design timber structures using eurocode 5

Post on 26-Jan-2016

130 Views

Category:

Documents

15 Downloads

Preview:

Click to see full reader

DESCRIPTION

Eurocode 5

TRANSCRIPT

Seminar on Sustainable Future through Timber Design UITM, Dec. 16.12.2014

Simon Aicher

Design Timber Structures using

Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

Contents of lecture

2

Basics of permissible stress and semi-probabilistic partial factor concept Interrelationship of - Eurocodes, - harmonized (timber) product standards, - classification standards, calculation standards and - test test standards Basics of Eurocode 5 structure and contents Design example: straight glulam beam (EC 5 vs. permissible concept) Design example: curved glulam beam (EC 5 vs. permissible concept)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 3

100 years old glulam beams, train repair hall, Bellinzona, Italy

Olympic Ice rink Hammar, Norway, 1994 glulam truss beams, span:97m

Manufacture of timber parasols for Expo 2000, Hannover

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 8

HESS – Limitless –Verbindung (22)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 9

HESS – Limitless –Verbindung (23)

7-storey timber

building, Berlin, 2011

10-storey timber

building, Melbourne,

Australia 2013

Eurocodes and supporting product and test standards

Eurocodes regulate design of timber, steel, concrete structures in conjunction with national application documents but give no provisions on material properties

Harmonized product standards regulate material properties of harmonized building products (e.g. not adhesives) such as EN 14080 glulam EN 14081-1 solid timber in conjunction with national grading rules and classification standard EN 1912 and strength class standard EN 338 EN 15497 finger jointed lumber EN 16351 cross laminated timber EN 14374 LVL EN 13986 panel products in conjunction with product / production standards, e.g. EN 300 for OSB Test standards, e.g. EN 408, EN 789,….. Calculation standards, e.g. EN 14358 on characteristic values

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

Permissible stress concept

13

σact = σ95 acting loads, hence resulting section forces E and stresses σ represent in general 95% quantiles of the distributions

Design verification

σact ≤ σpermissible where in case of structural timber (roughly) σpermissible = f50 /3 f50 mean value of strength

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

Semiprobabilistic design concept with partial factors

14

σact = σ95 as in permissible stress concept the loads / section forces/ stress distributions represent 95% quantiles of the distributions

Design verification σd ≤ fd

σd design stress fd design strength

σd = σact · γL

γL partial factor for load (1,5 for live load; 1,35 for perm. load)

f d = fk · kmod / γM fk characteristic strength property (5% quantile)

kmod modification factor (time, climate) γM partial factor for strength (material dependant; 1,1 to 1,3)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

Semiprobabilistic vs. permissible stress design concept

15

σact ≤

σd = σact · γL = σact · 1,5 ≤ fd =

γL = 1,5 partial factor for load f05 = f50 (1 - 1,64 · COV) assuming COV = 0,12 f05 = f50 (1 – 0,2) = f50 / 1,25

f05 · kmod f50 · kmod

γM 1,25 γM

with γM = 1,3 and kmod = 0,8

f05 · kmod f50 · 0,8

γM 1,25 · 1,3

=

= ≈ f50

2 f05 · kmod f50

γM =

f50 2 · 1,5 = f50

3 = σpermissible

2

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 16

Graphical illustration of semiprobabilistic design concept

Probability density

ms

fs

ms 95

ms 95· γs kmod · mR 05 / γR

kmod · mR 05

kmod · mR

fR

R, s

=

β · σz = mz = kmod · mR - ms

fz

pf = 10 -6

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 17

Eurocode 5: Design of Timber Structures – Part 1-1

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 18

Structural Eurocode Program comprises

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 19

Scope of EN 1995

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 20

Structure of Eurocode 5 ( = EN 1995)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 21

Subjects / Topics of EN 1995-1-1

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 22

Normative References

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 23

Normative References (continued)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 24

Normative References (continued)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 25

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 26

Section 2 of EC 5: Basis of design

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 27

Section 2.2 of EC 5: Principles of limit state design

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 28

2.2.2 Ultimate limit states

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 29

2.2.3 Serviceability limit states

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 30

2.2.3 Serviceability limit states

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 31

2.3 Basic variables

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 32

2.3.1.2 Load-duration classes

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 33

2.3.1.2 Load-duration classes

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 34

2.3.1.3 Service classes

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 35

2.3.2 Materials and product properties

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 36

2.3.2 Materials and product properties

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 37

2.4 Verification by the partial factor method

5%- quantile value (lognormal dist.)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 38

Recommended partial factors γM for material properties

EC 5 – Table 2.3

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 39

2.4.2 Design values of geometrical data

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 40

2.4.2 Design value of a resistance

Example: Rk = Xk · relevant cross-sectional quantity

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 41

EC 5 –Section 3 – Materials properties

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 42

3.1.3/4 Strength and deformation modification factors

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 43

EC 5 – Table 3.1 Strength modification values kmod

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 44

EC 5 – Table 3.1 Strength modification values kmod

(continued)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 45

Accumulated duration of load [hours]

Stre

ngth

mod

ifica

tion

fact

or

kmod

0

0.2

0.4

0.6

0.8

1

1.2

0.0010.01 0.1 1 10 100

100010000

100000

1000000

1 min 1 Woche 6 Monate 10 Jahre 50 Jahre

sehr kurz kurz mittel lang ständig

Nutzungsklasse 1/2

Nutzungsklasse 3

Madison-Kurve

Strength modification values kmod = f( time; moisture)

Service class 1 and2

Service class 3

short very short

medium long permanent

short 1 week 6 months 10 years 10 years

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 46

EC 5 – Table 3.2 Deformation modification values kdef

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 47

EC 5 – Table 3.2 Deformation modification values kdef

(continued)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 48

EC 5 – 3.2: Solid timber

EN 15497

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 49

EC 5 – 3.3: Glued laminated timber

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 50

EC 5 – 3.3: Glued laminated timber

EN 14080 Now large finger joints are directly regulated in the harmonized product standard for glulam,

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 51

Example of large finger joint (single joint line)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 52

Example of large finger joint (two joint lines)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 53

Example of large finger joint (two joint lines)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 54

EC 5 – 3.3: Glued laminated timber

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 55

EC 5 – 3.4: Laminated veneer lumber (LVL)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 56

EC 5 – 3.4: Laminated veneer lumber (LVL)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 57

EC 5 – 3.5: Wood-based panels

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 58

EC 5 – 3.6: Adhesives

Note: As permissible structural adhesive families and respective classifications have been profoundly changed in conjunction with introduction of one-component Polyurethane (1K-PU) and polymer isocyanate (EPI) adhesives according to EN 15425 and EN 16351 principle P (2) is no more throughout valid because of EPI definitions.

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 59

EC 5 – 3.7: Metal fasteners

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 60

EC 5 – Section 4: Durability

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 61

EC 5 – Section 4: Durability

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 62

EC 5 – Section 4: Durability

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 63

EC 5 – Table 4.1 Corrosion protection of fasteners

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 64

EC 5 - Section 5: Basis of structural analysis

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 65

5.2 Members

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 66

5.4 Assemblies

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 67

5.4 Assemblies

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 68

5.4.2 Frame structures

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 69

5.4.4 Plane frames and arches

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 70

Examples of assumed initial geometry deviations

geometry of frames

initial geometry deviation corresponding to symmetrical load

initial geometry deviation corresponding to non-symmetrical load

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 71

EC 5 - Section 6: Ultimate limit states

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 72

Tension 6.1.2 Tension parallel to the grain

6.1.2 Tension perpendicular to the grain

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 73

Compression 6.1.4 Compression parallel to the grain

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 74

Compression 6.1.4 Compression perpendicular to the grain

σc,90,d is the design compressive stress in the effective contact area perpendicular to the grain;

Fc,90,d is the design compressive load perpendicular to the grain;

Aef is the effective contact area in compression perpendicular to the grain;

Fc,90,d is the design compressive strength perpendicular to the grain;

kc,90 is a factor taking into account the load configuration, the possibility of splitting and the degree of compressive deformation.

where

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 75

Compression 6.1.4 Compression perpendicular to the grain

The effective contact area perpendicular to the grain, Aef, should be determined taking into account an effective contact length parallel to the grain, where the actual contact length, ℓ, at each side is increased by 30 mm, but not more than a, ℓ or ℓ1/2, see Figure 6.2. 2. The value of kc,90 should be taken as 1,0 unless the conditions in the following paragraphs apply. In these cases the higher value of kc,90 specified may be taken, with a limiting value of kc,90 = 1,75. 3. For members on continuous supports, provided that ℓ1 ≥ 2h, see Figure 6.2a, the value of kc,90 should be taken as: – kc,90 = 1,25 for solid softwood timber – kc,90 = 1,5 for glued laminated softwood timber where h is the depth of the member and ℓ is the contact length.

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 76

Compression 6.1.4 Compression perpendicular to the grain

4. For members on discrete supports, provided that ℓ1 ≥ 2h, see Figure 6.2b, the value of kc,90 should be taken as: – kc,90 = 1,5 for solid softwood timber – kc,90 = 1,75 for glued laminated softwood timber provided that I ℓ ≤ 400 mm where h is the depth of the member and ℓ is the contact length.

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 77

6.1.6 Bending

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 78

6.1.6 Bending

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 79

6.1.7 Shear

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 80

6.1.7 Shear (crack factor issue)

kcr = 0,67 for solid timber

kcr = 0,67 for glued laminated timber

kcr = 1,0 for other wood-based products in accordance with EN 13986 and EN 14374.

2. For the verification of shear resistance of members in bending, the influence of cracks should be taken into account using an effective width of the member given as: bef = kcr b where b is the width of the relevant section of the member. NOTE: The recommended value for kcr is given as

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 81

6.1.7 Shear

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 82

6.1.8 Torsion

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 83

6.2.2 Compression stresses at an angle to grain

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 84

6.2.3 Combined bending and axial tension

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 85

6.2.3 Combined bending and axial compression

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 86

6.4 Members with varying cross-section or curved shape

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 87

6.4 Members with varying cross-section or curved shape

Figure 6.8 Single tapered beam

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 88

6.4 Members with varying cross-section or curved shape

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 89

6.4 Members with varying cross-section or curved shape

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 90

6.4 Members with varying cross-section or curved shape

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 91

6.4 Members with varying cross-section or curved shape

(a)

Figure 6.9 – Double tapered (a) and curved (b) beams with the fibre direction parallel to the lower edge of the beam

Note: In curved beams the apex zone extends over the curved parts of the beam

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 92

Figure 6.9 – Pitched cambered beam (c) beam with the fibre direction parallel to the lower edge of the beam

Note: In pitched cambered beams the apex zone extends over the curved parts of the beam

6.4 Members with varying cross-section or curved shape

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 93

6.4 Members with varying cross-section or curved shape

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 94

6.4 Members with varying cross-section or curved shape

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 95

6.4 Members with varying cross-section or curved shape

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 96

6.4 Members with varying cross-section or curved shape

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 97

6.4 Members with varying cross-section or curved shape

or

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 98

6.4 Members with varying cross-section or curved shape

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 99

Design of straight glulam member

- comparison of Eurocode 5 vs. DIN 1052

Design examples

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 100

GL 24 / BS 11

q = 9 kN/m, g = 6 kN/m

10 m

16x8

0 cm

Geometry: l = 10 m b = 160 mm h = 800 mm S = b h²/6 = 17 ⋅ 10-6 mm³ I = b h³/12 = 6.8 ⋅ 10-9 mm4

Straight beam design comparison – EC 5 vs. perm. stress concept

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 101

Property permissible concept semi-probabilistic concept

Bending strength σm,perm = 11 N/mm² fm,k = 24 N/mm²

Shear strength τv,perm = 1.2 N/mm² fv,k = 3.5 N/mm²

MOE Em = 11000 N/mm² Em,mean = 11000 N/mm²

crack factor - kcr = 0.67

modification factor for duration of load and moisture content

kmod = 0.6 (Service Class I/II, medium-term)

Partial factor for material properties

γM = 1.25 (glulam, EC 5)

Deformation factor kdef = 0.8 (Service Class I)

Partial factor for permanent actions

γG = 1.35

Partial factor for variable actions

γG = 1.5

Factor for quasi-permanent value of a variable action

ψ2,1 = 0.3

Design comparison – EC 5 vs. perm. stress concept

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 102

Result permissible concept semi-probabilistic concept

distributed load F = g + q = 15 kN/m Fd = γG g + γQ q = 21.6 kN/m

bending moment M M = F l² / 8 = 188 kNm Md = Fd ⋅ l² / 8 = 270 kNm

bending stress σm = M/S = 11 N/mm² σm = Md/S = 15.8 N/mm²

utilization (bending)

11 / 11 = 1.00

fm,d = fm,k ⋅kmod /γM = 15.4 N/mm² 15.8 / fm,d = 1.03

shear force V V = F l/2 = 75 kN Vd = Fd l/2 = 108 kN

shear stress τv 1.5 V / (b h) = 0.88 N/mm² 1.5 Vd / (b h) = 1.89 N/mm²

utilization (shear)

1.2 / 0.88 = 0.73

fv,d = fv,k ⋅kmod /γM = 2.24 N/mm² 1.89 / fv,d = 0.84

Design comparison – EC 5 vs. perm. stress concept

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 103

deflection 𝑢 =

5 𝐹 𝑙4

384𝐸𝐸 = 26𝑚𝑚 𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑖𝑖𝑖𝑖,𝑔 + 𝑢𝑖𝑖𝑖𝑖,𝑞=

5𝑔𝑙4

384𝐸𝐸 +5𝑞𝑙4

384𝐸𝐸 = 10.4 + 15.6= 26𝑚𝑚

𝑢𝑓𝑖𝑖 = 𝑢𝑖𝑖𝑖𝑖,𝑔(1 + 𝑘𝑑𝑑𝑓) +𝑢𝑖𝑖𝑖𝑖,𝑞(1 +ψ2,1 𝑘𝑑𝑑𝑓)= 16.7 + 18.4 = 35.1mm

utilitization (deflection) 𝑢𝑙/300 = 0.78

𝑢𝑖𝑖𝑖𝑖𝑙/300 = 0.78 𝑢𝑓𝑖𝑖𝑙/150 = 0.53

Design comparison – EC 5 vs. perm. stress concept

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 104

Design of curved glulam beam

- comparison of Eurocode 5 vs. DIN 1052

Design examples

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 106

HESS – Limitless –Verbindung (7)

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 107

WM

RH,max, 250=σ⊥

R H

R2 / H = 11

R1 / H = 2,5

R H

H/R2 = 0,09

H/R1 = 0,4

WM

RH,

RH,II

++=σ

2

603501

+

-

H/R2 = 0,09

H/R1 = 0,4

tension stresses perpendicular to grain

Stress distributions in curved beams with const. moment

bending stresses parallel to grain

R1 < R2

R1 < R2

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 108

h

stress perp. to grain

- +

h

- +

Stress σt,90 of curved and tapered beams with line loads

stress perp. to grain

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 109

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 110

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 111

Curved beam design comparison – EC 5 vs. perm. stress concept

Geometry, dimensions and quality /strength class of example beam

EN 14080 GL 28: fm,k = 28 N/mm2

DIN 1052 BS 14: σm,permissible = 14 N/mm2

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 112

Design for bending:

kr = 0,96

hap / r = 0,118

EC5 F = 23,31 kN

Curved beam design comparison – EC 5 vs. perm. stress concept

rin/t = 200,

kl = 1,05

k1 = 1; k2 = 0,35, k3 = 0,6

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 113

Design for bending:

kr = 0,96

kl = 1,05

EC5

fm,d = fm,k × kmod /γm

GL28: fm,k = 28 N/mm2

load duration: „medium“, kmod = 0,8

glulam: γm = 1,25

σm,d = 6,85 N/mm2 Map,d = γf × Map

combined loading: γf = 1,4

fm,d = 17,92 N/mm2

ratio = 0,38

F = 23,31 kN

Curved beam design comparison – EC 5 vs. perm. stress concept

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 114

Design for tension perp.:

kdis = 1,4 kVol = (V0/V)0,2 = 0,43

EC5

glulam: V0 = 0,01 m3 V = 0,691 m3

curved beam design comparison – EC 5 vs. perm. stress concept

kp = 0,0294

k5 = 0; k6 = 0,25, k7 = 0

hap / r = 0,118

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 115

Example: Curved Beam with pure moment loading

kp = 0,0294

EC5

ft,90,d = ft,90,k × kmod /γm

glulam: ft,90,k = 0,5 N/mm2

load duration: „medium“, kmod = 0,8

glulam: γm = 1,25

σt,90,d = 0,19 N/mm2 Map,d = γf × Map

combined loading: γf = 1,4

ft,90,d = 0,32 N/mm2

ratio = 1,0

F = 23,31 kN

kdis = 1,4 , kVol = 0,43,

1,4 x 0,43 x 0,32 = 0,19 N/mm2

Design for tension perp.:

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 116

Design for bending:

hap / r = 0,118, kl = 1,05

DIN 1052

F = 23,31 kN

σm ≤ σm,permissible

σm = kl × 6 Map/b h2

σm,permissible = 14 N/mm2

σm = 4,66 N/mm2

ratio = 0,33

Curved beam design comparison – EC 5 vs. perm. stress concept

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 117

Design für tension perp.:

DIN 1052

F = 23,31 kN

σt,90 ≤ σt,90,permissible

σt,90 = kp× 6 Map/b h2

σt,90,permissible = 0,2 N/mm2

σt,90 = 0,14 N/mm2

ratio = 0,69

hap / r = 0,118, kp = 0,0294

curved beam design comparison – EC 5 vs. perm. stress concept

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 118

DIN 1052

F = 23,31 kN

EC5

bending tension perp.

1,00

0,69

0,40

0,33

no pre-stress effect no size effect

curved beam design comparison – EC 5 vs. perm. stress concept

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 119

Now ist time to finish!

Thank you very much for your patient listening!

top related