linear shaft motor vs. other linear motors

Post on 26-Feb-2022

18 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Linear Shaft Motor vs. other linear motors

Ihr Partner in der Antriebstechnik

Linear Shaft Motor vs. anderen Linearmotoren

3

• Linear Induction Motor (LIM)

• Linear Pulse Motor (LPM)

• Linear DC Motor (DCLM) – Voice Coil Motor

• Linear Synchronous Motor (LSM)– Flat type, U type, and Cylindrical type

• With core

• Coreless

4

--- Linear Shaft Motor

5

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.5 1 1.5 2 2.5 3 3.5 4

VELOCITY (m/sec)

FO

RCE (N)

0%

10%

20%

30%

40%

50%

60%

70%

80%

F-V

定格推力

出力

効率

Output

Efficiency

F - V

S605Q Specification Curve

6

Simple

Non-contactHigh precision

Einfach

Hochpräzisions Kontaktfrei

7

US Patent 06,040,642

US Patent 2006162650A

Läufer Magneten Spulen Stator

8

u w v u w v u w v

u w v u w v u w v

S N N S S N N S S NN S

Fleming’s law of motion

Läufer SpulenMagnetischer

Fluss

AusflussKraft

Strom

9

Verteilung des Magnetfelds / Magnetic field distribution

Simulierte durch FEM Tatsächlich

• Konstruktionsregel für lineare Bewegungen / Linear motion design rule – Kraft = Leitungsstrom * magnetische Flussdichte / Force = Current *

Magnetic field

F = I x B– where

F = Kraft in Newton

- F = forces, measured in Newton's

I = Leitungsstrom in Ampere

- I = current in wire, measured in amperes

B = magnetische Flussdichte in Tesla

- B = magnetic field, measured in teslas

Temperaturerhöhung / Temperature increase = I2 (Leitungsstrom/Current ) x R

10

• Eisenloser Entwurf Coreless design

• Beruht auf dem Ironless-PrinzipNo iron in forcer or shaft

• Keine CoggingNo cogging

• Steifer EntwurfStiff design

– Die zylindrischen Spulen des Stators bilden den Kern. So wird große mech. Steifheit erreicht, wie in einem Motor mit Eisenkern.

– The coils themselves are the core, thus the stiffness of an iron core design

11

• Iron Core (Platen & Cylindrical)

12

Strömung

Kraft

• Coreless (U-förmigen)

13

• Linear Shaft Motor

14

Strömung

Kraft

Ein grosser Luftspalt (nominal 0,5 bis 2,5 mm) ist möglich und unkritisch.

Large Air Gap0.5mm to 2.5mm nominal annular air gap (1 to 5mm total)

Es treten keine Kraftschwankungen auf, bei Luftspalttoleranzen über dem Arbeitsweg.

Non-criticalNo variation in force as gap varies over stroke of device

15

16

(Coil)Ineffective use of flux

Cylindrical type

Effective use of flux

Magnets

Coil

Magnetic Flux

Magnets

Magnetic Flux

Coil

60

80

100

120

140

0 0,2 0,4 0,6 0,8

%

Air gap (mm)

Iron core Flat

Force @

Constant Current

17

• Because of the non-contact design, – No lubrication– No adjustment necessary.

• Eco-friendly – No noise– No dust.

• Energy efficient• Very simple setup• Simple alignment

18

19

Linearmotor Bauform

Linear Motor Type

U-förmig

U-Shaped

Eisenlos tubular

Coreless CylindricalLinear Shaft Motor

AusgangsleistungPower Output

Niedrig / Low Hoch / High

Steifheit

StiffnessNiedrig / Low Hoch / High

Anziehungskraft

absorption forceKeine / None Keine / None

Cogging Keine / None Keine / None

Vergleich / Comparison

• Technische Daten von Linearmotoren sind nicht immer vergleichbar.

• Linear motor specs are not always what they seem.

20

21

Motor: S435Q

Maximum velocity: 6.3m/sec

Acceleration: 13.5G

Payload: 20kg (44lbs)

Stroke: 800mm 2’7”

Encoder: Heidenhain

Resolution: 1µm

Driver: Servoland SVDM 40P

Guide: LM guide

22

低 速 送り   (8 μ m /

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50 100 150 200 250

Tim e (s)

Velocity(mm/s)

Velocity fluctuation is under 0.01%.

Motor: 2-S160T in parallel

Maximum velocity: 8 µm/sec

Payload: 25kg (55 lbs)

Encoder: Heidenhain

Resolution: 10 nm

Driver: Delta Tau P-Mac

Guide: Air bearing

23

Motor: S435Q

Maximum velocity: 5m/sec

Acceleration: 20G

Payload: 1.7kg (4 lbs)

Encoder: MitsutoyoResolution: 0.5 µm

Driver: Servoland SVDM 40P

Guide: LM guide

24

Stage: GTX 250

Motor: S200Q

Velocity: 100mm/sec

Acceleration: 1G

Payload: 25kg (55 lbs)

Velocity fluctuation is under 0.006%.

Encoder: Heidenhain

Resolution: 0.1µm

Driver: Servoland SVDM 5P

Guide: Air bearing

25

-5

0

5

10

15

20

25

30

35

40

45

50

55

0 5 10 15 20 25 30 35

A ACT POS

B ACT POS

COMAND POS

[SEC]

[nm]

Motor: 2- S320D in parallel

Payload: 25kg (55 lbs)

Guide: Air bearing

Encoder: Heidenhain

Resolution: 1 nm

Driver: Delta Tau P-Mac

26

Der Schleppfehler, ist sehr klein. Der max. Schleppfehler ist unter 100 nm.

Following error is very small. Maximum following error is under 100 nm.

Red line: command velocity

Blue line: actual velocity

Schleppfehler

Stage: GTX 250

Motor: 2-S160T in parallel

Maximum Velocity: 3mm/sec

Payload: 10kg (22 lbs)

Encoder: SONY BS78 TS13

Resolution: 0.14nm

Driver: P-Mac U-mac system

Guide: Air bearing

• The ability to use commercially available servo drivers.• Higher speeds are able to be achieved while retaining

high precision.– At the same time, extremely high precision low speed uniformity

and high repeatability are possible.

• Because of the non-contact design, no lubrication or adjustment necessary.

• Very simple setup and operation time. No need for extended burn in.

• Simple alignment and QC period. • Eco-friendly - no noise, no dust. • Energy efficient, - power requirements are lower then

that of ball screw systems.

27

(In comparison to types of linear motion)

• Größte Kraft / Maximum force 36.000 N(S1150T)

• Kleinster Motor / Smallest motor S040D 25x10x10 mm

• Längster Weg / Longest stroke 4,6 m

• Größte Geschwindigkeit / Fastest speed 6,3 m/sec

• Geringste Geschwindigkeit / Slowest speed8 µm/sec

• Größte Beschleunigung / Maximum acceleration20 G

• Geschwindigkeitsschwankungen / Velocity fluctuation< 0,05%

• Höchste Auflösung / Finest resolution 70 pm (0,00007 µm)

28

German office: Dutch office:

top related