capacitive discharges driven by combined dc/rf sourceslieber/liebermandcrfgec07crop.… · •...

Post on 19-Oct-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

  • University of California, Berkeley PLASMA

    CAPACITIVE DISCHARGES DRIVEN BYCOMBINED DC/RF SOURCES

    Emi Kawamura, M.A. Lieberman, and A.J. Lichtenberg

    Department of Electrical Engineering and Computer SciencesUniversity of California

    Berkeley, CA 94720

    E.A. Hudson

    Lam Research CorporationFremont, CA 94538

    Download this talk:

    http://www.eecs.berkeley.edu/∼lieber

    LiebermanDublin07 1

  • University of California, Berkeley PLASMA

    MOTIVATIONS FOR ADDING DC SOURCE

    • “Tune” discharge particle and energy balance(⇒ Te ↓, ne ↑, radial uniformity)

    • “Tune” secondary electron bombardment of substrate(etch selectivities, charging damage)

    OUTLINE

    • Structure of DC/RF sheaths — theory

    • Equal area diode discharges — theory and 1D PIC simulations

    • Asymmetric diode discharges — theory and 1D PIC simulations

    • Secondary electrons — timescales and energy deposition

    • Triode discharges — theory and 2D PIC simulations

    LiebermanDublin07 2

  • University of California, Berkeley PLASMA

    STRUCTURE OF A DC/RF SHEATH

    Vdc

    Vrf

    +

    ~ ss0 s1

    V1V0

    V0~

    V1~

    Bulkplasma

    +–+–

    ADCpart

    RFpart

    ni

    ne(t)z

    n

    Ji– DC voltage V = V 0 + V 1

    RF voltage Ṽ = Ṽ0 + Ṽ1

    • New result for Child law for collisionless ions:

    J̄i =4

    9ǫ0

    (2e

    M

    )1/2 (V 1/2 − 13V

    1/2

    1 )(V1/2

    + 23V

    1/2

    1 )2

    s2

    • New result for Child law for collisional ion sheath also obtained

    LiebermanDublin07 3

  • University of California, Berkeley PLASMA

    EQUAL AREA DIODE DISCHARGE

    • Comparison of theory with 1D particle-in-cell (PIC) simulations

    Vdc

    Vrf

    +

    ~ ss0 s1

    V1V0

    V0~

    V1~

    Bulkplasma

    ++ ––+–

    DC/RF sheath RFsheath

    A

    V1~

    V1 A

    s1

    0 0.5 1 1.5 2

    V /V

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    V /V

    45

    100

    60 45

    10060

    45

    15

    45

    60

    100

    4MHz, γ = 0.24MHz, no sec.

    13MHz, no sec.

    Collisionless

    Collisional, β 0

    Collisional, β = 0.1

    a1

    rf

    dc rf

    i

    (Symbols: PIC with argon pressure in mTorr;

    lines: theory; β ∝ λD/λi = collisionality;

    γi = secondary emission coefficient)

    • Excellent agreement of PIC with collisional Child law

    LiebermanDublin07 4

  • University of California, Berkeley PLASMA

    DENSITY AND VOLTAGE AT CONSTANT Prf(60 mTorr, 6 cm gap, 4 MHz, 0.017 W/cm2, Vdc = 350 V)

    0 0.01 0.02 0.03 0.04 0.05 0.06

    x (m)

    0

    2e+15

    4e+15

    6e+15

    n (m

    )

    ..

    rf (γ =0)dc + rf (γ = 0)rf (γ =0.2)dc + rf (γ =0.2)

    (a)

    i

    i

    rf sheath "b" dc/rf sheath "a"

    sb

    nb

    i

    i

    e-3

    0 0.01 0.02 0.03 0.04 0.05 0.06

    x (m)

    -200

    0

    200

    400

    600

    V (V

    )

    rf (γ = 0)dc + rf (γ = 0)rf (γ =0.2)dc + rf (γ =0.2)

    i

    i

    rf sheath "b" dc/rf sheath "a"

    i

    i

    (b)

    _p

    AddDC

    γi Vrf (V) V b (V) Eceff (V)

    Rf only 0 1064 436 64Dc+rf 0 1277 398 60Rf only 0.2 805 330 53Dc+rf 0.2 980 283 46

    (V b = plasma potential; Eceff =collisional energy loss/electron-ion pair)

    • Plasma potential V b and sheath width sb independent of Vdc• Secondary electrons increase discharge efficiency• Vdc reduces bulk plasma thickness

    LiebermanDublin07 5

  • University of California, Berkeley PLASMA

    ASYMMETRIC DIODE RESULTS

    • Excellent agreement between1D (cylindrical) PIC andcollisional CL theory

    Vdc

    Vrf

    +

    ~ sasa0 sa1

    sb

    Va1Va0

    Va0~

    Va1~

    Vb~

    Bulkplasma

    ++ ––+– Vb

    DC/RF sheath RFsheath

    Aa Ab

    • Introduce rf voltage asymmetry ratio αab = Ṽa1/Ṽb

    -0.5 0 0.5 1 1.5 2

    V /V

    0

    0.2

    0.4

    0.6

    0.8

    1

    V /

    V

    15(0.093)

    45(2.2)

    45(0.46) 45(0.48)

    45(0.48)

    45(0.15)

    45(0.15)

    45(0.1)

    45(0.13)

    50(0.34)

    45(0.14)

    50(0.38)

    ab

    4MHz, γ = 0.232MHz, no sec.

    6.78MHz, no sec.

    0.1

    α =10

    0.15

    0.3

    0.5

    1.02.0

    brf

    dc rf

    i

    (a)

    -0.5 0 0.5 1 1.5 2

    V /V

    0

    0.2

    0.4

    0.6

    0.8

    1

    s /

    s 0.1

    α =10

    0.15

    0.3

    0.51.0

    2.0

    15(0.093)

    45(2.2)

    45(0.46)

    45(0.48)

    45(0.48)45(0.15)

    45(0.15)

    45(0.1)45(0.13)

    50(0.34)

    45(0.14)

    50(0.38)

    ab 4MHz, γ = 0.232MHz, no sec.

    6.78MHz, no sec.

    a1

    a

    dc rf

    i

    (b)

    Numbers near each symbol: mTorr (αab)

    LiebermanDublin07 6

  • University of California, Berkeley PLASMA

    SECONDARY ELECTRON LOSS PROCESSES

    • Surface losses to substrate and walls:

    — Transit time across gap τfr = d/vh at low pressures

    — Diffusion time τdiff = d2/2Dh at higher pressures (Dh = λhv̄h/3)

    — Trapping time τtrap = δ/f (favorable configuration of rf voltagescan trap secondaries for a fraction δ of the rf period 1/f)

    τlh = (τ2fr + τ

    2diff + τ

    2trap)

    1/2 = ν−1lh

    • Volume losses: secondary electrons lose energy and join the thermalpopulation

    τ∗izh =Eh

    νizhEch(Eh, νizh are secondary energy and ionization frequency;

    Ech ≈ 20 V is secondary collisional energy loss/e-i pair created)

    • Total loss frequency is νh = νlh + ν∗

    izh

    If ν∗izh ≫ νlh, secondary electrons efficiently produce e-i pairsIf νlh ≫ ν

    izh, secondary electrons efficiently bombard the substrateLiebermanDublin07 7

  • University of California, Berkeley PLASMA

    ENERGY DEPOSITION REGIONS

    10-2

    10-1

    100

    101

    102

    d/λ

    10-3

    10-2

    10-1

    100

    101

    fd/v

    = 70 V, δ = 0.5

    h

    h

    τ = τ

    τ =

    τ

    τ =

    τ

    τ =

    τ

    τ =

    τ

    fr

    τ = τ

    trap

    trap

    izh*

    trap

    diff

    dif

    ffr

    dif

    f

    fr

    *

    *

    izh

    εh

    izh

    No energydeposition

    Trapped anduntrapped

    energydeposition

    Trappeddepositionuntrapped

    diffusion

    Trap

    ped

    depo

    sitio

    n

    untra

    pped

    flow

    (τ , τ , τ < τ )fr trapdiff izh* (τ > τ )diff

    *izh

    (τ > τ )trap izh*

    τ > τ τ > τ diff frfr diff

    τ , τ < τ izhfr diff *

    Example

    pressure

    freq

    uenc

    y

    • Most interesting regions are where trapped and untrapped electronsbehave differently

    LiebermanDublin07 8

  • University of California, Berkeley PLASMA

    TRIODE DC/RF DISCHARGE

    • Substrate can have a dielectric layer which cannot draw dc current

    A triode configuration is necessary

    Vdc Vrf

    +

    ~sasa0 sa1

    sb

    Va1Va0

    Va0~

    Va1~

    Vb~

    Bulkplasma

    ++ ––+– Vb

    DC/RF sheathRF

    sheath

    Aa Ab

    sg Vg~

    +

    –Vg

    Ag

    Substrate

    DCcurrent

    • A global model incorporating the collisional dc/rf sheath is used todetermine the voltages, currents, and sheath widths

    LiebermanDublin07 9

  • University of California, Berkeley PLASMA

    TRIODE RF PLASMA POTENTIAL Ṽb VERSUS Vdc

    • Collisional theory results for triode

    0.01 0.1 1 10

    V /V

    0

    0.2

    0.4

    0.6

    0.8

    V /

    V

    A /A =0.5, A /A =0.5A /A =1.0, A /A =0.5A /A =0.5, A /A =1.0

    dc rf

    brf

    a c b c

    ca b c

    a c b c

    • Example (red solid line):

    DC electrode area = ground electrode area = 12× RF electrode area

    For Vdc → 0, equal area diode and Ṽb/Vrf = 0.5

    For Vdc → ∞, asymmetric diode and Ṽb/Vrf = 0.86.LiebermanDublin07 10

  • University of California, Berkeley PLASMA

    2D PIC SIMULATION BASE CASE

    • p = 30 mTorr, Prf = 2.2 W, γi = 0.2 at all surfaces

    • Secondaries in “trapped deposition, untrapped diffusion” regime

    1.6

    cm

    CB

    ArPlasma

    30 mT

    3 cm

    9 cm

    Vrf13.56 MHz

    345 V

    14

    cm

    1.6

    cm

    CB

    +

    _

    ArPlasma

    30 mT

    3 cm9

    cm

    VrfVdc

    200 V

    13.56 MHz

    285 V

    14

    cm

    1.6

    cm

    1.6

    cm

    RF only DC/RF triode

    x

    y

    LiebermanDublin07 11

  • University of California, Berkeley PLASMA

    UNIFORMITY IS MODIFIED BY Vdc

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+11

    4e+11

    6e+11

    8e+11

    1e+12

    1.2e+12

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+11

    4e+11

    6e+11

    8e+11

    1e+12

    1.2e+12

    1.4e+12

    Dc/rfRf only

    Plasma

    density

    (m-3)

    Secondary

    density

    (m-3)

    • Thinner bulk plasma near midplane (y = 0.06 m) for DC/RF case

    ⇒ center-low plasma density profile

    LiebermanDublin07 12

  • University of California, Berkeley PLASMA

    BALLISTIC SECONDARY ELECTRONS CREATED BY Vdc

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12y (m) 100

    200 300

    400

    ε (V)

    0

    1e+11

    2e+11

    3e+11

    4e+11

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12y (m) 100

    200 300

    400

    ε (V)

    0

    2e+11

    4e+11

    6e+11

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12y (m) 0.4

    0.8 1.2

    1.6

    θ (rad.)

    0

    1e+11

    2e+11

    3e+11

    4e+11

    5e+11

    6e+11

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12y (m) 0.4

    0.8 1.2

    1.6

    θ (rad.)

    0

    1e+12

    2e+12

    3e+12

    4e+12

    Dc/rf

    ballistic

    highenergy

    Rf only

    Secondary

    energy

    distribution

    (arb units)

    Secondary

    angular

    distribution

    (arb units)

    • Secondary electrons are ballistic and have high energies for DC/RFcase

    LiebermanDublin07 13

  • University of California, Berkeley PLASMA

    PLASMA DENSITY PROFILES VERSUS PRESSURE

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    Dc/rfRf only

    30 mTorr

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    1e+16

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    1e+16

    1.2e+16

    1.4e+16

    1.6e+16

    45 mTorr

    • Effects of Vdc on profile:Thinner bulk plasma ⇒ center-low profileIncreased secondary ionization ⇒ center-high profile

    LiebermanDublin07 14

  • University of California, Berkeley PLASMA

    CONCLUSIONS

    • Collisionless and collisional DC/RF Child laws determined

    • DC voltage can control the discharge asymmetry

    • DC voltage increases secondary electron ionization

    • DC voltage reduces bulk plasma thickness

    • DC voltage promotes the formation of ballistic electrons

    • DC voltage modifies the plasma density profile

    Download this talk:

    http://www.eecs.berkeley.edu/∼lieber

    Ref: E. Kawamura, M.A. Lieberman, and A.J. Lichtenberg, “Capacitive DischargesDriven by Combined DC/RF Sources”, J. Vac. Sci. Technol. A, 25, 1456–74,Sept. 2007

    LiebermanDublin07 15

top related