applying microcalorimetry to characterize the stability ... microcalorimetry to characterize...

Post on 10-Aug-2020

6 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Applying Microcalorimetry to Characterize the Stability Applying Microcalorimetry to Characterize the Stability and Compatibility of Pharmaceutical Systemsand Compatibility of Pharmaceutical Systems

Time/s0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

HeatFlow/mW

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

Figure:25/11/2002 Mass (mg):674.8

Crucible: Standard HastelloyAtmosphere:AirExperimentation:Procedure: 35 37.5 40 42.5 45 3 hours each (Zone 2)Micro DSC III

Exo Exo

Exo

35C 37.5C 40C 42.5C 45C

ThermalCal International

OutlineOutlineMicrocalorimetry: The Universal Detector

Overview of Microcalorimetry Stability and Compatibility Testing

Overview of Commercially Available Microcalorimeters

∆G = ∆ H - T ∆ S

Microcalorimetry: The Universal DetectorMicrocalorimetry: The Universal DetectorIsothermal Microcalorimetry

Heat Flow Measured as Difference Between Sample and Reference

Isothermal Temperature Usually Maintained by Large Volume Constant Temperature Bath

Typical Detection Limit ~ +/-0.5 uJ/sec

Sample Sizes Range from 1ml to 150ml

Temperature Range ~ 5 to 90 °C

dQ/dt = ∆H *dn/dt

∆G = ∆ H - T ∆ S

Microcalorimetry: The Universal DetectorMicrocalorimetry: The Universal DetectorIsothermal Microcalorimetry

Chemical ProcessesHydrolysis, oxidation, free radical, etc. all have large

heats of reaction.

Ideally, degradation rates of less than 1% per year can be predicted in a matter of days.

Physical and Bio ProcessesCrystallization, polymorph conversions, bacterial

growth.

∆G = ∆ H - T ∆ S

Microcalorimetry: The Universal DetectorMicrocalorimetry: The Universal DetectorIsothermal Microcalorimetry

Closed or Open Systems

Batch BatchMixing Pressure

FluidMixingFluid

∆G = ∆ H - T ∆ S

Microcalorimetry: The Universal DetectorMicrocalorimetry: The Universal DetectorIsothermal Microcalorimetry

Qox = ∆ Hox*nox

Qhyd = ∆ Hhyd*nhyd

etc.

etc.

Qmeasured = Σi∆ Hi*ni

Standard Addition

∆G = ∆ H - T ∆ S

Microcalorimetry: The Universal DetectorMicrocalorimetry: The Universal DetectorScanning Microcalorimetry (HSDSC)

Heat Flow Measured as Difference Between Sample and Reference

Temperature Ramped by Peltier Elements or Fluid Circulation. Heat/Cool. Isothermal.

Typical Detection Limit ~.2-5 uJ/sec

Sample Sizes Range from .3 ml to 1 ml

Slow Scan Rates .001 – 1 °C /min

Temperature Range ~ -45 to 120 °C

d(dQ/dt)/dT = ∆H *d(dn/dt)/dT

∆G = ∆ H - T ∆ S

Microcalorimetry: The Universal DetectorMicrocalorimetry: The Universal DetectorScanning Microcalorimetry (HSDSC)

Chemical ProcessesThermally induced chemical reactions.

Physical and Bio ProcessesGlass transitions, thermally induced crystallization and polymorph conversions, protein denaturation.

∆G = ∆ H - T ∆ S

Microcalorimetry: The Universal DetectorMicrocalorimetry: The Universal DetectorScanning Microcalorimetry (HSDSC)

Closed or Open Systems

BatchMixing

Batch

Wetting

Fluid FluidMixing∆G = ∆ H - T ∆ S

Microcalorimetry: The Universal DetectorMicrocalorimetry: The Universal DetectorDetection LimitsDetection Limits

•If a significant signal of 1 µW is detectable, and if it is assumed that the reaction enthalpy ∆HR, is 50 kJ/mole for the compound, it is possible to estimate the rate of reaction x :•x = (10-6 J/s / 50x103 J/mole) = 2x10-11 mole/sec,

or 1.2x10-9 mole/min, or 1.7x10-6 mole/day, or 6.3x10-4 mole/year

•It is also possible to use the Arrhenius law for different temperatures : dα/dt = k (1- α)n = k0 exp(-E/RT) (1- α)n

•dα/dt is proportional to the calorimetric signal (dH/dt)•Plotting Log(dH/dt) versus 1/T yields the kinetic parameters of the reaction.

∆G = ∆ H - T ∆ S

Microcalorimetry: Stability TestingMicrocalorimetry: Stability TestingReaction in Solution: pH EffectReaction in Solution: pH Effect

Furnace temperature /°C30 35 40 45 50 55 60 65 70 75 80

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

pH 4

pH 6

pH 8

pH 10

Figure:Mass (mg):15.43

Crucible: Standard HastelloyAtmosphere:AirExperimentation:Procedure: scan 10C to 95C (Zone 7)

Exo

Exo Exo

∆G = ∆ H - T ∆ S

Microcalorimetry: Stability TestingMicrocalorimetry: Stability TestingReaction in Solution: pH EffectReaction in Solution: pH Effect

2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.106.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

Linear Regression for ph8_B:Y = A + B * X

Parameter Value Error------------------------------------------------------------A 19.9813 0.44947B -4.41783 0.1539------------------------------------------------------------

R SD N P-------------------------------------------------------------0.98056 0.08826 35 <0.0001------------------------------------------------------------

ln(u

W/g

)

1/T(K)*10002.7 2.8 2.9 3.0 3.1 3.2

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Linear Regression for ph10scan_B:Y = A + B * X

Parameter Value Error------------------------------------------------------------A 26.25509 0.06499B -6.03829 0.0226------------------------------------------------------------

R SD N P-------------------------------------------------------------0.99982 0.00817 28 <0.0001------------------------------------------------------------

Linear Regression for ph10scan_B:Y = A + B * X

Parameter Value Error------------------------------------------------------------A 40.67733 1.19214B -10.71188 0.37892------------------------------------------------------------

R SD N P-------------------------------------------------------------0.99565 0.02975 9 <0.0001------------------------------------------------------------

ln(u

W/g

)

1/T(K)*1000

∆G = ∆ H - T ∆ S

Microcalorimetry: Stability TestingMicrocalorimetry: Stability TestingReaction in Solution: Solvent EffectReaction in Solution: Solvent Effect

Hydrolysis of Ester with NaOH at 25C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 200 400 600 800 1000 1200time (sec)

Q/Q

tot

0% DMF4.8% DMF17% DMF

∆G = ∆ H - T ∆ S

Microcalorimetry: Stability TestingMicrocalorimetry: Stability TestingAPI Stability in PEG: Effect of BHTAPI Stability in PEG: Effect of BHT

Time/s0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0.0 0.0

35C 37.5C 40C 42.5C 45C

Red: API/PEG (no BHT) - Placebo

Blue: API/PEG (with BHT) - Placebo

Figure:29/10/2002 Mass (mg):715.8

Crucible: Standard HastelloyAtmosphere:AirExperimentation:Procedure: 35 37.5 40 42.5 45 3 hours each (Zone 2)

ExoExo

∆G = ∆ H - T ∆ S

Microcalorimetry: Stability TestingMicrocalorimetry: Stability TestingSolution Stability: Impact of PreservativeSolution Stability: Impact of Preservative

Effect of Preservative on Bacteria Growth

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40

Time (hours)

Ther

mal A

ctivit

y (uJ

oules

/sec)

Biological Solution

Biological Solution + Propyl Gallate

∆G = ∆ H - T ∆ S

Microcalorimetry: Stability TestingMicrocalorimetry: Stability TestingSolid State Stability: RealSolid State Stability: Real--time Monitoring of Polymorph Conversiontime Monitoring of Polymorph Conversion

Time/h2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5

-0.4

-0.2

-0.0

0.2

0.4

HeatFlow/mW

-0.4

-0.2

-0.0

0.2

0.4Blue:Sample= .5g aluminaReference= steel cell

Black:Sample= 472.9 mg form 1Reference= steel cell

Red:Sample= 460.0 mg form I Reference= steel cell

Thermal Activity

60C 70C 80C

89C

Figure: 22/10/2002 Mass (mg):472.9

Crucible: Standard HastelloyAtmosphere:AirExperimentation:Procedure:

ExoExo

Blank

Thermal disturbances caused by temperature

ramping

Time/h2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5

HeatFlow/mW

-0.4

-0.2

-0.0

0.2

0.4

-0.4

-0.2

-0.0

0.2

0.4

Blue:Sample= .5g aluminaReference= steel cell

Red:Sample= 352.7mg form II Reference= steel cell

Black:Sample= 410.6 mg Reference= steel cell

80C 60C 70C 89C

Thermal Activity

Figure: 23/10/2002

Crucible: Standard HastelloyAtmosphere:AirExperimentation: Procedure:

Exo Exo

∆G = ∆ H - T ∆ S

Microcalorimetry: Stability TestingMicrocalorimetry: Stability TestingSolid State Stability: RealSolid State Stability: Real--time Monitoring of Polymorph Conversiontime Monitoring of Polymorph Conversion

Time/h2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5

-0.4

-0.2

-0.0

0.2

0.4

HeatFlow/mW

-0.4

-0.2

-0.0

0.2

0.4Blue:Sample= .5g aluminaReference= steel cell

Black:Sample= 472.9 mg form 1Reference= steel cell

Red:Sample= 460.0 mg form I Reference= steel cell

Thermal Activity

60C 70C 80C

89C

Figure: 22/10/2002 Mass (mg):472.9

Crucible: Standard HastelloyAtmosphere:AirExperimentation: Procedure:

ExoExo

Blank

Time/h2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5

Heat Flow - 2 - red3 970011 isotherms at 50,60,70,80,89/mW

-0.4

-0.2

-0.0

0.2

0.4

-0.4

-0.2

-0.0

0.2

0.4Blue:Sample= .5g aluminaReference= steel cellBlack:Sample= 338.5 mg mixedReference= steel cellRed:Sample= 520.2 mg mixed Reference= steel cell

Thermal Activity

Figure: 24/10/2002 Mass (mg):409.4

Crucible: Standard HastelloyAtmosphere:AirExperimentation:Procedure:

Exo

338.5mg

520.2mg

Blank

60C 70C80C

89C

∆G = ∆ H - T ∆ S

Microcalorimetry: Stability TestingMicrocalorimetry: Stability TestingProtein Stability: Impact of StabilizerProtein Stability: Impact of Stabilizer

Furnace temperature /°C30 35 40 45 50 55 60 65 70 75 80

HeatFlow/mW

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 Peak 1 :66.6557 °CPeak 2 :70.9494 °COnset Point :61.7528 °C Enthalpy /J : 0.0378 (Endothermic effect) (0.0562 + -0.0185)

Peak 1 :67.2049 °C Peak 2 :73.3009 °C Onset Point :62.2572 °C Enthalpy /J : 0.0331 (Endothermic effect) (0.0549 + -0.0217)

1 % BSA

1% BSA + 4% Manitol

Figure:17/06/2002 Mass (mg):0

Crucible: batch Atmosphere:AirExperimentation:1% BSA Procedure: BSA scan 22 to 90 (Zone 2)

Exo

Exo

∆G = ∆ H - T ∆ S

Microcalorimetry: Stability TestingMicrocalorimetry: Stability TestingSolid State Stability: Influence of HumiditySolid State Stability: Influence of Humidity

Time/h0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

HeatFlow/mW

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Red: Lot AGreen: Lot BBlue: Lot C1.4 hr

4.7 hr

2.4 hr

Figure:14/01/2003 Mass (mg):599.6

Crucible: Standard HastelloyAtmosphere:AirExperimentation:Procedure:

Exo

Exo

Exo

∆G = ∆ H - T ∆ S

Microcalorimetry: Compatibility TestingMicrocalorimetry: Compatibility TestingGeneral ConceptGeneral Concept

+Time ---> TA of API q1

+Time ---> TA of Excipient q2

+Time ---> TA of Mix qmix

qmix = x1q1 + x2q2 ?

∆G = ∆ H - T ∆ S

Microcalorimetry: Compatibility TestingMicrocalorimetry: Compatibility TestingHSDSCHSDSC

Furnace temperature /°C20 40 60 80 100

HeatFlow/mW

-16

-14

-12

-10

-8

-6

-4

-2

-16

-14

-12

-10

-8

-6

-4

-2

114 C

Red: Placebo

Blue: API

Black: Formulation

Figure:01/03/2003 Mass (mg):500.2

Crucible: Standard HastelloyAtmosphere:AirExperimentation:Procedure: scan 15C to 119C (Zone 4)

Exo Exo

Exo Exo

∆G = ∆ H - T ∆ S

Microcalorimetry: Compatibility TestingMicrocalorimetry: Compatibility TestingHSDSCHSDSC

Furnace temperature /°C30 40 50 60 70 80 90

-16

-14

-12

-10

-8

-6

-4

-2

0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

0.4

Formulation

Amorphous

Figure:15/01/2003 Mass (mg):26.2

Crucible: Standard HastelloyAtmosphere:AirExperimentation:Procedure: scan 15-119 (Zone 7)

ExoExo

∆G = ∆ H - T ∆ S

Microcalorimetry: Compatibility TestingMicrocalorimetry: Compatibility TestingIsothermal Thermal ActivityIsothermal Thermal Activity

Time/h0 2 4 6 8 10 12 14 16 18

HeatFlow/mW

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

Red: placeboBlue: Salt Form ABlack: Salt Form B

Figure:12/11/2002 Mass (mg):599.4

Crucible: Standard HastelloyAtmosphere:AirExperimentation:Procedure: 50 60 70 3 hours each (Zone 2)

Exo Exo

Exo Exo

∆G = ∆ H - T ∆ S

top related