geo479/579: geostatistics ch12. ordinary kriging (1)

Post on 20-Jan-2016

260 Views

Category:

Documents

12 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Geo479/579: Geostatistics

Ch12. Ordinary Kriging (1)

Ordinary Kriging

Objective of the Ordinary Kriging (OK) Best: minimize the variance of the errors Linear: weighted linear combinations of the data Unbiased: mean error equals to zero Estimation

Ordinary Kriging Since the actual error values are unknown, the

random function model are used instead A model tells us the possible values of a random

variable, and the frequency of these values The model enables us to express the error, its

mean, and its variance If normal, we only need two parameters to define

the model, and

˜ m R

˜ 2R

Unbiased Estimates

In ordinary kriging, we use a probability model in which the bias and the error variance can be calculated

We then choose weights for the nearby samples that ensure that the average error for our model is exactly 0, and the modeled error variance is minimized

˜ m R

˜ 2R

n

jj vwv

1

ˆ

The Random Function and Unbiasedness A weighted linear combination of the nearby

samples

Error of ith estimate =

Average error = 0

This is not useful because we do not know the actual

iii vvr ˆ

k

i

k

iiii vv

kr

kmr

1 1

ˆ11

v i

n

jj vwv

1

ˆ

The Random Function and Unbiasedness …

Solution to error problem involves conceptualizing the unknown value as the outcome of a random process and solving for a conceptual model

For every unknown value, a stationary random function model is used that consists of several random variables

One random variable for the value at each sample locations, and one for the unknown value at the point of interest

n

jj vwv

1

ˆ

The Random Function and Unbiasedness …

Each random variable has the expected value of Each pair of random variables has a joint

distribution that depends only on the separation between them, not their locations

The covariance between pairs of random variables separated by a distance h, is

˜ C v (h)

E{V}

The Random Function and Unbiasedness …

Our estimate is also a random variable since it is a weighted linear combination of the random variables at sample locations

The estimation error is also a random variable

The error at is an outcome of the random variable

0 01

( ) ( ) ( )n

i ii

R x w V x V x

R(x0) ˆ V (x0) V (x0)

x0

R(x0)

n

iii xVwxV

10 )()(ˆ

The Random Function and Unbiasedness …

For an unbiased estimation

E{R(x0)} E{ wi

i1

n

V (x i) V (x0)}

wi

i1

n

E{V (x i)} E{V (x0)}

wi

i1

n

E{V} E{V}

If stationary

E{R(x0)} 0

E{V} wi

i1

n

E{V}

The Random Function and Unbiasedness …

We set error at as 0:

x0

E{R(x0)} E{V} wi

i1

n

E{V}

E{V} wi

i1

n

E{V}

wi

i1

n

1

E{R(x0)} E{V} wi

i1

n

E{V} 0

The Random Function Model and Error Variance

The error variance

We will not go very far because we do not know

R2

1

k(ri mR )2

i1

k

1

k[( ˆ v i v i

i1

k

) 1

k i1

k

( ˆ v i v i)]2

v i

Unbiased Estimates …

The random function model (Ch9) allows us to express the variance of a weighted linear combination of random variables

We then develop ordinary kriging by minimizing the error variance

Refer to the “Example of the Use of a Probabilistic Model” in Chapter 9

˜ 2R

The Random Function Model and Error Variance …

We will turn to random function models

0 01

( ) ( ) ( )n

i ii

R x w V x V x

R(x0) ˆ V (x0) V (x0)

n

iii xVwxV

10 )()(ˆ

The Random Function Model and Error Variance …

Ch9 gives a formula for the variance of a weighted linear combination (Eq 9.14, p216):

}{}{

111

ji

n

j

ji

n

i

i

n

i

i VVCovwwVwVar

(12.6)

The Random Function Model and Error Variance …

We now express the variance of the error as the variance of a weighted linear combination of other random variables

Var{R(x0)} E[{ ˆ V (x0) V (x0)}2]

Var{ ˆ V (x0)} 2Cov{ ˆ V (x0),V (x0)}Var{V (x0)}

Var{ ˆ V (x0)} Var{ wi

i1

n

Vi} wiw j

j1

n

i1

n

˜ C ij , Var{V (x0)} ˜ 2

Stationarity condition

The Random Function Model and Error Variance …

~

},{

)()()(

)()()(

) ,()}(),(ˆ{

01

01

01

01

01

01

01

00

i

n

iii

n

ii

i

n

iii

n

ii

i

n

iii

n

ii

i

n

ii

CwVVCovw

VEVEwVVEw

VEVwEVVwE

VVwCovxVxVCov

The Random Function Model and Error Variance

If we have , , and , we can estimate the To solve

Var{R(x0)} ˜ R2 ˜ 2 wiw j

j1

n

i1

n

˜ C ij 2 wi

i1

n

˜ C i0 (12.8)

˜ 2

˜ C ij

˜ C i0

wi

( ˜ R2 )

w1

0,

( ˜ R2 )

w2

0,

( ˜ R2 )

w3

0,...,

( ˜ R2 )

wn

0,

wi

( ˜ R2 )

w1

0,

if ˜ R2 w1

2 3w1, ( ˜ R

2 )

w1

(w12 3w1)

w1

2w1 3

( ˜ R2 )

w1

0, 2w1 3 0, w1 =1.5

The Random Function Model and Error Variance

Minimizing the variance of error requires to set n partial first derivatives to 0. This produces a system of n simultaneous linear equations with n unknowns

In our case, we have n unknowns for the n sample locations, but n+1 equations. The one extra equation is the unbiasedness condition

w1w2,...,wn

wi

i1

n

1

The Lagrange Parameter

To avoid this awkward problem, we introduce another unknown into the equation, , the Lagrange parameter, without affecting the equality

˜ 2R = ˜ 2 wiw j

j1

n

i1

n

˜ C ij 2 wi

i1

n

˜ C i0 2( wi

i1

n

1)

(12.9)

Minimization of the Error Variance The set of weights that minimize the error variance

under the unbiasedness condition satisfies the following n+1 equations - ordinary kriging system:

R2

wi

0 w j˜ C ij ˜ C i0

j1

n

i 1,,n

R2

0 wi

i1

n

1

(12.11)

(12.12)

Minimization of the Error Variance The ordinary kriging system expressed in matrix

˜ C 11 ˜ C 1n 1

˜ C n1 ˜ C nn 1

1 1 0

w1

wn

˜ C 10

˜ C n 0

1

C w D

w C-1 D (12.14)

(12.13)

Ordinary Kriging Variance Calculate the minimized error variance by using

the resulting to plug into equation (12.8)

˜ R2 ˜ 2 wi

j1

n

w j˜ C ij

i1

n

2 wi˜ C i0

i1

n

˜ 2 ( wi˜ C i0

i1

n

) ˜ 2 w'D

iw

Ordinary Kriging Using or

ij ˜ 2 ˜ C ij , ˜ ij ˜ C ij / ˜ 2

w j

j1

n

˜ ij ˜ i0 i 1,,n wiw j ˜ ij wi ˜ i0i1

n

j1

n

i1

n

˜ R2 ˜ 2 wiw j (

j1

n

i1

n

˜ 2 ˜ ij ) 2 wi( ˜ 2 ˜ i0)i1

n

wi

i1

n

˜ i0

Refer to Ch9

(12.20)

Ordinary Kriging Using or …

w j

j1

n

˜ ij ˜ i0 i 1,,n wiw j ˜ ij wi ˜ i0i1

n

j1

n

i1

n

˜ R2 ˜ 2 ˜ 2 wiw j

j1

n

i1

n

˜ ij 2 ˜ 2 wi ˜ i0i1

n

˜ 2{1 ( wi ˜ i0i1

n

)} (12.22)

An Example of Ordinary Kriging

We can compute and based on data in order to solve

w j˜ C ij ˜ C i0

j1

n

i 1,,n

wi

i1

n

1

(12.11)

(12.12)

˜ C i0

˜ C ij

w j

˜ C (h) {C0 C1

C1 exp( 3 | h |

a)

if | h |0

if | h | 0

˜ (h) {0

C0 C1(1 exp( 3 | h |

a))

if | h |0

if | h | 0

nugget effect, range, sill

C0

a

C0 C1

˜ C (h) 10e 0.3|h |

C0 0,

a 10,

C1 10

DC 1

Estimation

˜ v 0 wiv i

i1

n

(0.173)(477) (0.318)(696)

(0.129)(227) (0.086)(646)

(0.151)(606) 0.057)(791)

(0.086)(783) 592.7ppm

Error Variance

2

10

22

96.8

907.0)18.0)(086.0(

)68.0)(057.0()34.1)(151.0(

)58.0)(086.0()89.0)(129.0(

)39.3)(318.0()61.2)(173.0(10

)(~~

ppm

Cwn

iiiR

(12.15)

top related