lesson 5: continuity

Post on 30-Nov-2014

1.879 Views

Category:

Education

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Continuous function have an important property that small changes in input do not produce large changes in output. The Intermediate Value Theorem shows that a continuous function takes all values between any two values. From this we know that your height and weight were once the same, and right now there are two points on opposite sides of the world with the same temperature!

TRANSCRIPT

. . . . . .

Section1.5Continuity

V63.0121.006/016, CalculusI

February2, 2010

Announcements

I OfficeHours: M,W 1:30–2:30, R 9–10(CIWW 726)I WrittenAssignment#2dueThursdayI FirstQuiz: FridayFebruary12inrecitation(§§1.1–1.4)

. . . . . .

Hatsumon

Herearesomediscussionquestionstostart.

TrueorFalseAtsomepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtsomepointinyourlifeyourheight(ininches)wasequaltoyourweight(inpounds).

TrueorFalseRightnowthereareapairofpointsonoppositesidesoftheworldmeasuringtheexactsametemperature.

. . . . . .

Hatsumon

Herearesomediscussionquestionstostart.

TrueorFalseAtsomepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtsomepointinyourlifeyourheight(ininches)wasequaltoyourweight(inpounds).

TrueorFalseRightnowthereareapairofpointsonoppositesidesoftheworldmeasuringtheexactsametemperature.

. . . . . .

Hatsumon

Herearesomediscussionquestionstostart.

TrueorFalseAtsomepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtsomepointinyourlifeyourheight(ininches)wasequaltoyourweight(inpounds).

TrueorFalseRightnowthereareapairofpointsonoppositesidesoftheworldmeasuringtheexactsametemperature.

. . . . . .

Outline

Continuity

TheIntermediateValueTheorem

BacktotheQuestions

. . . . . .

Recall: DirectSubstitutionProperty

Theorem(TheDirectSubstitutionProperty)If f isapolynomialorarationalfunctionand a isinthedomainoff, then

limx→a

f(x) = f(a)

Thispropertyissousefulit’sworthnaming.

. . . . . .

DefinitionofContinuity

Definition

I Let f beafunctiondefinednear a. Wesaythat f is continuousat aif

limx→a

f(x) = f(a).

I A function f iscontinuous ifitiscontinuousateverypointinitsdomain.

. .x

.y

.

.a

.f(a)

. . . . . .

DefinitionofContinuity

Definition

I Let f beafunctiondefinednear a. Wesaythat f is continuousat aif

limx→a

f(x) = f(a).

I A function f iscontinuous ifitiscontinuousateverypointinitsdomain.

. .x

.y

.

.a

.f(a)

. . . . . .

Scholium

DefinitionLet f beafunctiondefinednear a. Wesaythat f is continuousata if

limx→a

f(x) = f(a).

Therearethreeimportantpartstothisdefinition.I Thefunctionhastohavealimitat a,I thefunctionhastohaveavalueat a,I andthesevalueshavetoagree.

. . . . . .

FreeTheorems

Theorem

(a) Anypolynomialiscontinuouseverywhere; thatis, itiscontinuouson R = (−∞,∞).

(b) Anyrationalfunctioniscontinuouswhereveritisdefined;thatis, itiscontinuousonitsdomain.

. . . . . .

Showingafunctioniscontinuous

ExampleLet f(x) =

√4x+ 1. Showthat f iscontinuousat 2.

SolutionWewanttoshowthat lim

x→2f(x) = f(2). Wehave

limx→a

f(x) = limx→2

√4x+ 1 =

√limx→2

(4x+ 1) =√9 = 3 = f(2).

Eachstepcomesfromthelimitlaws.

QuestionAtwhichotherpointsis f continuous?

AnswerThefunction f iscontinuouson (−1/4,∞). Itis rightcontinuousat −1/4 since lim

x→−1/4+f(x) = f(−1/4).

. . . . . .

Showingafunctioniscontinuous

ExampleLet f(x) =

√4x+ 1. Showthat f iscontinuousat 2.

SolutionWewanttoshowthat lim

x→2f(x) = f(2). Wehave

limx→a

f(x) = limx→2

√4x+ 1 =

√limx→2

(4x+ 1) =√9 = 3 = f(2).

Eachstepcomesfromthelimitlaws.

QuestionAtwhichotherpointsis f continuous?

AnswerThefunction f iscontinuouson (−1/4,∞). Itis rightcontinuousat −1/4 since lim

x→−1/4+f(x) = f(−1/4).

. . . . . .

Showingafunctioniscontinuous

ExampleLet f(x) =

√4x+ 1. Showthat f iscontinuousat 2.

SolutionWewanttoshowthat lim

x→2f(x) = f(2). Wehave

limx→a

f(x) = limx→2

√4x+ 1 =

√limx→2

(4x+ 1) =√9 = 3 = f(2).

Eachstepcomesfromthelimitlaws.

QuestionAtwhichotherpointsis f continuous?

AnswerThefunction f iscontinuouson (−1/4,∞). Itis rightcontinuousat −1/4 since lim

x→−1/4+f(x) = f(−1/4).

. . . . . .

Atwhichotherpoints?

Forreference: f(x) =√4x+ 1

I If a > −1/4, then limx→a

(4x+ 1) = 4a+ 1 > 0, so

limx→a

f(x) = limx→a

√4x+ 1 =

√limx→a

(4x+ 1) =√4a+ 1 = f(a)

and f iscontinuousat a.

I If a = −1/4, then 4x+ 1 < 0 totheleftof a, whichmeans√4x+ 1 isundefined. Still,

limx→a+

f(x) = limx→a+

√4x+ 1 =

√limx→a+

(4x+ 1) =√0 = 0 = f(a)

so f iscontinuousontherightat a = −1/4.

. . . . . .

Atwhichotherpoints?

Forreference: f(x) =√4x+ 1

I If a > −1/4, then limx→a

(4x+ 1) = 4a+ 1 > 0, so

limx→a

f(x) = limx→a

√4x+ 1 =

√limx→a

(4x+ 1) =√4a+ 1 = f(a)

and f iscontinuousat a.I If a = −1/4, then 4x+ 1 < 0 totheleftof a, whichmeans√

4x+ 1 isundefined. Still,

limx→a+

f(x) = limx→a+

√4x+ 1 =

√limx→a+

(4x+ 1) =√0 = 0 = f(a)

so f iscontinuousontherightat a = −1/4.

. . . . . .

Showingafunctioniscontinuous

ExampleLet f(x) =

√4x+ 1. Showthat f iscontinuousat 2.

SolutionWewanttoshowthat lim

x→2f(x) = f(2). Wehave

limx→a

f(x) = limx→2

√4x+ 1 =

√limx→2

(4x+ 1) =√9 = 3 = f(2).

Eachstepcomesfromthelimitlaws.

QuestionAtwhichotherpointsis f continuous?

AnswerThefunction f iscontinuouson (−1/4,∞).

Itis rightcontinuousat −1/4 since lim

x→−1/4+f(x) = f(−1/4).

. . . . . .

Showingafunctioniscontinuous

ExampleLet f(x) =

√4x+ 1. Showthat f iscontinuousat 2.

SolutionWewanttoshowthat lim

x→2f(x) = f(2). Wehave

limx→a

f(x) = limx→2

√4x+ 1 =

√limx→2

(4x+ 1) =√9 = 3 = f(2).

Eachstepcomesfromthelimitlaws.

QuestionAtwhichotherpointsis f continuous?

AnswerThefunction f iscontinuouson (−1/4,∞). Itis rightcontinuousat −1/4 since lim

x→−1/4+f(x) = f(−1/4).

. . . . . .

TheLimitLawsgiveContinuityLaws

TheoremIf f(x) and g(x) arecontinuousat a and c isaconstant, thenthefollowingfunctionsarealsocontinuousat a:

I (f+ g)(x)I (f− g)(x)I (cf)(x)I (fg)(x)

Ifg(x) (if g(a) ̸= 0)

. . . . . .

Whyasumofcontinuousfunctionsiscontinuous

Wewanttoshowthat

limx→a

(f+ g)(x) = (f+ g)(a).

Wejustfollowournose:

limx→a

(f+ g)(x) = limx→a

[f(x) + g(x)] (defof f+ g)

= limx→a

f(x) + limx→a

g(x) (iftheselimitsexist)

= f(a) + g(a) (theydo; f and g arects.)

= (f+ g)(a) (defof f+ g again)

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan .sec

.cot .csc

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan .sec

.cot .csc

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan

.sec

.cot .csc

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan .sec

.cot .csc

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan .sec

.cot

.csc

. . . . . .

Trigonometricfunctionsarecontinuous

I sin and cos arecontinuouson R.

I tan =sincos

and sec =1cos

arecontinuousontheirdomain, whichisR \

{ π

2+ kπ

∣∣∣ k ∈ Z}.

I cot =cossin

and csc =1sin

arecontinuousontheirdomain, whichisR \ { kπ | k ∈ Z }.

..sin

.cos

.tan .sec

.cot .csc

. . . . . .

ExponentialandLogarithmicfunctionsarecontinuous

Foranybase a > 1,

I thefunction x 7→ ax iscontinuouson R

I thefunction loga iscontinuousonitsdomain: (0,∞)

I Inparticular ex andln = loge arecontinuousontheirdomains

.

.ax

.loga x

. . . . . .

ExponentialandLogarithmicfunctionsarecontinuous

Foranybase a > 1,

I thefunction x 7→ ax iscontinuouson R

I thefunction loga iscontinuousonitsdomain: (0,∞)

I Inparticular ex andln = loge arecontinuousontheirdomains

.

.ax

.loga x

. . . . . .

ExponentialandLogarithmicfunctionsarecontinuous

Foranybase a > 1,

I thefunction x 7→ ax iscontinuouson R

I thefunction loga iscontinuousonitsdomain: (0,∞)

I Inparticular ex andln = loge arecontinuousontheirdomains

.

.ax

.loga x

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1

.

.

.cos−1.sec−1

.

..csc−1

.

.

.tan−1

.cot−1

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1.

.

.cos−1

.sec−1

.

..csc−1

.

.

.tan−1

.cot−1

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1.

.

.cos−1.sec−1

.

.

.csc−1

.

.

.tan−1

.cot−1

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1.

.

.cos−1.sec−1

.

..csc−1

.

.

.tan−1

.cot−1

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1.

.

.cos−1.sec−1

.

..csc−1

.

.

.tan−1

.cot−1

. . . . . .

InversetrigonometricfunctionsaremostlycontinuousI sin−1 and cos−1 arecontinuouson (−1,1), leftcontinuousat 1, andrightcontinuousat −1.

I sec−1 and csc−1 arecontinuouson (−∞,−1) ∪ (1,∞), leftcontinuousat −1, andrightcontinuousat 1.

I tan−1 and cot−1 arecontinuouson R.

.

.−π

.−π/2

.π/2

.

.

.sin−1.

.

.cos−1.sec−1

.

..csc−1

.

.

.tan−1

.cot−1

. . . . . .

Whatcouldgowrong?

Inwhatwayscouldafunction f failtobecontinuousatapoint a?Lookagainatthedefinition:

limx→a

f(x) = f(a)

. . . . . .

ContinuityFAIL

:Thelimitdoesnotexist

ExampleLet

f(x) =

{x2 if 0 ≤ x ≤ 1

2x if 1 < x ≤ 2

Atwhichpointsis f continuous?

SolutionAtanypoint a in [0, 2] besides 1, lim

x→af(x) = f(a) because f is

representedbyapolynomialnear a, andpolynomialshavethedirectsubstitutionproperty. However,

limx→1−

f(x) = limx→1−

x2 = 12 = 1

limx→1+

f(x) = limx→1+

2x = 2(1) = 2

So f hasnolimitat 1. Therefore f isnotcontinuousat 1.

. . . . . .

ContinuityFAIL:Thelimitdoesnotexist

ExampleLet

f(x) =

{x2 if 0 ≤ x ≤ 1

2x if 1 < x ≤ 2

Atwhichpointsis f continuous?

SolutionAtanypoint a in [0, 2] besides 1, lim

x→af(x) = f(a) because f is

representedbyapolynomialnear a, andpolynomialshavethedirectsubstitutionproperty. However,

limx→1−

f(x) = limx→1−

x2 = 12 = 1

limx→1+

f(x) = limx→1+

2x = 2(1) = 2

So f hasnolimitat 1. Therefore f isnotcontinuousat 1.

. . . . . .

GraphicalIllustrationofPitfall#1

. .x

.y

..−1

..1

..2

..−1

..1

..2

..3

..4

.

.

.

.

. . . . . .

ContinuityFAIL

:Thefunctionhasnovalue

ExampleLet

f(x) =x2 + 2x+ 1

x+ 1

Atwhichpointsis f continuous?

SolutionBecause f isrational, itiscontinuousonitswholedomain. Notethat −1 isnotinthedomainof f, so f isnotcontinuousthere.

. . . . . .

ContinuityFAIL:Thefunctionhasnovalue

ExampleLet

f(x) =x2 + 2x+ 1

x+ 1

Atwhichpointsis f continuous?

SolutionBecause f isrational, itiscontinuousonitswholedomain. Notethat −1 isnotinthedomainof f, so f isnotcontinuousthere.

. . . . . .

GraphicalIllustrationofPitfall#2

. .x

.y

...−1

. .1

f cannotbecontinuouswhereithasnovalue.

. . . . . .

ContinuityFAIL

:functionvalue ̸= limit

ExampleLet

f(x) =

{7 if x ̸= 1

π if x = 1

Atwhichpointsis f continuous?

Solutionf isnotcontinuousat 1 because f(1) = π but lim

x→1f(x) = 7.

. . . . . .

ContinuityFAIL:functionvalue ̸= limit

ExampleLet

f(x) =

{7 if x ̸= 1

π if x = 1

Atwhichpointsis f continuous?

Solutionf isnotcontinuousat 1 because f(1) = π but lim

x→1f(x) = 7.

. . . . . .

GraphicalIllustrationofPitfall#3

. .x

.y

..π

..7

..1

.

.

. . . . . .

Specialtypesofdiscontinuites

removablediscontinuity Thelimit limx→a

f(x) exists, but f isnot

definedat a oritsvalueat a isnotequaltothelimitat a.

Byre-defining f(a) = limx→a

f(x), f canbemade

continuousat a

jumpdiscontinuity Thelimits limx→a−

f(x) and limx→a+

f(x) exist, but

aredifferent.

Thefunctioncannotbemadecontinuousbychangingasinglevalue.

. . . . . .

Graphicalrepresentationsofdiscontinuities

. .x

.y

..π

..7

..1

.

.

..Presto! continuous!

removable

. .x

.y

..1

..1

..2

.

.

.

.

. .continuous?.

. .continuous?

. .continuous?

jump

. . . . . .

Graphicalrepresentationsofdiscontinuities

. .x

.y

..π

..7

..1

.

.

..Presto! continuous!

removable

. .x

.y

..1

..1

..2

.

.

.

.

. .continuous?.

. .continuous?

. .continuous?

jump

. . . . . .

Graphicalrepresentationsofdiscontinuities

. .x

.y

..π

..7

..1

.

.

..Presto! continuous!

removable

. .x

.y

..1

..1

..2

.

.

.

.

. .continuous?

.

. .continuous?

. .continuous?

jump

. . . . . .

Graphicalrepresentationsofdiscontinuities

. .x

.y

..π

..7

..1

.

.

..Presto! continuous!

removable

. .x

.y

..1

..1

..2

.

.

.

.

. .continuous?

.

. .continuous?

. .continuous?

jump

. . . . . .

Graphicalrepresentationsofdiscontinuities

. .x

.y

..π

..7

..1

.

.

..Presto! continuous!

removable

. .x

.y

..1

..1

..2

.

.

.

.

. .continuous?

.

. .continuous?

. .continuous?

jump

. . . . . .

Specialtypesofdiscontinuites

removablediscontinuity Thelimit limx→a

f(x) exists, but f isnot

definedat a oritsvalueat a isnotequaltothelimitat a. Byre-defining f(a) = lim

x→af(x), f canbemade

continuousat a

jumpdiscontinuity Thelimits limx→a−

f(x) and limx→a+

f(x) exist, but

aredifferent.

Thefunctioncannotbemadecontinuousbychangingasinglevalue.

. . . . . .

Specialtypesofdiscontinuites

removablediscontinuity Thelimit limx→a

f(x) exists, but f isnot

definedat a oritsvalueat a isnotequaltothelimitat a. Byre-defining f(a) = lim

x→af(x), f canbemade

continuousat a

jumpdiscontinuity Thelimits limx→a−

f(x) and limx→a+

f(x) exist, but

aredifferent. Thefunctioncannotbemadecontinuousbychangingasinglevalue.

. . . . . .

Thegreatestintegerfunction

[[x]] isthegreatestinteger ≤ x.

x [[x]]0 01 1

1.5 11.9 12.1 2

−0.5 −1−0.9 −1−1.1 −2

. .x

.y

..−2

..−2

..−1

..−1

..1

..1

..2

..2

..3

..3

. .

. .

. .

. .

. ..y = [[x]]

Thisfunctionhasajumpdiscontinuityateachinteger.

. . . . . .

Thegreatestintegerfunction

[[x]] isthegreatestinteger ≤ x.

x [[x]]0 01 1

1.5 11.9 12.1 2

−0.5 −1−0.9 −1−1.1 −2

. .x

.y

..−2

..−2

..−1

..−1

..1

..1

..2

..2

..3

..3

. .

. .

. .

. .

. ..y = [[x]]

Thisfunctionhasajumpdiscontinuityateachinteger.

. . . . . .

Outline

Continuity

TheIntermediateValueTheorem

BacktotheQuestions

. . . . . .

A BigTimeTheorem

Theorem(TheIntermediateValueTheorem)Supposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. . . . . .

IllustratingtheIVT

Supposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

..

.c1

.

.c2

.

.c3

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b]

andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

..

.c1

.

.c2

.

.c3

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b]

andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

..

.c1

.

.c2

.

.c3

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b).

Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

..

.c1

.

.c2

.

.c3

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

.

.

.c1

.

.c2

.

.c3

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

..

.c1

.

.c2

.

.c3

. . . . . .

IllustratingtheIVTSupposethat f iscontinuousontheclosedinterval [a,b] andlet Nbeanynumberbetween f(a) and f(b), where f(a) ̸= f(b). Thenthereexistsanumber c in (a,b) suchthat f(c) = N.

. .x

.f(x)

.

.

.a .b

.f(a)

.f(b)

.N

.c

.

.

.c1

.

.c2

.

.c3

. . . . . .

WhattheIVT doesnotsay

TheIntermediateValueTheoremisan“existence”theorem.I Itdoesnotsayhowmanysuch c exist.I Italsodoesnotsayhowtofind c.

Still, itcanbeusediniterationorinconjunctionwithothertheoremstoanswerthesequestions.

. . . . . .

UsingtheIVT

ExampleSupposeweareunawareofthesquarerootfunctionandthatit’scontinuous. Provethatthesquarerootoftwoexists.

Proof.Let f(x) = x2, acontinuousfunctionon [1, 2]. Note f(1) = 1 andf(2) = 4. Since 2 isbetween 1 and 4, thereexistsapoint c in(1, 2) suchthat

f(c) = c2 = 2.

Infact, wecan“narrowin”onthesquarerootof 2 by themethodofbisections.

. . . . . .

UsingtheIVT

ExampleSupposeweareunawareofthesquarerootfunctionandthatit’scontinuous. Provethatthesquarerootoftwoexists.

Proof.Let f(x) = x2, acontinuousfunctionon [1, 2].

Note f(1) = 1 andf(2) = 4. Since 2 isbetween 1 and 4, thereexistsapoint c in(1, 2) suchthat

f(c) = c2 = 2.

Infact, wecan“narrowin”onthesquarerootof 2 by themethodofbisections.

. . . . . .

UsingtheIVT

ExampleSupposeweareunawareofthesquarerootfunctionandthatit’scontinuous. Provethatthesquarerootoftwoexists.

Proof.Let f(x) = x2, acontinuousfunctionon [1, 2]. Note f(1) = 1 andf(2) = 4. Since 2 isbetween 1 and 4, thereexistsapoint c in(1, 2) suchthat

f(c) = c2 = 2.

Infact, wecan“narrowin”onthesquarerootof 2 by themethodofbisections.

. . . . . .

UsingtheIVT

ExampleSupposeweareunawareofthesquarerootfunctionandthatit’scontinuous. Provethatthesquarerootoftwoexists.

Proof.Let f(x) = x2, acontinuousfunctionon [1, 2]. Note f(1) = 1 andf(2) = 4. Since 2 isbetween 1 and 4, thereexistsapoint c in(1, 2) suchthat

f(c) = c2 = 2.

Infact, wecan“narrowin”onthesquarerootof 2 by themethodofbisections.

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

. . . . . .

Finding√2 bybisections

.

.x .f(x) = x2

..1 .1

..2 .4

..1.5 .2.25

..1.25 .1.5625

..1.375 .1.890625

..1.4375 .2.06640625

. . . . . .

UsingtheIVT

ExampleLet f(x) = x3 − x− 1. Showthatthereisazerofor f.

Solutionf(1) = −1 and f(2) = 5. Sothereisazerobetween 1 and 2.

(Morecarefulanalysisyields 1.32472.)

. . . . . .

UsingtheIVT

ExampleLet f(x) = x3 − x− 1. Showthatthereisazerofor f.

Solutionf(1) = −1 and f(2) = 5. Sothereisazerobetween 1 and 2.(Morecarefulanalysisyields 1.32472.)

. . . . . .

Outline

Continuity

TheIntermediateValueTheorem

BacktotheQuestions

. . . . . .

BacktotheQuestions

TrueorFalseAtonepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtonepointinyourlifeyourheightininchesequaledyourweightinpounds.

TrueorFalseRightnowtherearetwopointsonoppositesidesoftheEarthwithexactlythesametemperature.

. . . . . .

Question1: True!

I Let h(t) beheight, whichvariescontinuouslyovertime.I Then h(birth) < 3 ft and h(now) > 3 ft.I SobytheIVT thereisapoint c in (birth, now) where

h(c) = 3.

. . . . . .

BacktotheQuestions

TrueorFalseAtonepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtonepointinyourlifeyourheightininchesequaledyourweightinpounds.

TrueorFalseRightnowtherearetwopointsonoppositesidesoftheEarthwithexactlythesametemperature.

. . . . . .

Question2: True!

I Let h(t) beheightininchesand w(t) beweightinpounds,bothvaryingcontinuouslyovertime.

I Let f(t) = h(t)−w(t).I Formostofus(callyourmom), f(birth) > 0 and f(now) < 0.I SobytheIVT thereisapoint c in (birth, now) where

f(c) = 0.I Inotherwords,

h(c)−w(c) = 0 ⇐⇒ h(c) = w(c).

. . . . . .

BacktotheQuestions

TrueorFalseAtonepointinyourlifeyouwereexactlythreefeettall.

TrueorFalseAtonepointinyourlifeyourheightininchesequaledyourweightinpounds.

TrueorFalseRightnowtherearetwopointsonoppositesidesoftheEarthwithexactlythesametemperature.

. . . . . .

Question3

I Let T(θ) bethetemperatureatthepointontheequatoratlongitude θ.

I Howcanyouexpressthestatementthatthetemperatureonoppositesidesisthesame?

I Howcanyouensurethisistrue?

. . . . . .

Question3: True!

I Let f(θ) = T(θ)− T(θ + 180◦)I Then

f(0) = T(0)− T(180)

whilef(180) = T(180)− T(360) = −f(0)

I Sosomewherebetween 0 and 180 thereisapoint θ wheref(θ) = 0!

. . . . . .

Whathavewelearnedtoday?

I Definition: afunctioniscontinuousatapointifthelimitofthefunctionatthatpointagreeswiththevalueofthefunctionatthatpoint.

I Weoftenmakeafundamentalassumptionthatfunctionswemeetinnaturearecontinuous.

I TheIntermediateValueTheoremisabasicpropertyofrealnumbersthatweneedandusealot.

top related