6th_conductor...ttf ss ss 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (bdt-ttp or...

Post on 29-Jul-2020

10 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

S cm-1 = -1 cm-1

• ( ) ()

1) 2)

( )

(Tc)

MRI

100%( 90% )

• ( Tc 9 K)

• (Tc 23 K)

• (Tc 135 K)

• (Tc 40 K)

• (Tc 33 K)

• (Tc 14 K)

• BCS– -

– Tc 30K

BCS

-

++

-

+

- -

Tc

Little

-Tc 1000 K

酸化還元状態の制約

HOMO

LUMO

D0

LUMO

D+1

D+2 D0

D+0.5

D+1D0 D0D+1

HOMO-LUMO

D+0.5

D+1D0 D0

D+1

D+1

D+1 D

0D

+2

D+0.5

多段階酸化還元系+•

-e

+e +e

-e

-

- -

-e

+e

-e

+e

TCNQ TCNQ-• TCNQ2-

+ +

CNNC

NC CN

S

SS

S

CNNC

NC CN

CNNC

NC CN

S

SS

S S

SS

S

TTF TTF+• TTF2+

分子の積層様式

D D+

D A

有機導電体の歴史

NC CN

CNNC

S

S

S

S

perylene-Brx

(1954) TCNQ (1960)

-Brx (x = 3-4)

TTF (1970)

TTF•TCNQ

TTF•TCNQ

CN

CNNC

NC

TCNQ

S

SS

S

TTF

TTF•TCNQの導電性

-

kF(pF)( E)

T , E

E

kF(pF)

T ,

(TMI)

TMI

-kF -kF kFkF

kxkx

kyky

2kF

2kF ( )

k = ±kF

(b),(c)

(b)

TTF

Se

Se

Se

Se

Se Se

Se Se

TSF

S

S

S

S

S

S

S

S S S

S

S

S

S SS

BEDT-TTF

(TMTSF)+2X

-Se

Se

Se

Se

CH3

CH3H3C

H3C

TMTSF

X = ClO4

Tc = 1.4 K

TMTSF •••Se

(1980)

BEDT-TTF

S

S

S

S

S

SS

S

BEDT-TTF

Cava (1978)

(BEDT-TTF)2ClO4(TCE)0.5:

1.4 K ( ,1982)

BEDT-TTF

Tc 14.1 K

BEDT-TTF 70%

a1•b1 = 2 a1•b2 = 0a2•b1 = 0 a2•b2 = 2

b1 = (2 /a)e1, b2 = (2 /a)e2

e1, e2: , ya1 = ae1, a2 = ae2

TTF

T. Mori et al., Bull. Chem. Soc. Jpn., 557, 627 (1984)

Molecular orbital calculationfor a single moleculel(Extended Hückel method)

Intermolecular overlap integrals

Transfer integrals

Band structure and Fermi surface

HOMO ••• DonorLUMO ••• Acceptor

t = ES

Tight-binding method

EDT-TTF

BEDT-TTF HOMO

BEDT-TTF HOMO

Relative change of the overlap S as a function of the intermolecular sulfur-sulfur distance R, compared with the overlap S0 at R0 = 3.80 Å

-(BEDT-TTF)2I3

-(BEDT-TTF)2I3

(upper band)

BEDT-TTF

"-type-, -type

-type

M(dmit)2, M = Ni, Pd

DMET-TSFS,S-DMBEDT-TTF BETS

BEDO-TTF DMETBEDT-TTF

Acceptors

Donors

DTEDT

Se

Se

Se

SeMe

MeMe S

Me S

S

S

S

SS

S

S

S

S

SMe

MeMe

Me

S

S

S

S

S

S

S

S

S

S

S

M

S

S

S

S

S

S S

S

S

S

S

O

OO

OSe

Se

S

SMe

SMe

S

Se

Se

Se

Se

S

S

S

S

S

SS

S

S

SS

S

S

S

S

SS

SMe Se

SeMe

Se

SeMe

SMe

S

TMET-STF

Se

Se

S

S

S

S

BEDSe-TTF

S

S

S

S

Se

SeSe

Se

ESET-TTF

S

S

S

S

S

SSe

Se

Se

Se

Se

SeS

S

S

S S

S

S

SS

S

BDA-TTP

MDT-TTF TMTSF

C60

TMTTF

MDT-TSF meso-DMBEDT-TTF

S

S

S

S

S

SS

SMe

Me

S

S

S

SS

S

O

O

DOHT

S

SS

S

S

SS

SS

SS

S

S

S

S

S

S

S

S

S S S

S

S

S

S SS

BEDT-TTF

( )TTF

BEDT-TTF

S

S

S

S

S

S

S

S S S

S

S

S

S SS

S-S

perylene

H

H

H H

H

H

H

H

HH

H

H

H

H H

H

H

H

HH

HH

H

S S

S S

TTT

BEDT-TTF

Overlap integrals of HOMO (x10-3)

b1 = 17.6, b2 = 22.4, p = 17.9,

q = 3.0, r = -4.7

Overlap integrals of LUMO (x10-3)

c1 = 15.7, c2 = 12.9, p

= -0.8, q = 0.12

S

S

S

S

Se

Se

CPDT-STF

CN

CNNC

NC

TCNQ

BEDT-TTF

-(BEDT-TTF)2X

Mott

BEDT-TTF U/W 1U:

W:

TTF

S

SR

SR

S

S

S

S

S

IVIIIIII

S

S

S

S

S

S

S

S S S

S

S

S

S SS

S

SS

S S

SS

S

BEDT-TTF

S S S

S S S

S

S

TTFS S

S S

2,5-bis(1,3-dithiol-2-ylidene)-

1,3,4,6-tetrathiapentalene

(BDT-TTP or simply TTP) TTP

S S S

S S S

S

S

S S S

S S S

S

S

S S

O

S S

O

S S S

S S S

S

S

R

RR

RS

S

S

R

R

S S

O

S S

S

S

S

S

O

S S S

S S S

O

R

RS S R

S S RR

R

P(OEt)3

R. R. Shumaker, E. M. Engler et al.,

J. Chem. Soc., Chem. Commun., 1979, 516

J. Am. Chem. Soc., 1980, 102, 6651.

R = CN, CF3, CO2Me

CV X CT

TTF

+

+ +

+

BDT-TTP

100%95%

47% 50%

82%

/ P(OMe)3

toluene

/ P(OEt)3 1) NaOMe/CH2Cl2-MeOH, r.t.

2) ZnCl2, Bu4NBr, r.t.

3) (Cl3CO)2CO/THF, -78 °C

HMPA

BDT-TTP 87%

110 °C

110 °C 90 - 120 °C

(Et4N)2

p-AcOC6H4CH2Cl

acetone reflux

CHCl3-AcOH

r.t.

S

SMeO2C

S

S

MeO2C

S

S

S

SCH2C6H4OAc-p

SCH2C6H4OAc-p

S

S

S

SS

S S

S

CO2Me

CO2Me

S

S

S

SS

S S

S

S

S

S

O

S

SS

S

S

S

Zn

S

S

S

S

S

S S

S

S

S

p-AcOC6H4CH2S

Sp-AcOC6H4CH2S

S

O

p-AcOC6H4CH2S

p-AcOC6H4CH2S

S

S

S

LiBr·H2O

Hg(OAc)2

Y. Misaki, et. al., Chem. Lett., 2321-2324 (1992).

BDT-TTP

TTF

Kilburn et al. Tetrahedron. Lett., 33, 3923 (1992).

R = H, CO2Me, SCnH2n+1 (n = 2-6)

R-R = -SCH2S-, -S(CH2)2S-, -S(CH2)3S-

R = H, CO2Me, SMe

R-R = -SCH2S-, -S(CH2)2S-, -S(CH2)3S-, -O(CH2)2O-

R = H, CO2Me, SeMe

R-R = -SCH2S-, -S(CH2)2S-, -O(CH2)2O-R = H, CO2Me, SMe, SeMe

R-R = -SCH2S-, -S(CH2)2S-, -O(CH2)2O-

R-R = -S(CH2)2S-, -S(CH2)3S-

R = H, CO2Me, SMe, SeMe

R-R = -SCH2S-, -S(CH2)2S-, -O(CH2)2O-

R = H, CO2Me, SMe, SeMe

R-R = -SCH2S-, -S(CH2)2S-, -O(CH2)2O-

R = H, CO2Me, SMe

R-R = -SCH2S-, -S(CH2)2S-, -S(CH2)3S-,

R = Me, SMe

R' = Me, Et, Prn

S

S

S

S

S

S

S

S

R

RMe

MeS

S

S

S

S

S

S

S

R

S

RO

OS

S

S

S

S

S

S

S

S

R

S

RMeS

MeS

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

R

R S

S

S

S

S

S

S

R

RS

S

S

S

S

S

S

S

S

S

R

RS

S

S

S

S

S

S

S

S

S

R

R

S

S

S

S

S

S

S

S

R

R

S

S

S

S

S

S

S

S

R

R

R'

R'

R = H, Me

R-R = -(CH2)3-, -(CH2)4-, -O(CH2)2O-

Se

Se

S

S

S

S

S

S

R

R

R = H, Me

R-R = -(CH2)3-, -(CH2)4-, -O(CH2)2O-

Se

Se

S

S

S

S

S

S

R

R

R = Me

R-R = -(CH2)3-, -(CH2)4-, -O(CH2)2O-

Se

Se

S

S

S

S

S

S

R

R

MeO2C

MeO2C

Se

Se

S

S

S

S

S

S

R

RMeS

MeS

R = H, CO2Me

Se

Se

S

S

S

S

Se

Se

R

R

R = H, SMe

R-R = -(CH2)3-, -(CH2)4-, -O(CH2)2O-

S

S

R = H, CO2Me

Se

Se

S

S

S

S

S

S

R

R

Se

Se

S

S

S

S

S

S

R

RMeSe

MeSe

R = Me

R-R = -O(CH2)2O-

R = SMe, SEt, SC6H13n

S

S

S

S

S

S

S

S

R

RS

SEtO2C

EtO2C

BDT-TTP

Table. Redox Potentials of TTP and Its Related Compounds in PhCN (V vS. SCE, Pt electrode, 25 °C)

Compound E1 E2 E3 E4 E2-E1

S

S

S

SS

S S

S

TTP

+0.44 +0.62 +1.05a) +1.13a) 0.18

S

S

S

S

TTF

+0.35 +0.77 0.42

S

S

S

SS

S Me

Me

MeDT-TTF

+0.45 +0.76 +1.14a) 0.31

S

S SMe

SMeS

S+0.44 +0.77 0.33

a) Irreversible step. Anodic peak potentials.

S

S

S

S

S

S

S

SMeS

MeS SMe

SMe

TTM-TTP

I3

Mott

D+1

D+2D0

+

(TTM-TTP)I3

(TTM-TTP)(I3)5/3

Temperature / K

Resis

tivity /

cm

rt = 700 S cm-1

160 K

BDT-TTP

a1 a2

a/p 3 - 4

a1 = 25.1, a2 = 25.3, p1 = 7.9, p2 = 8.6, c = 0.8

BDT-TTP (ST-TTP, BDS-TTP)

S

S

S

S Y

Y

X

X

X = Y = S, BDT-TTPX = S, Y = Se, ST-TTPX = Y = Se, BDS-TTP

(ClO4, BF4, ReO4)

(PF6, AsF6, SbF6, TaF6)

(Au(CN)2)

(NO3)

(Re6S6Cl8, Mo6Cl14)

BEDT-TTF

3.1 Å 6.2 Å

7.3 Å

D : A = 2 : 1

(BDT-TTP)1/2+

D : A = 3 : 1

(BDT-TTP)1/3+D : A = 6 : 1

(BDT-TTP)1/3+

PF6- Au(CN)2

- Re6S6Cl82-

TTP

• side-by-

side

Self-aggregation to adopt -type structure

S

S

S

S

S

S

Se

Se

2

Au(CN)2

CH-TS-TTP

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Se

Se

2

2

X = ClO4, (I3)0.62

X = AsF6, Au(CN)2

CH-TTP

X

CH-ST-TTP

X

-Type salts

S

S

S

S

S

S

Se

Se

TMET-TS-TTP

MeS

MeS S

S

2

TCNQ

Self-aggregation to adopt -type structure

S

S

S

S

S

S

S

SMeS

MeS S

S

TMET-TTP

S

S

S

S

S

S

S

SMeS

MeS Se

Se

TMES-TTP

S

S

S

S

S

S

Se

SeMeS

MeS S

S

TMET-TS-TTP

TCNQ2

4

(X)m

X = AuI2, PF6, ReO4, ClO4

I3

-Type salts

S

S

S

SS

S S

SO

O

EO-TTP

a1 a2

S

S

S

S S

SS

SO

O

CPEO-TTP2AsF6

(SbF6)0.4

Effect of methythio group

Strongly dimerized typeMolecular packing

S

S

S

S S

SSe

Se O

O

TMEO-ST-TTP

MeS

MeS 2AsF6

Steric hindrance SCH3 >> -(CH2)4-

BDT-TTP

S

S

S

S

S

S

S

S

CH-TTP

S

S

S

SS

S S

SO

O

EO-TTP

S

S

S

S S

SSe

Se O

OMeS

MeS

TMEO-ST-TTP

a1 a2

X

S

S

S

S

S

S

S

S

S

S

X

X

X

X

S

S

S

S

S

S S

S

S

S

S

S

S

S

X

X = O, S, Se

X = O, S

X = S, Se

S

S

S

S S

S S

S

XX = O, S

S

S

CH CH

S

S

S

S

CH CH

S

S S

S

CHX

CH

S

S

S

S

CHX

CH

S

S

X = S, CH=CH

TTP

S

S

S

S

S

S

S

S

BDT-TTP

HOMO

(DTEDT)3Au(CN)2 (Tc = 4 K)

DTEDT

DTEDT

BDT-TTP

30020010000.00

0.02

0.04

0.06

0.08

10864200.00

0.01

0.02

0.03

0.04

30020010000.0

0.5

1.0

No

rma

lized

Re

sis

tivity

T / K

rt = 50 - 900 S cm-1

T / K

Resis

tivity /

·c

m

DTEDT

DTEDT

I3

AsF6

GaCl4

SbF6

ReO4

S

S

S

S

S

S

S

S

DTEDT

Au(CN)2

DTEDT3

Se

Se

Se

Se

Me

MeMe

Me S

S

S

SS

S S

S

M3C60

Tc > 30K

(BEDT-TTF)2X

Tc ~ 10K

(TMTSF)2X

Tc ~ 1K

X

S

S

S

S

S

S

X = S, TPDT-TTPX = O, PDT-TTP

TTP

Side-by-side

~ ~

Tc

O

S

S

S

S

Se

Se

PDS-TTP

AsF6

2

S

S S

S S

S

O

SeMe

SeMe

(PF6)(PhCl)X

SM-PDT

X

S

S

S

S

Se

Se

SCH3

SCH3

X = O, TM-PDS, A = SbF6, ClO4, ReO4

X = S, TM-TPDS, A = AsF6

2

A

(PDS-TTP)2AsF6

triclinic,

space Group P1

a = 6.6089(7) Å

b = 6.9986(8) Å

c = 17.722(2) Å

= 81.371(6)°

= 79.765(8)°

= 79.632(3)°

V =787.6(1) Å3

Z = 1

R = 0.096

Crystal data:

Head-to-tail overlap mode in the stack

Two-dimensional conducting sheet

O-H hydrogen bond between conducting sheet

H-F hydrogen bond between donor and anion

.

.

.

.

O

S

S

S

S

Se

Se

PDS-TTP

AsF6

2

2.69A°

(PDS-TTP)2AsF6 O

S

S

S

S

Se

Se

PDS-TTP

AsF6

2

S

S

S

S

X

X

X

X

O

S

S

S

S

Se

Se

S

S

S

S X

X

S

S

S

S

S

S Se

SeTCNQ

AsF6

AX = S, A = Au(CN)2X = Se, A =TaF6

Am X = S, SeA: various anions

2

3

(PDS-TTP)2AsF6

The intermoleculer overlap integral (x10-3)

b1 = 10.0, b2 = 8.7, p1 = 3.1, p2 = 4.9, a = 1.2

(PDS-TTP)2AsF6

(TM-TPDS)2AsF6

SS

S

S

S

Se

Se

SCH3

SCH3

TM-TPDS2

AsF6

"edge-to-side"

O

S

S

S

S

Se

Se

SCH3

SCH3

TM-PDS

X2

(X = ClO4, ReO4, PF6, SbF6)

" "

" "

(TM-TPDS)2AsF6

(TM-PDS)2X (TM-PDS)2AsF6

(SM-PDT)2AsF6(PhCl)

Se---Se : 3.694(2), 3.738(2) A ( ) cf. vdw radius; Se : 1.90 A

rt = 4.8 S cm-1, Ea = 0.050 eV

side-by-side

"edge-to-edge" (= bc )

1:1

°

°

(SM-PDT)2AsF6(PhCl)

"

S

S S

S S

S

O

SeMe

SeMe

SM-PDT

The intermolecular overlap integrals

c1 = 6.3, c2 = 8.1, p1 = -2.3, p2 =

0.00, b = -0.8 (x10-3).

"edge-to-edge" ( 30-40% )

O

S

S

S

S

Se

Se

SMe

SMe

2

OS

S

S

S

S

S

SeMe

SeMe

SM-PDT

PF6(PhCl)m

TM-PDS

SbF6O

S

S

S

S

Se

Se

2

PDS-TTP

AsF6

side-to-edge

edge-to-edgeside-by-side

Se-Se

side-by-side

side-by-side

S

Se

Se

Se

Se

S

S

O

S

S

S

S

S

S

TeMe

TeMe

SMe

SMe

O

S

S

S

S

O

"Windmill" type structure with higher 3D character

Psedo "-type structure with higher 2D character

O

S

S

S

S

S

S

SeMe

SeMe

O

S

S

S

S

Se

Se

SMe

SMe

O

S

S

S

S

Se

Se

-Type structure with larger interlayer interaction

Next Targets

S

S

S

S

S

S S

S

S

S

S

SS

S S

S

BDT-TTP

S

S

S

SS

S S

SS

S

S

S

S

SS

S S

S

S

S

S

SS

S S

S N

NO

O+_

·S

SS

S S

SS

S

BDA-TTP

O

R

R

R

RR

R

S

S

S

SS

S S

SR

R

N N O·

(BDA-TTP)2X (X = PF6, AsF6, SbF6)

Yamada et alAngew. Chem. Int. Ed. Engl.,38, 810 (1999)

Yamada et. al

Chem. Coomun., 1996, 2517

Yamada et al.J. Am. Chem. Soc., 123, 4174 (2001).

Sugawara et al.

Kobayashi et al.Synth. Met., in press

Takahashi et al.

Se

Se

S

SS

S S

S

R

RMe

Me

Yamada et al.

J Org. Chem., 61, 3987 (1996)S

S

S

S

SNi

S

S

S

S

S

S

S

Tanaka et al.,Science, 291, 285 (2001)

S

S

S

S S

S

S

S

Summary

BDT-TTP

BDT-TTP

TTF

S

S

S

S

S

S

S

SO

S

S

S

S

X

X

R

R

DTEDT X = S, PDT-TTP

X = Se, PDS-TTP

R = H, SMe, SeMe

PDT-TTP, PDS-TTP

TTP

(

top related