early cosmic dust neutrinos

Post on 03-Feb-2022

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Early

dust

Erik Elfgren

Cosmic

neutrinos&

Part I Part II

Acknowledgments

SupervisorsSverker Fredriksson

Johnny Ejemalm

Hans Weber

CollaboratorsFrançois-Xavier Désert – Grenoble

Bruno Guiderdoni – Lyon

FundingNational Graduate School of Space Technology

Part I

Early dust

Eagle nebula

Cosmic microwave background

Results

First generation of stars

Spatial distribution

Dust evolution

Dust

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust Outline part I: Early dust

Cosmic microwave background

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

WMAP temperature map

Cosmic microwave background

Nobel prize 2006 – CMB

John C. Mather

– Project coordinator

George F. Smoot

– Anisotropies

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

• Expansion rate

Age of the universe

• Amount of dark matter, dark energy

Shape of the universe

• Matter distribution at t = 400,000 years

Closing in on the big bang

• Structure formation

How galaxies and stars form

Why is the CMB interesting?Stephen Hawking: “the greatest discovery of the century, if not of all times.”

Cosmic microwave background

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

CMB• 400,000 years after BB:

T ~ 3000 K

• 13.7 billion years after BB:

T = 2.725 K = microwaves

• Everywhere

Isotropic to within 10-5

• Blackbody radiation

better than the sun

Cosmic microwave background

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

Cosmic microwave background

How?• Temperature map

(whole sky)

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

Power spectrum

= angular correlations

First generation of stars

The Sun

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

• z ~ 5-20

~12.3-13.3 Gyr

• Heavy

~100 M

• Short-lived

~1 Million years

• Metal-poor

Z ~ 10-6

• Hot

~100,000 K

• End as supernovæ

First generation of stars

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

Dust

Eagle nebula

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

Why is cosmic dust interesting?• Absorbs CMB light

• Emits radiation similar to the CMB

• Absorbs star light

• Comes from the first stars

Star light

CMB light

Dust emission

Supernova

Dust

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

Dust evolution

Orion nebula

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

Dust density evolution:

t

ttJf

dt

td dd

d*

Analytical solution, for different dust lifetimes, t:

Dust evolution

13.5 billion years ago

12.5 billion years ago

Re

lative

d

ust d

en

sity

Time from now

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

Spatial distribution

Dark matter simulation

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

Spatial distribution

• Dust in filaments (100 Mpc/h)

• Dark matter N3 body simulations

• GalICS – simulation program

• Fairly realistic galaxies

DMd

Dust

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

Results

The Planck satellite

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

Results

Dust spectrum

CMBInte

nsity

Observed wavelength

Dust

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

dzT

zTzT

dT

dBTTBii

i

CMB CMB

CMBd

TT

CMBCMB0

Detection with Planck satellite?

An

gu

lar

co

rre

latio

n

180º/angle

• Might be possible

Results

Early dust

Local dust

Planck noise

CMB

My research

Dust

Evolution

Distribution

Stars

CMB

Results

Theory

NeutrinosDust

Part II

Cosmic neutrinos

Heavy neutrino

β δ

β

Standard model of particle physicsSM

Extensions of the SM

Preons

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Outline part II: Cosmic neutrinos

Preons in LEP data?

Summary and outlook

Dust

Heavy neutrinosNeutrinos

Neutrinos

Standard model of particle physics

Feynman diagram

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

Standard model of particle physics

• The fundamental particles

(like electrons, quarks and neutrinos)

• The forces that govern their interactions

The SM describes

The SM is used to calculate

• Probability of interaction between particles

(= cross section, σ)

• Lifetimes of unstable particles

σ

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

Standard model of particle physics

Fermions

Family

1

2

3

νe

e

0

-1

νμμ

0

-1

νττ

0

-1

electronneutrino

electron

muonneutrino

tauneutrino

muon

tau

d

u

-1/3

2/3

s

c

-1/3

2/3

b

t

-1/3

2/3

down

up

strange

bottom

charm

top

Flavor Charge Flavor Charge

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

Standard model of particle physics

Forces

• Electromagnetic

photons – γ

• Weak

W-, W+, Z0

• Strong

gluons

• (Gravitational – not included in SM

gravitons)

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

Standard model of particle physics

Shortcomings

• > 20 arbitrary parameters

(masses, coupling constants, mixings,

CP-violation, neutrino oscillations)

• Higgs boson is not yet discovered

(gives mass to other particles)

• Why three generations? Why same charges?

No known connections between ingredients

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

Extensions of the SM

Feynman diagram

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

Extensions of the SM

Superstring theory

• The fundamental particle is a vibrating string

• Includes gravity and all other forces

• No testable prediction

Grand unified theories• Unifies all forces except gravity

• Predicts many new particles

Supersymmetry• All fermions have a partner with spin = 0

• Neutralino could be dark matter

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

M ~ 100 GeV

Extensions of the SM

A fourth generation?

νe

e

0

-1

νμμ

0

-1

νττ

0

-1

N/L? 0,-1

electronneutrino

electron

muonneutrino

tauneutrino

muon

tau

d

u

-1/3

2/3

s

c

-1/3

2/3

b

t

-1/3

2/3

Q1,Q2? -1/3,2/3

down

up

strange

bottom

charm

topβ δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

Preons

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

β δβ

Electron

Preons

Basics

• Preons (spin = ½)

• Dipreons (spin = 0)

• Fermions: preon + dipreon

Charge +1/3 -2/3 +1/3

preon α β δ

antidipreon )δα()δβ(

He

Atom

np p

n

Nucleus

du

u

Proton Quark

10-10 10-15 <10-18 <10-18Size ~

ββ δ

)βα(

(βδ) (αδ) (αβ)

α νe μ+ ντ u s c Z0/Z’ W+ Z* α

β e- τ- d X b W- Z’/Z0 W’- β

δ νκ1 κ+ νκ2 h k t W’+ Z” δ

)βα()δβ( α β δ

μν

*Z

Leptons Quarks Force carriers

)δα(

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

Preons

Features• No Higgs boson needed

• Only three fundamental particles

• Fundamental particles are stable

• Symmetry between quarks and leptons

• Mixings explained (of neutrinos, quarks

and gauge bosons)

• Lepton number conservation

= Dipreon and energy conservation

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

Preons in LEP data?

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

OPAL event

e+

β δβ

β δ

β

e-

Preons in LEP data?

Why LEP?• Right energy scale Emax ~ 210 GeV

• Clean signal from e+e-

• (I have worked in the OPAL group)

Predictions/2 eee

/2 / We

/21

/ / qqW

chbkee /

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

Heavy neutrinos

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust Neutrinos

Neutrinos

Heavy neutrino

Heavy neutrinos

Contribution to dark matter• Heavy neutrinos annihilate slowly

Most of them remain even today

Annihilation still going on

and gives gamma raysNN

N N

)()()()(3 22 TnTnvTnTHdT

dt

dT

dneqall

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust Neutrinos

Neutrinos

Re

lative

ne

utr

ino

d

en

sity

Heavy neutrinos

Clumping enhancement•Annihilation of proportional to

• enhancement due to galaxies etc

(Calculated with GalICS)

NN2Nρ

2Nρ

No clumping

With clumping

2

0 )( ,)(DM

halosDM

DM

halos DMhalohalo

m

mm

m

mzC

dz

dIzC

dz

dIβ δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust Neutrinos

Neutrinos

Heavy neutrinos

Gamma ray signal• Peak at Eγ ~ 1 GeV

• MN ~ 100 or 200 GeV could fit with data

dTdT

dt

dE

dnN

vnTCI

T

TE

tot

04)(

2

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust Neutrinos

Neutrinos

Ga

mm

a r

ay

inte

nsity

• MN ~ 100-200 GeV excluded by EGRET

Heavy neutrinos

Gamma ray signal

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust Neutrinos

Neutrinos

Ga

mm

a r

ay

inte

nsity

Heavy neutrinos

Finding new particles• Weak signal

• Significant background

• Multiple variables

(like energies, momenta, angles etc)

Monte Carlo cuts

• Change variable cuts randomly

• If better signal over background

keep

• Iterate

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust

Neutrinos

Neutrinos

Summary and outlook

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust Neutrinos

Neutrinos

Summary and outlook

Summary

He

Atom

np p

n

Nucleus

du

u

Proton Quark

ββ δ

N N

Supernova

Starlight

CMB light

Dust emission

Planck detector1st stars Dust

• Dust

• Preons

• Heavy neutrinos

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust Neutrinos

Neutrinos

Summary and outlook

Outlook

Heavy neutrinos

• Contribution to reionization

• Spatial correlations

• Collaboration with Lyon

• Dust in the first galaxies

Preons

• Neutrino oscillations

• Top decays

Dust

βtβ α

β δ

β

SM

Extensions

Conclusions

My research

Theory

Preons

LEPe+

β δβ

β δ

β

e-

Dust Neutrinos

Neutrinos

top related