lecture note #6a chapter 6. magnetic fields in matter...

Post on 31-Jul-2020

13 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Inha University 1

Chapter 6. Magnetic Fields in MatterLecture Note #6A

6.1 Magnetization

6.2 The Field of a Magnetized Object

6.3 The Auxiliary Field H

6.4 Linear and Nonlinear Media

• 자성의 근원: 전자의 궤도 운동에 의한 자기 모멘트와 전자 스핀

- 외부 자기장이 가해지면 회전력 발생 → 자기 모멘트 변화

• 자기장이 가해지면 원자 내 전자 궤도 운동에 의한 자기모멘트 변화 발생 +

-R

spin angular

momentumorbital angular

momentumzevRnRInIAm ˆ

2

1ˆ ˆ 2

Bm

RezR

m

eRBezRvem

ee

22

2

1 2

- 상자성 (paramagnet), 반자성 (diamagnet) , 강자성 (ferromagnet)

- 자화도 (magnetization) = 단위 부피당 자기 모멘트V

mM

Inha University 2

일반물리 복습 (pages 2 ~ 9)

▣원자의 자기모멘트

◈전자의 궤도운동에 의한 자기모멘트

◈전자의 스핀 모멘트

◈원자핵의 자기 모멘트

▣자성 물질 : 자기 감수율에 따라 다음과 같이 분류

◈상자성 (paramagnet)

◈강자성 (ferromagnet)

◈반자성 (diamagnet)

+

-R

spin angular

momentumorbital angular

momentum

Inha University 3

원자의 자기모멘트

▣원운동하는 전자의 궤도운동에 의한 자기 모멘트

◈원운동하는 입자의 각운동량 :

◈한바퀴 도는 주기 :

◈전류 :

◈자기 모멘트 :

◈각운동량으로 다시 표현하면 :

▣전자의 스핀 자기 모멘트 :

▣양자론에 의하면, 자기모멘트는 보어자자수 (Bohr magnetron)의 정수 배만 가

지며, 전자의 스핀 자기모멘트는 1 보어자자수이다.

v/2T r

vqrmL

r

qqi

2

v

T

2

v

2

v 2 rqr

r

qiAe

rv

q

qm

q

em

qL

2

e

sm

eS

Lm

e

2

bllZZ mmm

eL

m

e -

2-

2- gnetron Bohr Ma 1027.9

2

24-

TJ

m

eb

zBB ˆ

2

1zS

(보어자자수)lml ...., ,2 ,1 ,0

Inha University 4

자기화와 자기감수율

▣자기화 : 단위 부피당 자기 쌍극자 (magnetic dipole)

▣보통 금속인 경우

◈자기화는 외부의 자기장의 크기에 비례

◈ : 자기 감수율 (magnetic susceptibility)

▣자성물질의 분류

◈상자성 : 자기감수율이 양수

◈반자성 : 자기감수율이 음수

VM

m

o

m

BM

외부

Inha University 5

Magnetic Susceptibility of Some Elements & Minerals

http://www.jmu.edu/cisr/journal/13.1/rd/igel/Igel_Table1Web.jpg

m105 SI

m : magnetic

susceptibility

: density

Inha University 6

상자성 (paramagnetism)

◈알루미늄, 나트륨, 티타늄, 텅스텐 등

◈각 원자나 분자들은 독립적으로 자기모멘트를

갖고 있으나, 모두 제멋대로 배열되어 있기

때문에 평소에는 물질이 자성을 갖지 않는다

◈외부의 자기장을 받으면, 각

자기모멘트들은 같은 방향으로

배열을 하려하나, 열운동 때문에

완전히 나란하게 배열하지 못한다

◈온도가 매우 낮으면, 물질의 자기화는 외부의

자기장에 비례하며, 온도에 반비례한다

B외부

T

BCM 외부큐리법칙:

H

HB

Inha University 7

강자성 (Ferromagnetism)

◈철, 코발트, 니켈, 또는 디스프로슘, 가돌리니움

등의 희토류 금속이나 합금처럼 외부자기장이 없더라도

자기화 되어있는 물질

◈교환상호작용때문이며, 전기적 쿨롱 상호작용 중 양자역학

적인 효과이다

◈큐리(Curie) 온도 이상에서는 상자성 상태가 된다

◈자기 구역들로 이루어져 있으며, 정렬된 정도에

따라 총 자기모멘트가 달라진다

http://en.wikipedia.org/wiki/Curie_temperaturehttp://www.phys.aoyama.ac.jp/~w3-

jun/achievements/study/oo/fig4-3_eng.gif

Inha University 8

자기이력 현상

◈ a-b-c-d-e-f-g-b-c…

◈ a : 처음에 자기화가 되어 있지 않은 상태

◈ b : 포화상태

◈ c : 외부자기장이 없더라도 잔류 자기가 남아있는 상태

◈ d : 잔류 자기를 없애기 위한 반대방향의 외부 자기장

◈ e : 반대방향의 포화상태

◈ f : 상태 c와 동일

◈ g : 상태 d와 동일

iniBo

oM BBB

솔레노이드 내부의 자기장

여기에서

: 전류 세기에 따른 솔레노이드에생성되는 내부 자기장.

BM : 솔레노이드 내부에 있는 강자성체(철심)에 의한 자기장

자석 상태

Inha University 9

반자성 (Diamagnetism)

◈구리, 비스무스 등과 같이 자석을 갖다

대면 약하게 반발한다

◈시계 반대 방향으로 돌고 있는 왼쪽 입

자에 B외부이 그림과 같이 주어지면, 렌츠

법칙에 의해 B외부의 반대방향으로 자기

선속이 증가해야 하므로, 입자의 속도가

증가한다

◈마찬가지로 시계 방향으로 돌고 있는 오

른쪽 입자는 자기 선속이 감소해야 하므

로 입자의 속도가 감소 한다

두 입자의 총 자기모멘트는 렌츠법칙에 의해 B외부와 반대방향으로 생긴다.

외부자기장이 없는 경우

외부자기장이 있는 경우

Inha University 10

6.1 Magnetization (자화)

Paramagnet:

6.1.1 Diamagnets (반자성체), Paramagnets(상자성체), Ferromagnets(강자성체)

외부 자기장이 없는 평상 상태 (내부 원자의자기쌍극자가 각기 무질서한 방향으로 배열되어 있는 상태 자기적 특성이 없음)

H

HB

외부 자기장이 상자성체에 걸리면, 원자의 자기쌍극자가 외부 자기장에 따라 나란히 배열됨.

Diamagnet:H

외부 자기장이 반자성체에 걸리면, 원자의 자기쌍극자에 의한 자기장이 외부 자기장과 서로 밀어내는 방향으로 배열됨.

(상자성체)

(반자성체)

Ferromagnet:

(강자성체)외부 자기장이 없는 평상 상태에서도 내부 원자의 자기쌍극자가 모두 한 방향으로 나란하게 배열되어 있는 상태 자기적 특성을 보임)

Inha University 11

I I

I

I

Fb3

Fb1

Fa4

Fa2

6.1 Magnetization (자화)

For a current flowing rectangular loop placed at an

angle with respect a magnetic field B in the z-direction,

6.1.2 Torques and Forces on Magnetic Dipoles

0ˆ cosˆ cos42 xIaBxIaBFF aa

- Net forces acting on the sloping sides of the loop :

Current flowing

infinitesimal rectangles

Magnetic field

in z-direction

When the current flowing

infinitesimal rectangle is

tilted at an angle from

the z axis,- A Torque acting on the loop :

0ˆ ˆ 31 yIbByIbBFF bb

- Net forces acting on the horizontal sides of the loop :

BmxBIabxIbBa

xIbBa

xIbBa

yFza

yFza

Fr bb

ˆ sinˆ sin

ˆ sin2

ˆ sin2

ˆˆ sin2

ˆˆ sin2

13

where nIAnIabm ˆ ˆ

: the magnetic dipole moment of the current loop

( : a unit vector along the normal direction of the surface area A = ab)n

Bm

: Torque acting on the magnetic dipole moment

in a uniform magnetic field

(6.1)

Inha University 12

6.1 Magnetization (자화)

For an electric dipole in an electric field

6.1.2 Torques and Forces on Magnetic Dipoles

From Chapter 4

No net torque

nIAnIabm ˆ ˆ

This torque

accounts for

“paramagnetism”.

Bm

- continued (1)

The torque acting on an electric dipole moment

in a uniform field E :

Ep

The magnetic dipole moment

The electric dipole moment

dqp

For a magnetic dipole in a magnetic field

The torque acting on a magnetic dipole moment

in a uniform field B :

+

-

-

ⓔn

nⓔ

n The paramagnetic materials

require odd number of electrons

For an infinitesimal loop, with magnetic dipole m, in a magnetic

field B, the net force on the loop is BmF

For a electric dipole p, in an electric field E, the net

force on the dipole is EpF

See next

page

: an analogy to that in the magnetic

case (See next page)

Inha University 13

R

m

6.1 Magnetization (자화)

6.1.2 Torques and Forces on Magnetic Dipoles - continued (2)

- the net force on a current loop is

0 BldIBldIF

For a magnetic dipole in a uniform magnetic field

- the net force on a circular current loop is

BldIF

For a magnetic dipole in a nonuniform magnetic field

F

Fhor

Fdown

F

Fhor

Fdown

- the net downward force on the circular current loop is

R

Bm

R

Bm

R

BIR

BRIF

cos cos

cos 2

2

nIRnIAm ˆ ˆ 2

For an infinitesimal loop, with magnetic dipole m, in a

magnetic field B, the net force on the loop is

BmF

(6.2)

(6.3)

Inha University 14

6.1 Magnetization (자화)

6.1.2 Torques and Forces on Magnetic Dipoles - continued (3)

Electric dipole

+

p

-

N

m

S

Magnetic dipole

m

I

Magnetic dipole

(Gilbert model)

If we break them,

+

-

N

S

Is this correct?

Inha University 15

6.1 Magnetization (자화)

Consider a circular motion of the electron around the nucleus

(without considering the electron spin yet)

6.1.3 Effect of a Magnetic Field on Atomic Orbits

v

RT

2- Period of the circular motion :

- The orbital dipole moment :

R

ev

T

eI

2

- The current caused by the electron motion :

zevRnRInIAm ˆ 2

1ˆ ˆ 2

For a magnetic field B perpendicular to the plane of the orbit,

Bm

(Tilting the entire orbit with this torque is hard, but change of the electron’s speed is relatively easy.)

+

-R

- The torque acting the orbital dipole moment in a magnetic field B :

- The electrical attraction force between the electron and proton = the centripetal force :

R

vm

R

ee

2

2

2

04

1

R

vmBve

R

ee

2

2

2

04

1

(6.4)

(6.5)

(6.6)

Under the situation of the magnetic field B applied, vv

spin angular

momentumorbital angular

momentum

Inha University 16

6.1 Magnetization (자화)

Consider a circular motion of the electron around the nucleus

(without considering the electron spin yet)

6.1.3 Effect of a Magnetic Field on Atomic Orbits

Eq. (6.5) Eq. (6.6) :

When

The electron speeds up when B is turned on.

+

-R

- The magnetic dipole moment change becomes

vvvvR

mvv

R

mBve ee 22

(6.7)

(6.8)

The change in m is opposite to the direction of the field B.

- continued (1)

,smallvvv vvR

mBve e 2

em

eRBv

2

zevRm ˆ

2

1

Bm

RezR

m

eRBezRvem

ee

22

2

1 2

The increment of m is antiparallel to the field B.

The mechanism is responsible for diamagetism.

This is observed mainly in atoms with even numbers of electrons.

Inha University 17

6.1 Magnetization (자화)

6.1.4 Magnetization

(6.9)

: magnetization (자화)

Paramagnetism: The dipole associated with the spins of unpaired electrons

experience a torque tending to line them up parallel to the field.

H

HB

Diamagnetism:

(analogues to the polarization P in electrostatics)

(상자성)

(반자성)H

The orbital speed of the electrons is altered in such a way as to

change the orbital dipole moment in a direction opposite to the field.

+

-

R

spin angular

momentum

orbital angular

momentum

M magnetic dipole moment per unit volume

State of magnetic polarization:

Inha University 18

Chapter 6. Magnetic Fields in Matter

6.1 Magnetization

6.2 The Field of a Magnetized Object

6.3 The Auxiliary Field H

6.4 Linear and Nonlinear Media

• 각 원자들의 전자 궤도 운동에 의한 전류 : Bound currents

- Volume current :

- Surface current :

MJb

nMKbˆ

- 이들 전류에 의한 벡터 포텐셜 :

''

4'v

'

4

00 das

rKd

s

rJrA bb

• 균일하게 자화된 구에 의한 자기장RM

MB

03

2

MRm 3

3

4 mrrm

rrBdip

ˆ ˆ3

1

4 3

0

(구 내부)

(구 외부)

Inha University 19

6.2 The Field of a Magnetized Object

For a single magnetic dipole m :

6.2.1 Bound Currents

the vector potential at point p is 2

4 r

rmrAdip

m

I

r

p

(6.10)

For a piece of magnetized material :

the vector potential at point p is

(with the magnetic dipole moments per unit volume M )

'vˆ'

4 2

0 ds

srMrA

s

p

'vd 'rM

(6.11)

Since

Appendix 1

, ˆ1

'2s

s

s

''1

4'v ''

1

4

'v '

''v ''1

4

'v 1

''4

00

0

0

adrMs

drMs

ds

rMdrM

s

ds

rMrA

Vector product rule

From Chapter 1,

fAAfAf

AfAffA

Appendix 2

SadrM

sd

s

rM''

1'v

''

v

From Appendix 2,

(6.12)MJb

nMKb

ˆ

Vector potential of a volume current Vector potential of a surface current ndaad ˆ

from Chapter 5 (5.85)

Inha University 20

6.2 The Field of a Magnetized Object

6.2.1 Bound Currents

For a piece of magnetized material :

the volume current :

s

p

'vd 'rM

(6.13)

''

4'v

'

4

00 das

rKd

s

rJrA bb

For the electric field of polarized object

MJb

nMKbˆ

- continued

the surface current : (6.14)

where is the normal unit vector of the surface element. n

Thus, the vector potential can be written as

(6.15)

where nPbˆ

: surface charge density

Pb

: volume charge density

(4.11)

(4.12)

v'

0S

0

v'4

1

4

1d

rda'

rrV bb

(4.13)

: Bound

current

A

p

r

Inha University 21

6.2 The Field of a Magnetized Object

Let us choose the z axis along the direction of M.

For a rotating spherical shell of uniform surface charge ,

the corresponding surface current density becomes

(6.16)

[Example 6.1]

(Solution)

0 MJb

ˆ sinˆ MnMKb

ˆ sin RvK

n

n

z

v

sin v

RM

From the comparison of above two equations, we can get

From [Example 5.11], the magnetic field of the spinning spherical shell is

MRB 003

2

3

2

MB

03

2

Since the volume current density ,0 MJb

the field of a uniformly magnetized sphere is

identical to the field of a spinning spherical shell.

inside the sphere.

The magnetic field outside the spherical shell is the same as that of a pure dipole. MRm 3

3

4

Rv

Appendix 3

Appendix 4

Inha University 22

Comparison between Magnetization & Polarization

6.2 The Field of a Magnetized Object

6.2.1 Bound Currents

4.2 The Field of a Polarized Object

•For a uniformly polarized sphere•For a uniformly mangnetized sphere

n

0 MJb

ˆ sinˆ MnMKb

ˆ sin RvK

RM

MRB 003

2

3

2

MB

03

2

Inside the sphere.

Outside the sphere.

MRm 3

3

4

,3

4 3PRp

cosˆ PnPb

: the total dipole moment of the sphere.

0 Pb

: identical to that of a perfect dipole at the origin.

RrPzzP

dz

dVE

for

3

3 00

Since r cos = z , the field inside the sphere is uniform :

where

Rr for

The potential outside the sphere becomes

ˆ sinˆ cos2 4 2

0 rr

mArBdip

mrrmr

rBdip

ˆ ˆ3

1

4 3

0

ˆ3

sinˆ

3

cos23

0

3

3

0

3

r

PRr

r

PRE

Rrr

rpV

for

ˆ

4

12

0

Inha University 23

6.2 The Field of a Magnetized Object

6.2.2 Physical Interpretation of Bound Currents

All the internal

currents cancel out.

taMMm v

The magnetic dipole moment is

( : a unit vector directing outward)n

Thus, the surface current is

in terms of the magnetization M.

aIm in terms of the circulating current I.

M tI

Mt

IKb

nMKbˆ

There is no current on the top or bottom surface of the slab.

Inha University 24

6.2 The Field of a Magnetized Object

6.2.2 Physical Interpretation of Bound Currents

taMMm v

When the magnetization is nonuniform along z-direction,

aIm

The corresponding volume current density is

M tI

y

zx

xb

M

dzdy

IJ

nMKbˆ

In general,

dzdyy

M dzyMdyyMI z

zzx

When the magnetization is nonuniform along y-direction,

z

M

dzdy

IJ

yx

xb

dydzz

M dyzMdzzMI

y

yyx

Thus, the total current density is z

M

y

MJ

yz

xb

MJb

For a steady-current, the conservation law should be satisfied 0 MJb

- continued

Inha University 25

6.2 The Field of a Magnetized Object

6.2.2 The Magnetic Field Inside Matter

Microscopic magnetic field

(The averaged field over regions

containing many atoms)

The magnetization M is “smoothed out”.

Macroscopic magnetic field

(fields for a specific point or atom)

Inha University 26

Next Class

Chapter 6. Magnetic Fields in Matter

6.1 Magnetization

6.2 The Field of a Magnetized Object

6.3 The Auxiliary Field H

6.4 Linear and Nonlinear Media

Inha University 27

[Appendix 1] Problems 1.13 & Its Solution

[Problem 1.13] Let s be the separation vector from a fixed point (x’, y’, z’) to the point

(x, y, z), and let s be its length. Show that

(a)

(b)

(c) What is the general formula for ?

zzzyyyxxxs ˆ 'ˆ 'ˆ '

ss

22

(a)

szzzyyyxxx

zzzyyxxz

yzzyyxxy

xzzyyxxx

s

2ˆ '2ˆ '2ˆ '2

ˆ '''ˆ '''ˆ '''2222222222

2/ˆ/1 sss

ns 222

''' zzyyxxs

(b)

23

23-222

23-222

23-22223-222

21-222

21-22221-222

ˆ1ˆ 'ˆ 'ˆ ''''

ˆ '2'''2

1

ˆ '2'''2

1ˆ '2'''

2

1

ˆ '''

ˆ '''ˆ '''1

s

ss

szzzyyyxxxzzyyxx

zzzzzyyxx

yyyzzyyxxxxxzzyyxx

zzzyyxxz

yzzyyxxy

xzzyyxxxs

Inha University 28

[Appendix 1] Problems 1.13 & Its Solution

[Problem 1.13]

(c) What is the general formula for ?

zzzyyyxxxs ˆ 'ˆ 'ˆ '

(c) x

snss

x

nn

1

ns 222''' zzyyxxs

snsss

ns

zzzyyyxxxs

nszz

sy

y

sx

x

snss

nn

nnn

ˆ1

ˆ 'ˆ 'ˆ '1

ˆ ˆ ˆ

11

11

s

xxxxzzyyxxzzyyxx

xx

s ''2'''

2

1'''

21-22221222

Back

- continued

For the case of , ' ns ''

1

x

snss

x

nn

s

xxxxzzyyxxzzyyxx

xx

s ''2'''

2

1'''

''

21-22221222

snsss

nszzzyyyxxxs

nszz

sy

y

sx

x

snss nnnnn ˆ

1 ˆ 'ˆ 'ˆ '

1 ˆ

'' 1111

Inha University 29

[Appendix 2] Problem 1.61(b) & Its Solution

[Problem 1.61] Although the gradient, divergence, and curl theorems are the fundamental

integral theorems of vector calculus, it is possible to derive a number of corollaries

from them. Show that

(b)

The divergence theorem :

S

add

vv vv

c

v

(b) S

adcdc

vv vv

[Hint: Replace v by in the divergence theorem.]

S

add

vvvv

Vector product rule #4 BAABBA

( : a constant vector)c

0 c vvvv

cccc

adcadccadadc

vvvv

S

adcdc

vv vv

S

add

vv v v

BAC

ACBCBA

From Chapter 1,

Back

Inha University 30

s

5.4 Magnetic Vector Potential

[Example 5.11]

(Solution)

Eq. (5.66b)

''

4

0 das

rKrA

(5.66b)

where v

K

'cos222 RrrRs

'''sin' 2 ddRda

The velocity of a point r’ in a rotating rigid body is 'v r

zyxRω

RRR

zyx

r

ˆ'sin'sinsinˆ'cossin'cos'sincosˆ'sin'sincos-

'cos'sin'sin'cos'sin

cos0sin

ˆˆˆ

'v

[Appendix 3]

Inha University 31

s

5.4 Magnetic Vector Potential

[Example 5.11] (Solution)

Since

'.cosu

- Continued (1)

We let

. when 3

2

when 3

2

2

2

Rr r

R

R,r R

r

'''sin

'cos2

'

4'

'

4

2

22

00

ddR

RrrR

rda

s

rKrA

and

yRr ˆ'cossin'v

,

Inha University 32

s

5.4 Magnetic Vector Potential

[Example 5.11] (Solution)

Since

- Continued (2)

The field inside this spherical shell is

yrr ˆ sin

when 33

sin

3

2

2

sin

when 33

sin

3

2

2

sin

3

4

0

3

4

0

2

3

0

00

2

3

0

Rrrωr

R

r

rR

r

RR

RrrωRrR

R

rR

rA

For the original coordinates with in the z-direction,

x

y

(r,,)z

ˆ sinrr

when ˆ sin

3

when ˆ sin3

2

4

0

0

Rrr

θR

RrrR

rA

ˆ v

v1

ˆ vv

sin

11

ˆ v

vinsin

1v

θ

r

rrrr

rrr

rsr

zRrR

rR

rrr

rrR

sr

rArr

rAsr

AB

ˆ 3

2ˆ sinˆ cos3

2

ˆ sin3

1ˆ sin

3 in

sin

1

ˆ 1

ˆ insin

1

00

00

r

z

RB 03

2

: uniform

'4

0 dar

KA

Back

Inha University 33

5.4 Magnetic Vector Potential

[Example 5.11] (Solution)

The vector potential outside the spherical shell is

- Continued (3)

The field outside this spherical shell is

when ˆ sin

3 2

4

0 Rrr

θRrA

ˆsinˆ

cos

ˆsinˆ

sin

sin

ˆˆsin

2

3

3

1

3 in

1

1

in1

33

4

0

2

4

0

2

4

0

rr

r

θR

r

Rr

rrr

r

Rs

r

rArr

rAsr

AB

R

z

d

R dR sin

(5.70b) ˆsinˆcos 23

3

4

0 rθr

RB

Inha University 34

5.4 Magnetic Vector Potential

[Example 5.11] (Solution) - Continued (4)

R

z

d

R dR sinThe total charge on the shaded ring is dRRdq sin2

The time for one revolution is

2dt

The current in the ring is

dR

dRR

dt

dqI sin

2

sin2 2

The cross sectional area of the ring is 2sin Rda

The magnetic moment of the ring is

dRRdRdaIdm sinsin sin 3422

The total magnetic moment of the shell is

44

0

4

0

4

0

34

3

4

4

3

12

1

4

3

12

1cos

4

33cos

12

1

sin33sin4

1 sin

RRR

dRdRdmm

4

3

4Rm (5.70c)

Eq. (5.70c) → Eq. (5.70b) :

ˆsinrθcosr

mB 2

4

3

0

(5.70d)

sin33sinsin3

Back

top related