linear shaft motor vs. other linear motors

29

Upload: others

Post on 26-Feb-2022

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Linear Shaft Motor vs. other linear motors
Page 2: Linear Shaft Motor vs. other linear motors

Linear Shaft Motor vs. other linear motors

Ihr Partner in der Antriebstechnik

Linear Shaft Motor vs. anderen Linearmotoren

Page 3: Linear Shaft Motor vs. other linear motors

3

Page 4: Linear Shaft Motor vs. other linear motors

• Linear Induction Motor (LIM)

• Linear Pulse Motor (LPM)

• Linear DC Motor (DCLM) – Voice Coil Motor

• Linear Synchronous Motor (LSM)– Flat type, U type, and Cylindrical type

• With core

• Coreless

4

--- Linear Shaft Motor

Page 5: Linear Shaft Motor vs. other linear motors

5

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.5 1 1.5 2 2.5 3 3.5 4

VELOCITY (m/sec)

FO

RCE (N)

0%

10%

20%

30%

40%

50%

60%

70%

80%

F-V

定格推力

出力

効率

Output

Efficiency

F - V

S605Q Specification Curve

Page 6: Linear Shaft Motor vs. other linear motors

6

Simple

Non-contactHigh precision

Einfach

Hochpräzisions Kontaktfrei

Page 7: Linear Shaft Motor vs. other linear motors

7

US Patent 06,040,642

US Patent 2006162650A

Läufer Magneten Spulen Stator

Page 8: Linear Shaft Motor vs. other linear motors

8

u w v u w v u w v

u w v u w v u w v

S N N S S N N S S NN S

Fleming’s law of motion

Läufer SpulenMagnetischer

Fluss

AusflussKraft

Strom

Page 9: Linear Shaft Motor vs. other linear motors

9

Verteilung des Magnetfelds / Magnetic field distribution

Simulierte durch FEM Tatsächlich

Page 10: Linear Shaft Motor vs. other linear motors

• Konstruktionsregel für lineare Bewegungen / Linear motion design rule – Kraft = Leitungsstrom * magnetische Flussdichte / Force = Current *

Magnetic field

F = I x B– where

F = Kraft in Newton

- F = forces, measured in Newton's

I = Leitungsstrom in Ampere

- I = current in wire, measured in amperes

B = magnetische Flussdichte in Tesla

- B = magnetic field, measured in teslas

Temperaturerhöhung / Temperature increase = I2 (Leitungsstrom/Current ) x R

10

Page 11: Linear Shaft Motor vs. other linear motors

• Eisenloser Entwurf Coreless design

• Beruht auf dem Ironless-PrinzipNo iron in forcer or shaft

• Keine CoggingNo cogging

• Steifer EntwurfStiff design

– Die zylindrischen Spulen des Stators bilden den Kern. So wird große mech. Steifheit erreicht, wie in einem Motor mit Eisenkern.

– The coils themselves are the core, thus the stiffness of an iron core design

11

Page 12: Linear Shaft Motor vs. other linear motors

• Iron Core (Platen & Cylindrical)

12

Strömung

Kraft

Page 13: Linear Shaft Motor vs. other linear motors

• Coreless (U-förmigen)

13

Page 14: Linear Shaft Motor vs. other linear motors

• Linear Shaft Motor

14

Strömung

Kraft

Page 15: Linear Shaft Motor vs. other linear motors

Ein grosser Luftspalt (nominal 0,5 bis 2,5 mm) ist möglich und unkritisch.

Large Air Gap0.5mm to 2.5mm nominal annular air gap (1 to 5mm total)

Es treten keine Kraftschwankungen auf, bei Luftspalttoleranzen über dem Arbeitsweg.

Non-criticalNo variation in force as gap varies over stroke of device

15

Page 16: Linear Shaft Motor vs. other linear motors

16

(Coil)Ineffective use of flux

Cylindrical type

Effective use of flux

Magnets

Coil

Magnetic Flux

Magnets

Magnetic Flux

Coil

Page 17: Linear Shaft Motor vs. other linear motors

60

80

100

120

140

0 0,2 0,4 0,6 0,8

%

Air gap (mm)

Iron core Flat

Force @

Constant Current

17

Page 18: Linear Shaft Motor vs. other linear motors

• Because of the non-contact design, – No lubrication– No adjustment necessary.

• Eco-friendly – No noise– No dust.

• Energy efficient• Very simple setup• Simple alignment

18

Page 19: Linear Shaft Motor vs. other linear motors

19

Linearmotor Bauform

Linear Motor Type

U-förmig

U-Shaped

Eisenlos tubular

Coreless CylindricalLinear Shaft Motor

AusgangsleistungPower Output

Niedrig / Low Hoch / High

Steifheit

StiffnessNiedrig / Low Hoch / High

Anziehungskraft

absorption forceKeine / None Keine / None

Cogging Keine / None Keine / None

Vergleich / Comparison

Page 20: Linear Shaft Motor vs. other linear motors

• Technische Daten von Linearmotoren sind nicht immer vergleichbar.

• Linear motor specs are not always what they seem.

20

Page 21: Linear Shaft Motor vs. other linear motors

21

Motor: S435Q

Maximum velocity: 6.3m/sec

Acceleration: 13.5G

Payload: 20kg (44lbs)

Stroke: 800mm 2’7”

Encoder: Heidenhain

Resolution: 1µm

Driver: Servoland SVDM 40P

Guide: LM guide

Page 22: Linear Shaft Motor vs. other linear motors

22

低 速 送り   (8 μ m /

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50 100 150 200 250

Tim e (s)

Velocity(mm/s)

Velocity fluctuation is under 0.01%.

Motor: 2-S160T in parallel

Maximum velocity: 8 µm/sec

Payload: 25kg (55 lbs)

Encoder: Heidenhain

Resolution: 10 nm

Driver: Delta Tau P-Mac

Guide: Air bearing

Page 23: Linear Shaft Motor vs. other linear motors

23

Motor: S435Q

Maximum velocity: 5m/sec

Acceleration: 20G

Payload: 1.7kg (4 lbs)

Encoder: MitsutoyoResolution: 0.5 µm

Driver: Servoland SVDM 40P

Guide: LM guide

Page 24: Linear Shaft Motor vs. other linear motors

24

Stage: GTX 250

Motor: S200Q

Velocity: 100mm/sec

Acceleration: 1G

Payload: 25kg (55 lbs)

Velocity fluctuation is under 0.006%.

Encoder: Heidenhain

Resolution: 0.1µm

Driver: Servoland SVDM 5P

Guide: Air bearing

Page 25: Linear Shaft Motor vs. other linear motors

25

-5

0

5

10

15

20

25

30

35

40

45

50

55

0 5 10 15 20 25 30 35

A ACT POS

B ACT POS

COMAND POS

[SEC]

[nm]

Motor: 2- S320D in parallel

Payload: 25kg (55 lbs)

Guide: Air bearing

Encoder: Heidenhain

Resolution: 1 nm

Driver: Delta Tau P-Mac

Page 26: Linear Shaft Motor vs. other linear motors

26

Der Schleppfehler, ist sehr klein. Der max. Schleppfehler ist unter 100 nm.

Following error is very small. Maximum following error is under 100 nm.

Red line: command velocity

Blue line: actual velocity

Schleppfehler

Stage: GTX 250

Motor: 2-S160T in parallel

Maximum Velocity: 3mm/sec

Payload: 10kg (22 lbs)

Encoder: SONY BS78 TS13

Resolution: 0.14nm

Driver: P-Mac U-mac system

Guide: Air bearing

Page 27: Linear Shaft Motor vs. other linear motors

• The ability to use commercially available servo drivers.• Higher speeds are able to be achieved while retaining

high precision.– At the same time, extremely high precision low speed uniformity

and high repeatability are possible.

• Because of the non-contact design, no lubrication or adjustment necessary.

• Very simple setup and operation time. No need for extended burn in.

• Simple alignment and QC period. • Eco-friendly - no noise, no dust. • Energy efficient, - power requirements are lower then

that of ball screw systems.

27

(In comparison to types of linear motion)

Page 28: Linear Shaft Motor vs. other linear motors

• Größte Kraft / Maximum force 36.000 N(S1150T)

• Kleinster Motor / Smallest motor S040D 25x10x10 mm

• Längster Weg / Longest stroke 4,6 m

• Größte Geschwindigkeit / Fastest speed 6,3 m/sec

• Geringste Geschwindigkeit / Slowest speed8 µm/sec

• Größte Beschleunigung / Maximum acceleration20 G

• Geschwindigkeitsschwankungen / Velocity fluctuation< 0,05%

• Höchste Auflösung / Finest resolution 70 pm (0,00007 µm)

28

Page 29: Linear Shaft Motor vs. other linear motors

German office: Dutch office: