large igneous provinces lip die großen magmatischen provinzen der erde

Post on 06-Apr-2016

220 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Large Igneous Provinces LIP

Die großen magmatischen Provinzen der Erde

Columbia River Basalt 16 Ma (Early Miocene)

LIP´s of the World

Continental Flood Basalts

Trap

Deccan traps65 Ma (Late Cretaceous)

Siberian traps 250 Ma (Late Permian)

Emeishan traps 258 Ma (Late Permian)

Viluy traps360 Ma (Late Devonian)

Parana and Etendeka traps, 132 Ma (Early Cretaceous)

Karoo and Ferrar traps, 184 Ma (Mid Jurassic)

Madagascar traps, ~ 90 Ma (Mid Cretaceous)

Ethiopian and Yemen traps, 30 Ma (Oligocene)

North Atlantic Tertiary Volcanic Province, 55 & 60 Ma (Paleocene)

Large Igneous Provinces LIP

Ontong–Java plateau 117, 98, 93 Ma (Mid-Late Cretaceous

Ozeanische Plateaus

Large Igneous Provinces LIP

Crough 1983

Spuren von heißen Flecken

Hot Spot Track – der Hawaii – Emperor - Seamount Kette

Hawaii Inselkette

Empe

ror I

nsel

kette

81 Ma

heuteaktiv

Karte der magnetischen Anomalien

Hawaii

Spur ist unabhängig von der Bewegung der Lithosphärenplatten – kreuzt die magnetischen Anomalien der ozeanischen Kruste

Spur wird kontinuierlich jüngerin Richtung Hawaii

Fig. 1. Map showing the distribution of the Colombia River basalts (CRBs) and track of the Yellowstone hot spot.

According to Pierce and Morgan [14], activity of the CRBs started due to the arrival of gigantic plume head of the Yellowstone hot spot ca. 16 Ma ago. The plume hit the boundary between Oregon, Idaho and Nevada where rhyolite volcanism occurred due to crustal anatexsis. Much of thebasalt magmas, however, traveled to the north through 1000 km long NS rift system and drained at the boundary between Washington and Oregon States. Simplified after fig. 1 of Pierce and Morgan [14].

Columbia River Basalt 16 Ma (Early Miocene)

& Yellowstone Hot Spot

Scoring hotspots: the Plume and Plate paradigmsDon L. AndersonSeismological Laboratory, Caltech, Pasadena, California 91125,USAdla@gps. caltech. edu

Klassisches Modell:Mantelkonvektion betrifft den gesamten Mantel

Alternative: zwei unabhängige Konvektionssystemeim unteren und oberen Mantel

1350 km Tiefe

p-Wellen

s-Wellen

Tomographisches Modell des Erdmantels

van der Hilst et al. 1997

Miner PetrolDOI 10.1007/s00710-009-0068-z

Structure, mineralogy and dynamics of the lowermost mantleReidar G. Trønnes

C Faccenna & TW Becker Nature 465, 602-605 (2010) doi:10.1038/nature09064

Cartoon illustrating the architecture of the subduction zones andthe related pattern of mantle convection in the Mediterranean region.

Beispiel für Konvektionsmodell im Oberen Mantel

Holden & Vogt 1977

Noch eine Alternative

Holden & Vogt 1977

Ein streng mechanistischer Ansatz für Plattentektonik

top related