lecture 08: risc-v single-cycle implementaon - passlab · – slides for risc-v single-cycle...

Post on 06-Jul-2018

240 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Lecture08:RISC-VSingle-CycleImplementa9on

CSE564ComputerArchitectureSummer2017

DepartmentofComputerScienceandEngineeringYonghongYan

yan@oakland.eduwww.secs.oakland.edu/~yan

1

Acknowledgements

•  ThenotescoverAppendixCofthetextbook,butweuseRISC-VinsteadofMIPSISA–  SlidesforgeneralRISCISAimplementaLonareadaptedfrom

Lectureslidesfor“ComputerOrganizaLonandDesign,FiRhEdiLon:TheHardware/SoRwareInterface”textbookforgeneralRISCISAimplementaLon

–  SlidesforRISC-Vsingle-cycleimplementaLonareadaptedfromComputerScience152:ComputerArchitectureandEngineering,Spring2016byDr.GeorgeMichelogiannakisfromUCBerkeley

2

Introduc9on

•  CPUperformancefactors–  InstrucLoncount

•  DeterminedbyISAandcompiler–  CPIandCycleLme

•  DeterminedbyCPUhardware

•  Simplesubset,showsmostaspects–  Memoryreference:lw,sw–  ArithmeLc/logical:add,sub,and,or,slt–  Controltransfer:beq,j

CPU Time = InstructionsProgram

* CyclesInstruction

*TimeCycle

Processor

Control

Datapath

ComponentsofaComputer

4

PC

Registers

ArithmeLc&LogicUnit(ALU)

MemoryInput

Output

Bytes

Enable?Read/Write

Address

WriteData

ReadData

Processor-MemoryInterface I/O-MemoryInterfaces

Program

Data

TheCPU

•  Processor(CPU):theacLvepartofthecomputerthatdoesallthework(datamanipulaLonanddecision-making)

•  Datapath:porLonoftheprocessorthatcontainshardwarenecessarytoperformoperaLonsrequiredbytheprocessor(thebrawn)

•  Control:porLonoftheprocessor(alsoinhardware)thattellsthedatapathwhatneedstobedone(thebrain)

5

DatapathandControl

•  DatapathdesignedtosupportdatatransfersrequiredbyinstrucLons

•  Controllercausescorrecttransferstohappen

Controller opcode, funct

inst

ruct

ion

mem

ory

+4

rt rs rd

regi

ster

s ALU

Dat

a m

emor

y

imm

PC

6

Logic Design Basics

•  Information encoded in binary –  Low voltage = 0, High voltage = 1 –  One wire per bit –  Multi-bit data encoded on multi-wire buses

•  Combinational circuit –  Operate on data –  Output is a function of input

•  State (sequential) circuit –  Store information

Combinational Circuits

•  AND-gate –  Y = A & B

Chapter 4 — The Processor — 8

A B Y

I0 I1 Y

M u x

S

n  MulLplexern  Y=S?I1:I0

A

B Y +

A

B

Y ALU

F

n  Addern  Y=A+B

n  ArithmeLc/LogicUnitn  Y=F(A,B)

Sequential Circuits

•  Register: stores data in a circuit –  Uses a clock signal to determine when to update the

stored value –  Edge-triggered: update when Clk changes from 0 to 1

D

Clk

Q Clk

D

Q

Edge-TriggeredDFlipFlops

•  ValueofDissampledonposi9veclockedge.

•  Qoutputssampledvalueforrestofcycle.

D Q

CLK

D

Q

Sequential Circuits

•  Register with write control –  Only updates on clock edge when write control input is 1 –  Used when stored value is required later

D

Clk

Q Write

Write

D

Q

Clk

Clocking Methodology •  Combinational logic transforms data during clock

cycles –  Between clock edges –  Input from state elements, output to state element –  Longest delay determines clock period

Singlecycledatapaths

Processorusessynchronouslogicdesign(a“clock”). f! T!

1 MHz! 1 μs!10 MHz! 100 ns!

100 MHz! 10 ns!1 GHz! 1 ns!

AllstateelementsactlikeposiLveedge-triggeredflipflops.

D Q

clk

Reset ?

HardwareElementsofCPU

•  CombinaLonalcircuits–  Mux,Decoder,ALU,...

•  Synchronousstateelements–  Flipflop,Register,Registerfile,SRAM,DRAM

Edge-triggered:Dataissampledattherisingedge

Clk

D

Q

Enff

Q

D

ClkEn

OpSelect-Add,Sub,...-And,Or,Xor,Not,...-GT,LT,EQ,Zero,...

Result

Comp?

A

B

ALU

Sel

OA0A1An-1

Mux...

lg(n)

A

Decode

r ...

O0O1On-1

lg(n)

RegisterFiles

•  ReadsarecombinaLonal

15

ReadData1ReadSel1ReadSel2

WriteSel

Registerfile

2R+1W

ReadData2

WriteData

WEClock

rd1rs1

rs2

ws

wd

rd2

we

ff

Q0

D0

ClkEn

ff

Q1

D1

ff

Q2

D2

ff

Qn-1

Dn-1

...

...

...

register

RegisterFileImplementa9on

•  RISC-VintegerinstrucLonshaveatmost2registersourceoperands

16

reg31

rd clk

reg1

wdata

we

rs1rdata1 rdata2

reg0

32

5 32 32

rs255

ASimpleMemoryModel

17

MAGICRAM

ReadData

WriteData

Address

WriteEnableClock

Readsandwritesarealwayscompletedinonecycle• aReadcanbedoneanyLme(i.e.combinaLonal)• aWriteisperformedattherisingclockedgeifitisenabled

=>thewriteaddressanddata mustbestableattheclockedge

Laterinthecoursewewillpresentamorerealis:cmodelofmemory

FiveStagesofInstruc9onExecu9on

•  Stage1:InstrucLonFetch•  Stage2:InstrucLonDecode•  Stage3:ALU(ArithmeLc-LogicUnit)

•  Stage4:MemoryAccess

•  Stage5:RegisterWrite

18

StagesofExecu9ononDatapath

inst

ruct

ion

mem

ory

+4

rt rs rd

regi

ster

s

ALU

Dat

a m

emor

y

imm

1.InstrucLonFetch

2.Decode/Register

Read

3.Execute 4.Memory 5.RegisterWrite

PC

19

StagesofExecu9on(1/5)

•  ThereisawidevarietyofinstrucLons:sowhatgeneralstepsdotheyhaveincommon?

•  Stage1:InstrucLonFetch–  The32-bitinstrucLonwordmustfirstbefetchedfrom

memory•  thecache-memoryhierarchy

–  also,thisiswhereweIncrementPC•  PC=PC+4,topointtothenextinstrucLon:byteaddressingso+4

20

StagesofExecu9on(2/5)

•  Stage2:InstrucLonDecode:gatherdatafromthefields(decodeallnecessaryinstrucLondata)1.  readtheopcodetodetermineinstrucLontypeandfield

lengths2.  readindatafromallnecessaryregisters

•  foradd,readtworegisters•  foraddi,readoneregister•  forjal,noreadsnecessary

21

StagesofExecu9on(3/5)

•  Stage3:ALU(ArithmeLc-LogicUnit):therealworkofmostinstrucLonsisdonehere–  ALoperaLons:

•  arithmeLc(+,-,*,/),shiRing,logic(&,|),comparisons(slt)

–  loadsandstores•  lw$t0,40($t1)•  theaddressweareaccessinginmemory=thevaluein$t1PLUSthevalue40

•  AddiLonisdoneinthisstage–  CondiLonalbranch

•  Comparisonisdoneinthisstage(onesoluLon)

22

StagesofExecu9on(4/5)

•  Stage4:MemoryAccess:onlyloadandstoreinstrucLons–  theothersremainidleduringthisstageorskipitalltogether–  sincetheseinstrucLonshaveauniquestep,weneedthisextra

stagetoaccountforthem–  asaresultofthecachesystem,thisstageisexpectedtobe

fast

23

StagesofExecu9on(5/5)

•  Stage5:RegisterWrite–  mostinstrucLonswritetheresultofsomecomputaLonintoa

register–  examples:arithmeLc,logical,shiRs,loads,slt–  whataboutstores,branches,jumps?

•  don’twriteanythingintoaregisterattheend•  theseremainidleduringthisfiRhstageorskipitalltogether

24

StagesofExecu9ononDatapath

inst

ruct

ion

mem

ory

+4

rt rs rd

regi

ster

s

ALU

Dat

a m

emor

y

imm

1.InstrucLonFetch

2.Decode/Register

Read

3.Execute 4.Memory 5.RegisterWrite

PC

25

Instruction Execution

•  PC → instruction memory, fetch instruction •  Register numbers → register file, read registers •  Depending on instruction class

–  Use ALU to calculate •  Arithmetic result •  Memory address for load/store •  Branch condition and target address

–  Access data memory for load/store –  PC ← target address or PC + 4

CPU Components

Multiplexers

n  Can’tjustjoinwirestogethern  UsemulLplexers

Control Signals

Building a Datapath

•  Datapath–  Elementsthatprocessdataandaddresses

intheCPU•  Registers,ALUs,mux’s,memories,…

•  WewillbuildaRISCVdatapathincrementally–  Refiningtheoverviewdesign

Instruction Fetch

32-bitregister

Incrementby4fornextinstrucLon

R-Format Instructions

•  Read two register operands •  Perform arithmetic/logical operation •  Write register result

Load/Store Instructions

•  Read register operands •  Calculate address using 12-bit offset

–  Use ALU, but sign-extend offset •  Load: Read memory and update register •  Store: Write register value to memory

Branch Instructions

•  Read register operands •  Compare operands

–  Use ALU, subtract and check Zero output •  Calculate target address

–  Sign-extend displacement –  Shift left 2 places (word displacement) –  Add to PC + 4

•  Already calculated by instruction fetch

Branch Instructions

Justre-routeswires

Sign-bitwirereplicated

Composing the Elements

•  First-cut data path does an instruction in one clock cycle –  Each datapath element can only do one function at a time –  Hence, we need separate instruction and data memories

•  Use multiplexers where alternate data sources are used for different instructions

R-Type/Load/Store Datapath

Full Datapath

ALU Control

•  ALU used for –  Load/Store: F = add –  Branch: F = subtract –  R-type: F depends on funct field

ALU control Function 0000 AND 0001 OR 0010 add 0110 subtract 0111 set-on-less-than 1100 NOR

ALU Control

•  Assume 2-bit ALUOp derived from opcode –  Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010 beq 01 branch equal XXXXXX subtract 0110 R-type 10 add 100000 add 0010

subtract 100010 subtract 0110 AND 100100 AND 0000 OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

Datapath:Reg-RegALUInstruc9ons

41

RegWriteTiming?

0x4Add

clk

addrinst

Inst.Memory

PC

Inst<19:15>Inst<24:20>

Inst<11:7>

Inst<14:12>

OpCode

ALU

ALUControl

RegWriteEn

clk

rd1

GPRs

rs1rs2

wawd rd2

we

7 5 5 3 5 7 func7 rs2 rs1 func3 rd opcode rd ← (rs1) func (rs2) 31 25 24 20 19 15 14 12 11 7 6 0

Datapath:Reg-ImmALUInstruc9ons

42

ImmSelect

ImmSel

Inst<31:20>

OpCode

0x4Add

clk

addrinst

Inst.Memory

PCALU

RegWriteEn

clk

rd1

GPRs

rs1rs2

wawd rd2

weInst<19:15>

Inst<11:7>

Inst<14:12> ALUControl

12 5 3 5 7 immediate12 rs1 func3 rd opcode rd ← (rs1) op immediate 31 20 19 15 14 12 11 7 6 0

ConflictsinMergingDatapath

43

ImmSelect

ImmSelOpCode

0x4Add

clk

addrinst

Inst.Memory

PCALU

RegWrite

clk

rd1

GPRs

rs1rs2

wawd rd2

weInst<19:15>

Inst<11:7>

Inst<31:20>

Inst<14:12> ALUControl

Introduce muxes

Inst<24:20>

7 5 5 3 5 7 func7 rs2 rs1 func3 rd opcode rd ← (rs1) func (rs2) immediate12 rs1 func3 rd opcode rd ← (rs1) op immediate 31 20 19 15 14 12 11 7 6 0

DatapathforALUInstruc9ons

44

<14:12>

Op2SelReg/Imm

ImmSelect

ImmSelOpCode

0x4Add

clk

addrinst

Inst.Memory

PCALU

RegWriteEnclk

rd1

GPRs

rs1rs2

wawd rd2

we<19:15><24:20>

ALUControl

<11:7>

<6:0>

7 5 5 3 5 7 func7 rs2 rs1 func3 rd opcode rd ← (rs1) func (rs2) immediate12 rs1 func3 rd opcode rd ← (rs1) op immediate 31 20 19 15 14 12 11 7 6 0

Inst<31:20>

Load/StoreInstruc9ons

45

WBSelALU/Mem

rs1 is the base register rd is the destination of a Load, rs2 is the data source for a Store

Op2Sel

“base”

disp

ImmSelOpCode

ALUControl

ALU

0x4Add

clk

addrinst

Inst.Memory

PC

RegWriteEn

clk

rd1

GPRs

rs1rs2

wawd rd2

we

ImmSelect

clk

MemWrite

addr

wdata

rdataDataMemory

we

7 5 5 3 5 7 imm rs2 rs1 func3 imm opcode Store (rs1) + displacement immediate12 rs1 func3 rd opcode Load 31 20 19 15 14 12 11 7 6 0

RISC-VCondi9onalBranches

•  Comparetwointegerregistersforequality(BEQ/BNE)orsignedmagnitude(BLT/BGE)orunsignedmagnitude(BLTU/BGEU)

•  12-bitimmediateencodesbranchtargetaddressasasignedoffsetfromPC,inunitsof16-bits(i.e.,shiRleRby1thenaddtoPC).

46

7

6 0opcode

5

11 7imm

3

14 12func3

5

19 15rs1

5

24 20rs2

7

31 25imm

BEQ/BNEBLT/BGEBLTU/BGEU

Condi9onalBranches(BEQ/BNE/BLT/BGE/BLTU/BGEU)

47

0x4

Add

PCSel

clk

WBSelMemWrite

addr

wdata

rdataDataMemory

we

Op2SelImmSelOpCode

Bcomp?

clk

clk

addrinst

Inst.Memory

PC rd1

GPRs

rs1rs2

wawd rd2

we

ImmSelect

ALU

ALUControl

Add

br

pc+4

RegWrEn

BrLogic

FullRISCV1StageDatapath

48

+4

Instruction Mem

RegFile

IType SignExtend

DecoderData Mem

ir[24:20]

branch

pc+4

pc_s

el

ir[31:20]

rs1

ALU

ControlSignals

wb_s

el

RegFile

rf_we

n

val

mem

_rw

PC

mem

_val

addrwdata

rdata

Inst

JumpTargGen

BranchTargGen

ir[19:15]

ir[31:25],ir[11:7]

PC+4jalr

rs2

BranchCondGen

br_eq?br_lt?

co-p

roce

ssor

(CSR

) reg

ister

s

ir[11

:7]

jump

ir[31:12]

Execute Stage

br_ltu?PC

addr

ir[31:12]

JumpRegTargGen

Op2Sel

Op1SelAluFun

data

wa

wd

en

addr data

UType

Note: for simplicity, the CSR File (control and status registers) and associated datapath is not shown

RISC-V Sodor 1-Stage

exception

SType SignExtend

ir[31:20]

PC

rs2rs1

rs2

HardwiredControlispureCombina9onalLogic

49

combinaLonallogic

opcode

Equal?

ImmSel

Op2Sel

FuncSel

MemWrite

WBSel

WASel

RegWriteEn

PCSel

ALUControl&ImmediateExtension

50

Inst<6:0>(Opcode)

DecodeMap

Inst<14:12>(Func3)

ALUop

0?

+

FuncSel(Func,Op,+,0?)

ImmSel(IType12,SType12,UType20)

HardwiredControlTable

51

Opcode ImmSel Op2Sel FuncSel MemWr RFWen WBSel WASel PCSel

ALU ALUi LW SW BEQtrue

BEQfalse

J JAL

JALR

Op2Sel=Reg/Imm WBSel=ALU/Mem/PCWASel=rd/X1 PCSel=pc+4/br/rind/jabs

* * * no yes rindPC rdjabs* * * no yes PC X1

jabs* * * no no * *pc+4SBType12 * * no no * *

brSBType12 * * no no * *

pc+4SType12 Imm + yes no * *

pc+4* Reg Func no yes ALU rdIType12 Imm Op pc+4no yes ALU rd

pc+4IType12 Imm + no yes Mem rd

Single-CycleHardwiredControl

clockperiodissufficientlylongforallofthefollowingstepstobe“completed”:1.  InstrucLonfetch2.  Decodeandregisterfetch3.  ALUoperaLon4.  Datafetchifrequired5.  Registerwrite-backsetupLme

=>tC>tIFetch+tRFetch+tALU+tDMem+tRWB

Attherisingedgeofthefollowingclock,thePC,registerfileandmemoryareupdated

52

Implementa9oninReal

•  Load-StoreRISCISAsdesignedforefficientpipelinedimplementaLons–  InspiredbyearlierCraymachines(CDC6600/7600)

•  RISC-VISAimplementedusingChiselhardwareconstrucLonlanguage–  Chisel:h}ps://chisel.eecs.berkeley.edu/–  Ge~ngstarted:

•  h}ps://chisel.eecs.berkeley.edu/2.2.0/ge~ng-started.html–  Checkresourcepageforslidesandotherinfo

53

Chiselinoneslides

•  Module•  IO•  Wire•  Reg•  Mem

54

UCBRISC-VSodor

•  h}ps://github.com/ucb-bar/riscv-sodor–  Single-cycle:

•  h}ps://github.com/ucb-bar/riscv-sodor/tree/master/src/rv32_1stage

55

top related