microfluidics in life sciences applications (i) · lab on a chip concept: ... large surface/volume...

Post on 31-May-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Microfluidics in life sciencesApplications (I)Joel S. Rossier

1

2Rossier EPFL 2011

Table of content

Why: Motivation for miniaturisation How: Design and Fabrication Where: Example of academic systems What: Example of industrial applications

3Rossier EPFL 2011

What is micro? What is nano?

4Rossier EPFL 2011

1. Why: Motivation for minaturisation

1. Small is beautiful?2. Small is cheap?3. Small is fashionable?4. Small is flexible?5. Small is …?

1. Smart, rapid, modular, portable, etc2. Mimic the example of electronic evolution with

Moore’s law.

5Rossier EPFL 2011

Progress of a technology - Electronic chips

Jack Kilby (TI) Nobel PrizeRobert Noyce (Intel) $$$$!

Texas Instr IC

1948 1958 1968 1971 2000

Transistor INTEL

Pentium 4

INTEL 4004 MP

Slides provided byLarry KrickaChairman of AACC

6Rossier EPFL 2011

Moore’s Law

Miniaturisation = performance^2

Each 18-24 months the performance is doubling and the miniaturisation

Cost down Now : 40 nm chips

7Rossier EPFL 2011

Progress of a new technology –Microchips: microarrays (Affymetrix)

FDA approvalRoutine use

ProductsOther labs

1st publicationPatents filed

Number of publications

1995 2002~25 ~1000

1982 ~1990 ~2000 2004e.g., GLC (Terry)

Slides provided byLarry KrickaChairman of AACC

RocheFDA

8Rossier EPFL 2011

Progress of a new technology - Bioelectronic chips (outside of Glucose sensing)

FDAapproval /// just i-STAT ///Routine use

ProductsOther labs

1st publicationPatents filed

1988 1993 ~2000 2004i-STAT Nanogen AVIVAMolecular Devices

Slides provided byLarry KrickaChairman of AACC

DiagnoSwiss

9Rossier EPFL 2011

Lab on a chip concept:

Has existed as a concept for about 15 years

Takes time to take off (Academic effort) Is now oriented towards classical

applications Has the potential to be applied in many

fields

10Rossier EPFL 2011

Flux of molecules:

The flux Ji of species i is given by the Nernst Plank equation as follow:

Ji Di grad ci

ziFRT

Dici grad ci (II.1)

where Di is the diffusion coefficient, ci the concentration, zi the charge and gradci the

concentration gradient of the species i, respectively and where grad is the potential gradient

in the solution, and where F, R, T and are the Faraday constant, the gas constant, the

temperature and the hydrodynamic flow respectively.

Diffusion Migration Convection

11Rossier EPFL 2011

Fields of applications for microfluidics Standard technics

Capillary electrophoresis HPLC Dispensing Mass spec. Infusion Injection (mosquito skin) Biosensor ELISA Ion channel detection MicroSynthesis …

Method only possible thanks to miniaturisation Single cell readout/feeding Power flow cell Power bio cell Neuron connection

12Rossier EPFL 2011

Fundamentals of fluidic behaviour in microenvironment < 50 microns Large surface/volume ratio Surface treatment becomes fundamental Fluid viscosity is important ! Solid particlesCoagulation, suspension etc

Gas handling (attention material permeation)

13Rossier EPFL 2011

Fluid characteristics

In microchannels:Low Reynolds/Peclet numberReduced natural convectionElectrokinetics pumpingMixing only by diffusion

Mixing efficency depends on the molecules parameters (size, Stokes/Einstein friction module)

14Rossier EPFL 2011

Surface treatment of polymer

Example with PET

Contact angle measurement

http://psii.kist.re.kr/Teams/psii/research/Con_4.jpghttp://web.mit.edu/nnf/people/jbico/drop.jpg

15Rossier EPFL 2011

Super hydrophobic surface with or without 3-D surface Nature Materials 1, 14–15 (2002)

Behaviour of water drops on different surfaces. a, Water drop wetting a normal surface forms a low internal contact angle. b, Non-wetting, quasi-spherical drop forms a high internal contact angle on a superhydrophobic surface. c, Drop on a solid surface decorated with pillars. The entire surface is coated with a water-repellent agent, and the space between the pillars is filled with air. Yoshimitsu et al.2 observe that the drop can sit happily on top of these pillars — the so-called 'fakir regime' —corresponding to an apparent contact angle larger than 150°(superhydrophobic behaviour). If the pillar height is shortened, the water contact angle decreases, because air is no longer trapped below the drop.

16Rossier EPFL 2011

Surface based microfluidics

Electrowetting

For example Advanced Liquid

Logics

17Rossier EPFL 2011

Electrowetting

Surface tension modulation by application of an electric field

http://www.liquavista.com

18Rossier EPFL 2011

Electrowetting theory

http://en.wikipedia.org/wiki/Electrowetting

19Rossier EPFL 2011

Fabrication of electrowettingsupport hardware

Printed circuit boardused to pattern electrodes underdielectrics

20Rossier EPFL 2011

Electrowetting

Dielectric

Electrode

+++ - - -

Voltage

Hydrophobic coating

Electrostatic charges: hydrophilic

21Rossier EPFL 2011

Electrowetting

Dielectric

Electrode

+++- - -

Voltage

Hydrophobic coating

22Rossier EPFL 2011

Electrowetting

Dielectric

Electrode

- - - Hydrophobic coating

23Rossier EPFL 2011

Electrowetting

24Rossier EPFL 2011

Electrowetting: different designs are possible

25Rossier EPFL 2011

Beads or cells can be transported

26Rossier EPFL 2011

Advance Liquid Logics

ImmunoassayPCRDilution

http://www.liquid-logic.com/applications.html

27Rossier EPFL 2011

Surface Accoustic wave as a pumpingmeans

Pressure transfered to the liquid

www.advalytics.com

Tsunami effectRayleigh Wave

28Rossier EPFL 2011

Advalytics: surface accousticwave

29Rossier EPFL 2011

Nanodrop : optical cell of 1 microLOptical cell held by surface tension1 drop of solution (1 microL)Spectroscopy in a drop

30Rossier EPFL 2011

Nanodrop

31Rossier EPFL 2011

Pressure driven flow on a chip

Fluidics without Electical field Mechanical pressure in the chip Open channel or packed channel for

affinity or chromatography separation

31

32Rossier EPFL 2011

33Rossier EPFL 2011

Pressure control with Fluigentsystem

34Rossier EPFL 2011

Comparison of Syringe drivenflow and Fluigent system

35Rossier EPFL 2011

Flow control by Fluigent

Oil drop formation Block flow Injection

36Rossier EPFL 2011

Microfluidic separation

Capillary Electrophoresis Chip Electrophoresis MS sampling (nanoelectrospray) HPLC MS

37Rossier EPFL 2011

Capillary electrophoresis

Separation method occuring in a capillary

38Rossier EPFL 2011

Electro-induced convection

Electroosmotic flow Characteristics:

almost flat front in microchannels

In nanochannel: again a sort of parabolic profile!

39Rossier EPFL 2011

Migration+electroosmotic flow separation

+

-

+

-

+

- +

-

+

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

+ + + +

-

+

+

+ + + +

-

40Rossier EPFL 2011

Microfluidics vs Microvalving

Remote valving Electrokinetic injection Pressure control

In situ valving Local material deformation Material shifts

Microvalving is a challenge in microfluidics

41Rossier EPFL 2011

How to inject a small plug?

Injection pattern

42Rossier EPFL 2011

Microchip Structures for Submillisecond Electrophoresis

Figure 1 Schematic of microchip used for high-speed electrophoreticseparations. (Inset) Enlargement of the injection valve and separation channel.

Copyright © 2007 American Chemical Society

Anal. Chem., 70 (16), 3476 -3480, 1998

Figure 3 High-speed electropherogram of rhodamine B and di-chlorofluorescein resolved in 0.8 ms using a separation field strength of 53 kV cm-1 and a separation length of 200 m. The start time is marked with an arrow at 0 ms

43Rossier EPFL 2011

1D electrophoresis

Biopolymer Sizing Sieving through a

polymer matrix 1D-gel

electrophoresis to be replaced by Chip electrophoresis

44Rossier EPFL 2011

Caliper-Agilent technology Lab on a chip

45Rossier EPFL 2011

Separation with Bioanalyser

View as a Gel or Electropherogram

46Rossier EPFL 2011

Fully Automatic LOC

47Rossier EPFL 2011

ScreenTape: rapid electrophoresis

Similar but not identical!!! to Caliper/Agilent technology:Older microfluidics patents are going to expire (first work in late 80’s!) leading toMore similar products.

48Rossier EPFL 2011

ScreeTape, Lab 901:

49Rossier EPFL 2011

Fluidigm: valving on a chip: system fully integrated

Application: qPCR

50Rossier EPFL 2011

Fluidigm: valving with elastomer

Nanoflex Valve

51Rossier EPFL 2011

How to inject into a microfluidicchip network

Pressure pinched injection

52Rossier EPFL 2011

Plug with parabolic shape

53Rossier EPFL 2011

Nanochromatography

Packing or monolithicPacking

Easy to choose the surface of interest Tricky to immobilised in the nanocolum Use of frit or size restriction in the column

Monolithic In situ synthesis Lower choice of surface material Easier to adapt to any form

54Rossier EPFL 2011

3-D organisation Optimisation of surface by nanopillars Microfabricated organised surface

55Rossier EPFL 2011

Monolithic pillar for chromatography or CEC

Slentz, B. E., Penner, N. A., Regnier, F. E., J. Chromatogr. A2002, 948, 225–233.

56Rossier EPFL 2011

Microfluidic enrichment for low concentration (pM)

5. Jemere AB, Oleschuk RD, OuchenF, Fajuyigbe F, Harrison DJ:An integrated solid-phase extraction system for sub-picomolardetection. Electrophoresis 2002, 23:3537-3544.

57Rossier EPFL 2011

Monolithic columnMonlithic column can befabricating by polymerisation of monomerby UV activation.

58Rossier EPFL 2011

http://www.orc.wur.nl/UK/Events/PhD+trip+2007/Abstracts/Kishore+Tetala/

Scheme 1. Procedure to immobilize carbohydrates onto monolith beds: a) Original polymer bed with DATD as cross linker; b) 1,2-Diol group of DAD was cleaved using sodium per-iodate & c) Sugar with amino spacer was immobilized via reductive amination.

a) b) a) b)Figure 1. Optical microscope images: Figure 2. Scanning electron microscope images:

a) Empty column b) Monolith capillary column a) Empty capillary b) Monolith capillary column

59Rossier EPFL 2011

CEC with monolithic polymerised column

Throckmorton, D. J., Shepodd, T. J., Singh, A. K., Anal.Chem. 2002, 74, 784–789.

60Rossier EPFL 2011

HPLC (High performance liquid chromatography Standard system:

61Rossier EPFL 2011

Agilent HPLC on a chip

62Rossier EPFL 2011

Nanostream: parallel HPLC on each cartridges

63Rossier EPFL 2011

Use of nano(micro-) particles

Location of the beadsRandom organisation3-D organisation

Magnetic vs non magnetic beadsDifferent surface materialsDifferent compositions

64Rossier EPFL 2011

Magnetic nanoparticles

Different features Size dispersion

Monodisperse

Magnetic core Different magnetic core

diameter/volume ratioMagnetic nanoparticles vs microparticles-Higher surface to volume ratio-lower sedimentation

65Rossier EPFL 2011

Magnetic particles can containfluoroscent properties

http://www.trendbio.com.au/NFPstructure2.gif

66Rossier EPFL 2011

Magnetic Nanoparticles

Monodisperse(Ademtech)

67Rossier EPFL 2011

Magnetic nanoparticle arrays

68Rossier EPFL 2011

69Rossier EPFL 2011

3-D organisation of bead columnwith magnetic field

Magnetic field organised column-Renewable chromatography phase-DNA separation-Enzymatic digestion

70Rossier EPFL 2011

DNA Separation by sieving Long DNA strains separation

71Rossier EPFL 2011

Application of microfluidics for affinity assay Immunoassay ELISA (enzyme linked immunosorbent

assay DNA Hybridisation etc

72Rossier EPFL 2011

Diffusion Immunoassay:

Dilution by diffusion

73Rossier EPFL 2011

Diffusion based assays

74Rossier EPFL 2011

H-filter

Paul Yager’s Group

75Rossier EPFL 2011

Affinity assay: Immunoassay

Standard Immunoassay technologyELISA (Enzyme Linked

ImmunoSorbent Assay)ELFIA (Enzyme Linked

Fluorescent ImmunoAssay)

76Rossier EPFL 2011

Diffusion Immunoassay in microfluidics

Hatch, A., Kamholz, A. E., Hawkins, K. R., Munson, M. S.,Schilling, E. A., Weigl, B. H., Yager, P., Nat. Biotechnol.2001, 19, 461–465.

77Rossier EPFL 2011

Diffusion Immunoassay II

YY Y Y

Y Y Y Y

Slow diffusing antibodyRapid diffusing antigen

78Rossier EPFL 2011

YY Y Y

Y Y Y Y

Diffusion Immunoassay III

79Rossier EPFL 2011

YY

Y Y

YY

Y Y

Diffusion Immunoassay IV

80Rossier EPFL 2011

Diffusion Immunoassay

Hatch, A., Kamholz, A. E., Hawkins, K. R., Munson, M. S.,Schilling, E. A., Weigl, B. H., Yager, P., Nat. Biotechnol.2001, 19, 461–465.

top related