14

16

18

0 05 1 15 2Strain

Tru

e S

tre

ss

(M

Pa

)

1 s-1 2 s-1

4 s-1 8 s-1

16 s-1 32 s-1

Biaxial Stretching Machine PET stress strain data Mathematical model of PET Lab scale heating and blowing equipment

Blow Moulding Simulation

1 Menary GH Tan CW Salomeia Y Armstrong CG Picard M Billon N Harkin-Jones EM Validating Injection stretch blow moulding simulation via freeblow trials Polymer Engineering and Science Vol 50 pp 1047-1057 May 2010

2 Menary GH CWTan EMA Harkin-Jones CG Armstrong PJ Martin Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding Polymer Engineering and Science in press

3 Yang ZJ Harkin-Jones EM Menary GH Armstrong CG A non-isothermal finite element model for injection stretch-blow moulding of PET bottles with parametric studies Polymer Engineering and Science Vol 44(7) pp 1379-1390 July 2004

(Contact gmenaryqubacuk)

Stretch Blow Moulding (Develop simulation of SBM process Optimisation

of material usage in PET containers)

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 14: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Polymer Extrusion

eg Polymer Nanocomposite Drug Delivery System

Kearns McCourt Hornsby

Ibuprofen

Melts 77-78 Deg C

Polycaprolactone PCL

+ Nanoclay +

Melts 59-64 Deg C

lsquoNanocomposite Drug Delivery Compositionrsquo GB03103009 PCTGB0401931 WO2004098574A1 JP2006-506219 US20060147538A1

-Enables contolled rate of drug release -Improved mechanical properties

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 15: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Application areas Protective suit material bullGloves bullOverboots bullFacemasks bullAir Hoses bullSeals and Gaskets bullTents bullDecontamination units

Markets Personal Protection Equipment eg Emergency Services Military Chemical Gas tight suits

Properties bull Resistant against chemical amp

biological agents

bull Water vapour permeable

bull Processed using conventional thermoplastics

bull equipment

Patented Technology Tested and certified by MoD

Presented to NATO

A Breathable Chemically Resistant Material for the Defence and Chemical Industries

(Compep)

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 16: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Effect of secondary stretching Clay dispersion after compounding

Clay enables -Enhanced mechanical properties -Increased barrier properties -Reduced material usage -Increased fire retardancy

Project aims -Primary and secondary process optimisation (compoundingfilm blowinginjection moulding -Scale-up for industrial use

Polymer Nanocomposites eg Optimisation of Nanoclay Processing

Contact Dr Nicholas Dunne (ndunnequbacuk)

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 17: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Contact Professor Peter Hornsby (peterhornsbyqubacuk)

Natural fibre-reinforcement -flax hemp -nanocellulose1

Nanofillers -nanoclays -carbon nanotubes2 -expanded graphite

Short fibre-reinforcement -glass carbon fibres3 -interfaces -compounding

200nm

PA-6

PA-6Flax

nanofibres

PA-6MCC

nanofibres

0

10

20

30

40

50 5 nanofibre addition

Flakes from expanded graphite

Nanocellulose made by acid hydrolysis

2 Z Jiang R McCool A Murphy and PR Hornsby Journal of Applied Polymer Science (2011) 3 A Hassan and PR Hornsby Journal of Reinforced Plastics and Composites (2011)

1 EH Qua HSS Sharma G Lyons and PR Hornsby Journal of Materials Science (2011)

Polymer Nanocomposites

eg Naturally derived nanofibres

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 18: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

ndash Irradiation Modification of Fixation Devices (Dept of Health Industry funded)

ndash Only project under this funding scheme (Health Technologies Devices) in N Ireland

raquo 50 Industrially funded- Smith amp Nephew Isotron

raquo Unique patented technology (granted worldwide)-

raquo Applied to screws used in ACL knee surgery

Contact Professor Fraser Buchanan fbuchananqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Buchanan FJ (Editor) Degradation Rate of Bioresorbable Materials Prediction and Evaluation Woodhead Publishers ISBN 978-1-84569-329-9 2008 Cairns et al Acta Biomaterialia 7 548- 557 2011 Han et al Acta Biomaterialia 6 3882-3889 2010 Cairns et al Polymer Degradation and Stability 96 76-83 2011 Little et al Acta Biomaterialia 5 2025-2032

Biomaterials

eg Bioresorbable Polymers for Fracture Fixation

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 19: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

- Focus on biomimetic structures bull Novel materials and processes

bull Functional graded properties for load-bearing applications

bull Develop test methodology to measure temporal properties of TE bone scaffolds

bull Computer simulation of mechano-biology of scaffold

Contact Dr Nicholas ndunnequbacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Cunningham et al Journal of Tissue Science amp Engineering (in-press) Newe et al Key Engineering Materials 493-494 861-5 2012 Cunningham et al J Mat Sci Materials in Medicine 21 2255-61 2010 Cunningham et al Proc IMechE Part H 223 727-37 2009

5mm 1mm 5mm

HUVECs After 7d

hFOBs After 7d

0

2

4

6

8

10

12

14

16

0

00

4

00

7

01

1

01

4

01

8

02

2

02

5

02

9

03

2

03

6

04

04

3

04

7

05

05

4

05

8

06

1

Pore diameter (mm)

v

olu

me

of

the

tota

l p

ore

sp

ace

Optimum for bone

ingrowth

Pore Diameter (mm)

Vo

lum

e o

f To

tal P

ore

s (

)

5050 HAβ-TCP Scaffold - 0h

5050 HAβ-TCP Scaffold - 120h

Property TE Bone Scaffold

Porosity () 65plusmn6

Interconnectivity () 98plusmn1

Strut Thickness (μm) 16plusmn8

Compressive Modulus (MPa) 1636 plusmn 164

Compressive Strength (MPa) 84 plusmn 083

Biomaterials eg Tissue Engineered Bone Scaffolds

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 20: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

bull Long-term failure processes in orthopaedic implants ndash Bone cement creep and fatigue

ndash Interfacial failure

ndash Bone remodelling bull Galibarov PE Prendergast PJ Lennon AB

Medical Engineering amp Physics 32 () 1180-1188 2010

bull Lennon AB Britton JR Mac Niocaill RF Byrne DP Kenny PJ Prendergast PJ Journal of Orthopaedic Research 25(6)779-788 2007

bull Customisation and automation of simulation workflow ndash Patient-specific mesh generation

bull Galibarov PE Prendergast PJ Lennon AB Submitted to Computer Methods in Biomechanics and Biomedical Engineering

ndash Load and boundary condition application

ndash Result extraction and analysis

bull Population and surgical variability ndash Virtual clinical trials

bull Prendergast PJ Galibarov PE Lowery C Lennon AB Journal of Mechanical Behavior of Biomedical Materials [httpdxdoiorg101016jjmbbm201106005]

ndash Risk analysis bull Recently completed Science Foundation

Ireland Research Frontiers Project (RFP ENG0097)

Contact Dr Alex Lennon alennonqubacuk

Biomaterials eg Population Based Medical Device Biomechanics

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 21: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

References Hamilton Sottos et al ldquoSelf-Healing of Internal Damage in Synthetic Vascular Materialsrdquo Advanced Materials 22 5159ndash5163 (2010) Hamilton Sottos et al ldquoPressurized Vascular Systems for Self-Healing Materialsrdquo Journal of the Royal Society Interface 9 1020-1028 (2012) Hamilton Sottos et al ldquoMitigation of Fatigue Damage in Self-Healing Vascular Materialsrdquo Polymer 53 5575-5581 (2012) Davis Hamilton et al ldquoForce-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materialsrdquo Nature 459 68ndash72 (2009)

Load-Sensing Materials Vascularized Self-Healing Materials

5 mm

Biomaterials eg Bio-inspired Multifunctional Materials

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 22: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

References Olugebefola Hamilton et al ldquoStructural Reinforcement of Microvascular Networks Using Electrostatic Layer-by-Layer Assembly with Halloysite Nanotubesrdquo submitted to Small Hamilton Thomsen et al ldquoEvaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foamsrdquo accepted at Composites Science and Technology

Nanocomposite Foams

Reinforcing Nanocomposite Coatings

1 mm

1 mm

Load-Directed Material lsquoGrowthrsquo

Biomaterials eg Nanocomposite Foams and Coatings

Contact Dr Andrew Hamilton ahamiltonqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 23: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

New advanced materials and

technologies

Modelling in materials

- Aerospace materials Titanium alloys

Titanium Aluminides Aluminium alloys

- High temperature Intermetallics and

Superalloys

- Shape memory alloys

- Composite materials Novel ultra-light

GASAR porous materials

- Surface Engineering

- Surface thermo-chemical treatment of

materials

- Amorphous Coatings

- Plasma technologies

Multiscale materials modelling of

relationships

Processing Micro(nano)structure

Properties in different materials

- Thermodynamic modelling

- Kinetics modelling

- Finite element method morphology

of phase transformations

- Phase-field modelling

- Cellular automata modelling

- Atomistic simulations

- Neural network modelling

Coupling of different modelling

approaches

Materials Science amp Engineering Overview of Research Interests

Contact Dr Savko Malinov smalinovqubacuk

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 24: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

Development of new classes light materials

Ultra Light Materials with Ordered Porosity

Crystallographic model for crack

nucleation amp propagation

Plasma Technologies Amorphous Coatings

Surface Engineering

ANN models for modelling correlations between Processing ndash Microstructure - Properties

Monte Carlo simulations of atomic ordering in nano-layered FePt

Intermetallics 17(11) (2009) pp 907-913 Defect and Diffusion Forum 277 (2008) pp 113-118

Computational Mat Sci 32 (2005) pp1-12 28 (2003) pp179-198 ASM Handbook Vol 22A (2009)

Scripta Materialia 52(10) (2005) p 1033

Titanium Alloys Woodhead (2009) Acta Materialia 55(19) (2007) pp 6459-6471

Surface amp Coatings Technology 201(6) (2006) pp 2467-2474

Contact Dr Savko Malinov smalinovqubacuk

Materials Science amp Engineering eg Advanced materialstechnologies amp modelling

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 25: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

bull Central theme

ndash Multi-scale modeling and

ndash Ultra precision machining

Nanometric cutting Automated dislocation analysis Nanoindentation

Molecular dynamics simulation of tool wear during cutting

Dr Saurav Goel (SGOELQUBACUK) Ultra precision manufacturing and Molecular dynamics simulation

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 26: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

DLC Thin film nanoindentation

Simulation of coating delamination

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 27: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

27

PhD University of Southampton

Tribology and corrosion of orthopaedic implants

MSc Nanyang Tech Univ Singapore

MEMs amp Microfluidics

BEng Nanyang Tech Univ Singapore

Bioceramics

Dr Dan Sun

Lecturer

Research Expertise

bull Tribology and corrosion

bull Microfluidic sensor design amp fabrication (micromachining)

bull Nanoparticle dispersion and electrical characterization

bull Microplasma nanocomposite synthesis

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Research Expertise

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 28: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

28

AuPEDOTPSS nanocomposites

The atmospheric microplasma technique

Green No reducing chemicals ndash no contamination

Rapid synthesis process within minutes

Portable no vacuum pump no bulky chamber

Energy efficient room temperature process ndash no heating

Controlled nanoparticle size and dispersion

Gold

nanoparticles

Microplasma setup

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites

Page 29: AMP Research Cluster PPRC · Polymer Extrusion e.g. FREEFLOW Kearns, McCourt, Hornsby Polymer CO 2 Level (wt%) Viscosity Reduction (%) Polystyrene 0.4 7.0 Poly methyl

29

TiOPEDOTPSS nanocomposites Unprocessed

Aggregation Irregular shape Polymerparticle

segregation

Processed

Improved dispersion Spherical shape

Ceramicpolymer

core shell

Particle settlement

Stable suspension

Contact Dr Dan Sun dsunqubacuk

See httpwwwqubacukschoolsSchoolofMechanicalandAerospaceEngineeringResearchPolymers

Microplasma synthesis of metalpolymer

nanocomposites