an exact hydrodynamic solution for the ...an exact hydrodynamic solution for the elliptic flow...

Post on 16-Aug-2021

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

AN EXACT HYDRODYNAMIC SOLUTION FOR THE

ELLIPTIC FLOW

Emmanuel N. SaridakisNuclear and Particle Physics Section

Physics Department

University of Athens

E.N.Saridakis - Ischia, Sept 2009

In collaboration with Robi Peschanski

Institut de Physique Théorique, CEA,IPhT

2

Goal

� Understanding the dynamicalmechanisms of elliptic flow and extraction of exact solutions

� Tools:

The formulation of the transverse flow in terms of a hydrodynamic potential

E.N.Saridakis - Ischia, Sept 2009

3

Talk Plan

� 1) Introduction (why hydrodynamics?)

� 2) Assumptions and potential formulation of perfect fluid relativistic hydrodynamics

� 3) General and exact solution for spatial anisotropy and elliptic flow

� 4) Applications: Comparison with experiment and simulations

� 5) Assumptions Check

� 6) Conclusions-Prospects

E.N.Saridakis - Ischia, Sept 2009

4

Introduction

� Evidence that hydrodynamics of nearly perfect fluidmay be relevant for the description of mediumcreated in heavy-ion collisions

� Almost perfect fluid

(low viscosity)

E.N.Saridakis - Ischia, Sept 2009

5

Assumptions

� 1) Transversally isentropic:

� 2) Quasi-stationary: Transverse flow smooth enough to be driven only by temperature change. Thus, Bernoulli equation:

( ) ( ) 021 21=∂+∂ susu xx

00 TTu =

E.N.Saridakis - Ischia, Sept 2009

6

Hydrodynamic Potential

( ) ( ) 012 21=∂−∂ TuTu xx

),( ϕχ l

E.N.Saridakis - Ischia, Sept 2009

7

Hydrodynamic Potential

� Hodograph Transform:(kinematical variables) (thermodyknamical variables)

),( ϕχ l

( ) ( ) 012 21=∂−∂ TuTu xx

),(),( 21 ϕlxx →

+=

−=

⊥2

22

0 1log

2

11log

2

1

u

u

T

Tl

1

2tanu

u=ϕ

2

2

2

1

2uuu +≡⊥

E.N.Saridakis - Ischia, Sept 2009

8

Khalatnikov-Kamenshchik equation

( ) 01

111 2

22

22

2

2

2

2

=∂∂

−+

∂∂

−+∂∂

le

cle

c

e l

s

l

s

l χχϕχ

� Solvable!Tds

sdT

d

dpcs ==

ε2

E.N.Saridakis - Ischia, Sept 2009

9

Potential equation

� Solvable!

( ) 01

111 2

22

22

2

2

2

2

=∂∂

−+

∂∂

−+∂∂

le

cle

c

e l

s

l

s

l χχϕχ

Tds

sdT

d

dpcs ==

ε2

∂∂

+

∂∂

=+− 22

2

0

22

2

2

1 ϕχχ

lT

exx

l

∂∂

∂∂

+=−1

1

2 arctanarctanlx

x χϕχ

ϕ

E.N.Saridakis - Ischia, Sept 2009

� (1+1)

[Khalatnikov, 1954]

� Transverse (cosmology)

[Khalatnikov-Kamenshchik, 2004]

10

Elliptic Flow

� Cause Effect (Initial Spatial Anisotropy) (Entropy Anisotropy)

E.N.Saridakis - Ischia, Sept 2009

11

Elliptic Flow

� Cause Effect (Initial Spatial Anisotropy) (Entropy Anisotropy)

Eccentricity Elliptic Flow coefficient

2

1

2

2

2

1

2

2

xx

xx

+

−=ε

∫=

ϕϕ

ϕϕϕ

d

dSd

d

dSd

v

)2cos(

2

E.N.Saridakis - Ischia, Sept 2009

12

Elliptic Flow

� Cause Effect (Initial Spatial Anisotropy) (Entropy Anisotropy)

Eccentricity Elliptic Flow coefficient

2

1

2

2

2

1

2

2

xx

xx

+

−=ε

∂∂

+

∂∂

∂∂

∂∂

+

∂∂

∂∂

=22

22

2sin22cos

ld

lld

χϕχ

ϕ

χϕχ

ϕχ

ϕχ

ϕϕ

ε

∫=

ϕϕ

ϕϕϕ

d

dSd

d

dSd

v

)2cos(

2

( )

∂∂

−∂∂

−=

2

2

22

0 1 llceT

sT

d

dS

s

l

χχϕ

[E.N.S, R.Peschanski ‘09] E.N.Saridakis - Ischia, Sept 2009

13

General and exact solution

∑∞

=+=

100 )2cos()()(),(p p pllcl ϕββϕχ

( ) 2

11

2

0

2

1)('sc

lel

−=β

( ) ( ) ( ) ( )+

++

−+−++

−−−+−= −

−−−

−−+ l

ss

sss

s

plp

pp epcpc

cpcpc

cpFecl222

22222

222

12

21)1(;21,

16

11

4

1,

16

11

4

1)1()(β

( ) ( )

+−

+−

+−

−−

+−

−−−

−−

pp

cpcc

cpcc

eGc sss

sss

l

p

22

22222

222

20,2

2,2

)2(

16

1

4

5,

16

1

4

5|

ρ≡0

)1(

1

c

cλ≡

)1(

1

)2(

1

c

c

E.N.Saridakis - Ischia, Sept 2009

14

Centrality dependence (‘Callibration’)

� For fixed ⇒T

[E.N.S, R.Peschanski ‘09] [Hirano, et al ‘06]

maxmaxmax

11N

Nc

b

b−∝−∝∝

ρρ

E.N.Saridakis - Ischia, Sept 2009

15

Initial conditions

� Source at a given temperature

� (fixes )

� (fixes )

IT

0)(2 =ITv

max)( =ITε

λ

ρ

E.N.Saridakis - Ischia, Sept 2009

16

Temperature dependence

E.N.Saridakis - Ischia, Sept 2009

17

Time dependence

� Temperature evolution Time evolution⇔

[Kolb, Heinz ‘03]

2

3

2

0 xx +≡τ2

0

0

sc

T

T

=

ττ

[E.N.S, R.Peschanski ‘09] E.N.Saridakis - Ischia, Sept 2009

18

Time dependence22

00

−−

≡ss

c

I

c

T

T

T

[Bhalerao, et al ‘05][E.N.S, R.Peschanski ‘09] E.N.Saridakis - Ischia, Sept 2009

19

Centrality dependence

� For fixed ,T

maxmax

11N

Nc −∝−∝

ρρ

cv final −∝∝⇒ 12 ρ

[Hirano, et al ‘06] E.N.Saridakis - Ischia, Sept 2009

20

Assumptions check

� 1) Transversally isentropic:( )( )

10

>>∂

∂= ⊥⊥

su

suR

x

τ

Transverse over time

typical

entropy gradient

E.N.Saridakis - Ischia, Sept 2009

21

Assumptions check

� 2) Quasi-stationarity: 1)(

)(<<

∂= ⊥

T

TxV

T

T

τ

Transverse over time, temperature-dependent

expansion rate

E.N.Saridakis - Ischia, Sept 2009

22

Assumptions check

� 2) Quasi-stationarity: 1)(

)(<<

∂= ⊥

T

TxV

T

T

τ

( )( )

( )( ) ( )

( )0

0

0

1

)(

)( su

su

V

T

Tx

su

su

su

suR

T

T

T

T

T

T

x

∂∂

=

∂∂∂

=∂

∂= ⊥

⊥⊥

ττ

The two assumptions are connected

E.N.Saridakis - Ischia, Sept 2009

Transverse over time, temperature-dependent

expansion rate

23

Conclusions

� i) Hydrodynamic potential allows to bypass the non-linearities of the initial equations.

� ii) Under transverse isentropicity and quasi-stationarity we obtain the general solution for spatial eccentricity and elliptic flow coefficient.

� iii) Time-evolution is acquired through temperature-evolution.

� iv) Assumptions are verified qualitatively, but not exactly

χ

E.N.Saridakis - Ischia, Sept 2009

24

Outlook

� i) Describe the -dependence of elliptic flow.

� ii) Extend to more physical initial conditions(beyond fixed-temperature)

� iii) Extend to weak viscosity.

� iv) The rather simple mechanisms, may facilitate AdS/CFT approach of elliptic flow.

⊥p

E.N.Saridakis - Ischia, Sept 2009

top related