di usion inertia model for simulation multiphase turbulent ......governing equations interfacial...

Post on 06-Nov-2020

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Diffusion Inertia Model for SimulationMultiphase Turbulent Flows andimplementation into OpenFOAM

Roman Mukin

Nuclear Safety Institute Russian Academy of Science

Riga, Latvia, October 20-21, 2011

1 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Introduction

Contents

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

2 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Introduction

Contents

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

2 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Introduction

Contents

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

2 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Mathematical formulation of DIM

The model is based on the kinetic equation for the probability density function(PDF) of the particles velocity distribution, and is valid for two-phase flowswith particles, which dynamic relaxation time does not exceed the Lagrangianintegral timescale of the turbulence.

Particle mass concentration equation∂M

∂t+∂UiM

∂xi︸ ︷︷ ︸transport

+∂

∂xi

[τp

(Fi −

DUi

Dt

)M

]︸ ︷︷ ︸

inertia

=∂

∂xi

[(DBδij +DTp ij

) ∂M∂xj

]︸ ︷︷ ︸

turbulent dispersion

+

+∂

∂xi

(M∂quDTp ij

∂xj

)︸ ︷︷ ︸

turbulent migration

Relative velocity

Vri = Ui − Vi =(DBδij +DTp ij

)∂ lnM∂xj

+ τp

(Fi − DUi

Dt− ∂(quDTp ij)

∂xj

)

3 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Flow rate of depositing particles

Boundary condition, a relation between the flow rate of depositing particles JW andthe particle concentration in the near-wall region outside the viscous sub-layer ΦW :

Jw =V +CFu∗Φ1

1− exp(−V +

CF

/V +DT

) ,V +CF = UW + τp

(FW −

[DU

Dt

]W

)– convection-force component

V +DT =

[ScTκ

ln y+ +(V +DF + V +

TR

)−1]−1

– the diffusion-turbulence component

V +DF =

0.115

Sc3/4B

– diffusion term

V +TR =

2 · 10−4τ2.5+

1 + 10−3τ2.5+

– turbophoresis term

4 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

5 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Aerosol Deposition in Straight Tube

j+ – dimensionless deposition velocityτ+ – dimensionless relaxation time dp=10 µm, Re = 10000

6 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

7 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Explicit Self-Consistent Algebraic RSMS.S. Girimaji, Fully Explicit and Self-Consistent ARSM // Theoret. Comput. Fluid Dynamics 8, 387 (1996).

Reynolds stress

〈u′iu′j〉 =2k

3δij − 2C∗µ

k2

ε

{S∗ij −

k

ε

[B1

(S∗ikS

∗jk −

1

3S∗knS

∗knδij

)+

+B2

(S∗ikW

∗jk + S∗jkW

∗ik

) ]}C∗µ =

3A1A2

3A21 − 2A2

3S̄∗II − 6A2

4W̄∗II

, B1 = 2A3A1

, B2 = A4A1

A31 −

(C0

1 − 2)A2

1 −{[

2A2

(C1

1 + 2)

+2A2

3

3

]S̄∗II + 2A2

4W̄∗II

}A1+

+ 2(C0

1 − 2)(A2

3S̄∗II

3+A2

4W̄∗II

)= 0

S∗ij = (1 +Mfu1)Sij W ∗ij = (1 +Mfu1)Wij

Sij = 12

(∂Ui∂xj

+∂Uj∂xi

)Wij = 1

2

(∂Ui∂xj− ∂Uj

∂xi

)A2 = 4

3− C2, A3 = 2− C3, A4 = 2− C4,

8 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Turbulence model

Turbulent energy balance equation

(1 +Mfu1)

(∂k

∂t+ Ui

∂k

∂xi

)=

∂xi

{[ν + (1 +Mfu1)

C∗µk2

σkε

]∂k

∂xi

}−

− (1 +Mfu1) 〈u′iu′j〉∂Ui

∂xj− (ε+ εp + Gp)

Turbulence dissipation balance equation

(1 +Mfu1)

(∂ε

∂t+ Ui

∂ε

∂xi

)=

∂xi

{[ν + (1 +Mfu1)

C∗µk2

σεε

]∂ε

∂xi

}−

−ε

k

[Cε1 (1 +Mfu1) 〈u′iu′j〉

∂Ui

∂xj+ Cε2 (ε+ εp + Gp)

]

9 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

10 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Deposition of aerosol particles in tube bend

11 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Deposition of aerosol particles in tube bend

Experiment: D.Y.H. Pui et al. // Aerosol Sci. Technol. 7 (1987) 301315.

12 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Deposition of aerosol particles in tube bend

Experiment: A.R. McFarland et al. // Environ. Sci. Technol. 31 (1997) 33713377.

13 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Deposition of aerosol particles in tube bend

Experiment: T.M. Peters, D. Leith // Ann. Occup. Hyg. 48 (2004) 483490.

14 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Deposition of aerosol particles in mouth-throat geometry

CAD files of the Alberta mouth-throat geometry proposed by Professor W. Finlay (University of Alberta, Canada)

Schematic of the Alberta mouth-throat geometry

15 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

16 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Circular Tube FlowExperiment: Varaksin A.Yu. et al. // High Temperature. 1998. 36, N5, P.767.

Mean velocity profiles

Re = 25600

D = 64 mm

U0 = 6.4 m/s

L/D > 20

1 0 1 0 01 0

1 5

2 0

y +

u +

dp, µm Minput Φinput, 10−5 τp, ms

Al2O3 50 ± 6 0.12, 0.18, 0.26 3.66, 5.49, 7.93 30.5

SiO2 50 ± 2 0.12, 0.18, 0.26, 0.39 5.67, 8.5, 12.23, 18.42 19.7

SiO2 100 ± 2 0.12, 0.18, 0.26, 0.39 5.67, 8.5, 12.23, 18.42 78.7

17 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

SiO2: dp = 50 µm, taup = 19.7 ms

0 . 0 0 . 2 0 . 4 0 . 6 0 . 82468

1 0

r / R

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6 0 . 3 9

0 . 0 0 . 2 0 . 4 0 . 6 0 . 82345678

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6 0 . 3 9

r / R

√⟨u′2x

⟩〈uc〉

,%

√⟨u′2y

⟩〈uc〉

,%

Streamwise fluctuating velocity Radial fluctuating velocity

18 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

Al2O3: dp = 50 µm, taup = 30.5 ms

0 . 0 0 . 2 0 . 4 0 . 6 0 . 82468

1 0

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6

r / R 0 . 0 0 . 2 0 . 4 0 . 6 0 . 82345678

r / R

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6

√⟨u′2x

⟩〈uc〉

,%

√⟨u′2y

⟩〈uc〉

,%

Streamwise fluctuating velocity Radial fluctuating velocity

19 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Aerosols Transport

SiO2: dp = 100 µm, taup = 78.7 ms

0 . 0 0 . 2 0 . 4 0 . 6 0 . 82468

1 0

r / R

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6 0 . 3 9

0 . 0 0 . 2 0 . 4 0 . 6 0 . 82345678

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6 0 . 3 9

r / R

√⟨u′2x

⟩〈uc〉

,%

√⟨u′2y

⟩〈uc〉

,%

Streamwise fluctuating velocity Radial fluctuating velocity

20 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

21 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Diffusion Inertia Model

Equation for numerical concentration of bubbles

∂Nα

∂t+∂NαWi

∂xi+

∂xi

{τpαNα

1 +m

[(1−A)

(gi −

DWi

Dt

)+ FLαi + FWαi

]}=

=∂

∂xi

[1

1 +m

(DT

∂Nα

∂xi+Nα

∂qαDT

∂xi

)]+ Scoα + Sbrα

Equation for mass concentration of bubbles

∂Mα

∂t+∂MαWi

∂xi+

∂xi

{τpαMα

1 +m

[(1−A)

(gi −

DWi

Dt

)+ FLαi + FWαi

]}=

=∂

∂xi

[1

1 +m

(DT

∂Mα

∂xi+Mα

∂qαDT

∂xi

)]Φα = Mα

ρp– volume concentration

22 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Turbulence Model

Turbulent energy balance equation

∂ρk

∂t+∂ρkWi

∂xi=

∂xi

{[(1− Φ)µf +

ρνT

σk

]∂k

∂xi

}−

−[

(1− Φ) ρf +A∑α=1

Mαfpα

]〈u′iu′j〉

∂Wi

∂xj− ρε+ Sk1 − Sk2

Turbulence dissipation balance equation

∂ρε

∂t+∂ρεWi

∂xi=

∂xi

{[(1− Φ)µf +

ρνT

σε

]∂ε

∂xi

}−

−Cε1ε

k

[(1− Φ) ρf +

A∑α=1

Mαfpα

]〈u′iu′j〉

∂Wi

∂xj−Cε2ρε2

k+

k(Cε3Sk1 − Cε4Sk2)

Sk1 – TKE source term due to the particle hydrodynamic resistanceSk2 – additional dissipation owing to particle involvement in turbulent motion

23 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

24 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Drag coefficient

τp =4(ρp+CAρf )d3ρfCD|Vr| – particle response time

Loth E. // Int. J. Multiphase Flow. 2008. V. 34. P. 523.

CD = CWep→0

D + ∆CD

(C

Wep→∞D − CWep→0

D

)– drag coefficient for

deformable bubbles

CWep→∞D = 8

3+ 24

Rep– drag coefficient for high Weber number

CWep→0

D =

{24

Rep

(1 + 0.15Re0.687

p

)if Rep ≤ 103

0.44 if Rep > 103– drag coefficient of

spherical bubbles

∆CD = tanh[0.0038

(WepRe0.2p

)1.6]

25 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Lift coefficient

FLi =CLρfV

rj

ρp + CAρf

(∂Ui∂xj− ∂Uj∂xi

)– lift force

CL = max

(−0.27, FL(Wep)C

Wep→0

L

)– lift coefficient

Legendre D., Magnaudet J. // J. Fluid Mech. 1998. V. 368. P. 81.

CWep→0

L =

[1.88

RepSrp(1+0.2Rep/ Srp)3+

(1+16Re−1

p

)24(

1+29Re−1p

)2]1/2

Hibiki T., Ishii M. // Chem. Eng. Sc. 2007. V.62. P. 6457.

FL(Wep) = 2− exp(0.0295 ·We2.21

p

)

FWi =CW ρf |Vr|2ni(ρp + CAρf ) d

– wall force

CW = max(Cw1 + Cw2

dpyw, 0) 0 1 2 3 4 5 6 7 8

- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

T o m i y a m a ��

L e g a n d r e M a g n a d u e t

26 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

27 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Coagulation and Break-Up of bubbles

Scoα = −Nα2

A∑α1=1

βαα1Nα1 – coagulation term

βαα1 – coagulation kernel function

Zaichik L.I. et al. // Int. J. H&MT. 2010. V. 53. P. 1613.

βαα1 = 4π1/2d2αα1

Vtφ(Σ)Γηco

We∗cr =3

1 + 2ρp/ρf

Sbrα =Nα,cr −Nα

τbrαH(We∗α −We∗cr)ηbr

Yao M., Morel C. // Int. J. H&MT. 2004. V. 47. P. 307.

βαα1 =πd

7/3αα1ε

1/3Γηco

6[1 +KcΦ

(We∗αα1

/We∗cr

)1/2Γ]

We∗cr = 1.24

Sbrα =Kb1Φ (1− Φ) ε1/3ηbr

3d11/3α

[1 +Kb2 (1− Φ) (We∗α/We∗cr)

1/2]

28 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

29 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Monodisperse bubbly flow

Flow condition

Case Jinc , m/s α dp, mm Flow direction Pipe diam, mm

Wang 1 0.43 0.132 2.8 Up 57.15

Wang 2 0.43 0.310 3.0 Up 57.15

Wang 3 0.43 0.383 3.2 Up 57.15

Wang 4 0.71 0.145 2.8 Down 57.15

Wang 5 0.71 0.288 3.0 Down 57.15

Wang 6 0.71 0.371 3.2 Down 57.15

Serizawa 1 1.03 0.0397 4.0 Up 60

Serizawa 2 1.03 0.1023 4.0 Up 60

Serizawa 3 1.03 0.1627 4.0 Up 60

Liu 4 1.0 0.087 6.6 Up 57.2

Liu 5 1.0 0.095 3.7 Up 57.2

Liu 6 1.0 0.106 2.81 Up 57.2

30 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Monodisperse bubbly flow

Φ

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 10 . 20 . 30 . 40 . 50 . 60 . 7

r / R

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 00 . 10 . 20 . 30 . 40 . 50 . 6

r / R Void fraction

U,m/s

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

r / R

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 20 . 40 . 60 . 81 . 01 . 2

r / RLiquid velocity

Wang 1

Wang 2

Wang 3

Wang 4

Wang 5

Wang 6

31 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Monodisperse bubbly flow

Φ

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 1

0 . 2

0 . 3

r / R

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 1

0 . 2

0 . 3

r / R

Void fraction

U,m/s

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 40 . 60 . 81 . 01 . 21 . 4

r / R

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 40 . 60 . 81 . 01 . 21 . 4

r / R

Liquid velocity

Serizawa 1

Serizawa 2

Serizawa 3

Liu 6

Liu 7

Liu 8

32 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

33 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Polydisperse bubbly flow

Flow pattern map of MTLOOP experiments

Case Jinc , m/s Jing , m/s

MTLOOP-074 1.017 0.0368

MTLOOP-071 0.255 0.0368

MTLOOP-095 0.641 0.0898

MTLOOP-107 1.017 0.140

MTLOOP-118 1.017 0.219D. Lucas, E. Krepper, H.-M. Prasser // Int. J. Multiphase Flow 31 (2005) P.1304

34 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Polydisperse bubbly flow

MTLOOP-071

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

������������������������ ��

����

Void fraction

0 2 4 6 8 1 0 1 20

2

4

6

8 o u t l e t i n l e t

h(dp),

[%/m

m]

d p , [ m m ]Comparison bubble size distribution at the inlet and

outlet

0 . 0 1 0 . 1 14

5

6

7 1 d e l t a 2 d e l t a 4 d e l t a E x p e r i m e n t

D32, [

mm]

L , [ m ]

Comparison of the spatial averaged Sauter mean diameter

35 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Polydisperse bubbly flow

MTLOOP-074

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 3

0 . 0 6

0 . 0 9

0 . 1 2���������������������������� ��

����

Void fraction

MTLOOP-095

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

���� ����� ����� ����� ������������

����

Void fraction

MTLOOP-107

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 5

������������������������ ��

����

Void fraction

MTLOOP-118

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

���������������������������� ��

����

Void fraction

MTLOOP-118

0 . 0 1 0 . 1 15

1 0

1 5

2 0 1 d e l t a 2 d e l t a 4 d e l t a E x p e r i m e n t

L , [ m ]

D32, [

mm]

Spatial averaged Sauter mean diameter

36 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Validation matrix of polydisperse bubbly flows

Flow parameters

Jinc , m/s α Ref Tube diam., mm

Hibiki 1 0.986 0.203 4.3× 104 50.8

Hibiki 2 0.986 0.108 4.3× 104 50.8

Hibiki 3 0.986 0.0512 4.3× 104 50.8

MTLOOP 071 0.255 0.155 1.1× 104 51.2

MTLOOP 074 1.017 0.04 4.5× 104 51.2

MTLOOP 095 0.641 0.14 2.8× 104 51.2

MTLOOP 107 1.017 0.13 4.5× 104 51.2

MTLOOP 118 1.017 0.172 4.5× 104 51.2

TOPFLOW 074 1.017 0.04 2.6× 105 195.3

TOPFLOW 107 1.017 0.13 2.6× 105 195.3

37 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Polydisperse bubbly flow in vertical tube

Upward flowRef = 4.99× 104, D = 50.8 , 〈Φ〉 = 5%

Local void fraction Liquid and gas velocities Bubbles diameter

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

r / R

Z a i c h i k m o d i f i e d Y a o M o r e l

E x p e r i m e n t : z / D = 5 3 . 5

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 60 . 81 . 01 . 21 . 41 . 6

E x p e r i m e n t : z / D = 5 3 . 5 l i q u i d z / D = 5 3 . 5 g a s s i n g l e p h a s e

G a s v e l o c i t y : L i q u i d v e l o c i t y : Y a o M o r e l Y a o M o r e l Z a i c h i k m o d i f i e d Z a i c h i k m o d i f i e d s i n g l e p h a s e

U, m/

s

r / R0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 02 . 0

2 . 42 . 83 . 23 . 64 . 0

d bubble

, mm

r / R

Z a i c h i k m o d i f i e d E x p e r i m e n t : Y a o M o r e l z / D = 5 3 . 5 i n l e t z / D = 6

Experiment T. Hibiki et al. Int. J. Heat Mass Transfer, 44 (2001) 1869-1888

38 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Polydisperse bubbly flow in vertical tube

Upward flow in vertical tubeRef = 4.99× 104, D = 50.8 mm, 〈Φ〉 = 10%

Local void fraction Liquid and gas velocities Bubbles diameter

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

r / R

Z a i c h i k m o d i f i e d Y a o M o r e l

E x p e r i m e n t : z / D = 5 3 . 5

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 60 . 81 . 01 . 21 . 41 . 6

E x p e r i m e n t : s i n g l e p h a s e z / D = 5 3 . 5 l i q u i d z / D = 5 3 . 5 g a s s i n g l e p h a s e

G a s v e l o c i t y : L i q u i d v e l o c i t y : Y a o M o r e l Y a o M o r e l Z a i c h i k m o d i f i e d Z a i c h i k m o d i f i e d

U, m/

s

r / R0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 02 . 0

2 . 42 . 83 . 23 . 64 . 0

d bubble

, mm

r / R

Z a i c h i k m o d i f i e d E x p e r i m e n t : Y a o M o r e l z / D = 5 3 . 5 i n l e t z / D = 6

Experiment T. Hibiki et al. Int. J. Heat Mass Transfer, 44 (2001) 1869-1888

39 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

Experiments MTLOOP and TOPFLOW

Flow pattern in MTLOOP experiments

40 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

MTLOOP-074

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 4%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 02 03 04 05 06 07 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 0

2 0

3 0

4 0

H(d p ),

%/mm

d p , m m

H(dp) = dΦddp

Φ =∫∞0 H(dp)ddp

41 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

MTLOOP-074

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 4%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 02 03 04 05 06 07 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 0

2 0

3 0

4 0

H(d p ),

%/mm

d p , m m

41 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

MTLOOP-074

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 4%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

Z a i c h i k m o d i f i e d , 2 m o m e n t s Y a o M o r e l , 2 m o m e n t s M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 02 03 04 05 06 07 0

H(d p ),

%/m

m

d p , m m 2 3 4 5 6 701 02 03 04 05 06 07 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

Z a i c h i k m o d i f i e d , 4 m o m e n t s Y a o M o r e l , 4 m o m e n t s M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 0

2 0

3 0

4 0

H(d p ),

%/mm

d p , m m 2 3 4 5 6 70

1 0

2 0

3 0

4 0

H(d p ),

%/mm

d p , m m

41 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

MTLOOP-107

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 13%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

H(dp) = dΦddp

Φ =∫∞0 H(dp)ddp

42 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

MTLOOP-107

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 13%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

42 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

MTLOOP-107

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 13%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7 Y a o M o r e l Z a i c h i k m o d i f i e d

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7 Y a o M o r e l Z a i c h i k m o d i f i e d

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

md p , m m

42 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

TOPFLOW-074 TOPFLOW-107

Ref = 2.6× 105, D = 195.3 , 〈Φ074〉 = 4%, 〈Φ107〉 = 13%

Radial gas volume fraction Gas velocity Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

T O P F L O W 0 7 4

void f

ractio

n

r / R0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 4

0 . 8

1 . 2

1 . 6

r / R

U, m/

s

T O P F L O W 0 7 4

2 4 6 8 1 0 1 20

1 0

2 0

3 0

4 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

r / R

T O P F L O W 1 0 7

void f

ractio

n

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 4

0 . 8

1 . 2

1 . 6

r / R

U, m/

s

T O P F L O W 1 0 70 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 50

5

1 0

1 5

2 0

H(d p ),

%/m

m

d p , m m

43 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Bubbly flows

TOPFLOW-074 TOPFLOW-107

Ref = 2.6× 105, D = 195.3 , 〈Φ074〉 = 4%, 〈Φ107〉 = 13%

Radial gas volume fraction Gas velocity Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

1 m o m e n t 2 m o m e n t s T O P F L O W 0 7 4

void f

ractio

n

r / R0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 4

0 . 8

1 . 2

1 . 6

r / R

U, m/

s g a s l i q u i d T O P F L O W 0 7 4

2 4 6 8 1 0 1 20

1 0

2 0

3 0

4 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

r / R

1 m o m e n t 2 m o m e n t s T O P F L O W 1 0 7

void f

ractio

n

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 4

0 . 8

1 . 2

1 . 6

r / R

U, m/

s

g a s l i q u i d T O P F L O W 1 0 7

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 50

5

1 0

1 5

2 0

H(d p ),

%/m

m

d p , m m

43 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Subcooled Boiling flows

Vertical annular flowExperiment: T.H. Lee , G.C. Park, D.J. Lee // , Int. J. of Multiphase Flow 28 (2002) 1351–1368

44 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Subcooled Boiling flows

Diffusion-Inertia Model (DIM) of a dispersed flow

DIM is 1-fluid Eulerian mixture approach to modeling ofmultiphase flows in complex geometry for 3D simulation of:

aerosols (drops) transport and deposition (NPP’s primary circuitand containment)

bubbles(vessel outer cooling)

It was specially designed to account for particle-turbulenceinteraction.Why DIM among other existing multiphase models?

universal description of particles, droplets, and bubbles withreasonable accuracy

actually claims to be a self-consistent description ofparticles/bubbles interaction with the turbulence

robust and effective

developable to expansion of its application field

45 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

top related