molecular engineering [kompatibilitätsmodus] · molecular engineering. lecture 3b. molecular...

Post on 14-Oct-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

LINZ LECTURES

Lecture 1. The Development of Organic Conductors: Metals, Superconductors and Semiconductors, p

Lecture 2A. Introduction and Synthesis of Important Conjugated PolymersLecture 2B. Solid State Polymerization

Lecture 3. Fullerene ChemistryLecture 3B. Molecular Engineering

Lecture 3B. Molecular Engineering of Conjugated Polymers for OE

Processing Design

Bandgap Design

N-Dopable Designp g

Self-Dopable and Water Solubility DesignSe opab e a d ate So ub ty es g

The Most Popular Conjugated PolymersHN

n(CH)xPA PANI

n

O O

Y

S nPPPPITN

S nPEDOT

X

XZ

X = S, NH, NR; Y = H, R, Ph, etc

PT, PPy, etc Y PPVs

n

X Y

n

PFs

THE DRIVE TOWARD PROCESSING

O

The Evolution of Processable PPV as an ExampleO

n

O

O

nO

n

n

O O O

O O

Cl

Cl

O

n

O O

MEH-PPV

F. Wudl, P.-M. Alleman, G. Srdanov, Z. Ni, D. McBranch in “Materials for Nonlinear Optics” S. Marder, J.E. Sohn. G.D. Stucky, Eds; American Chemical Society Symposium Series, 1991. pp 683-686.

Designing the Semiconductor Gap

The Bandgaps of Conducting Polymers(π−π∗)

Polymer ΔE Gap, eV

3 0ca. 3.0

S S S ca 2 1S S

ca. 2.1

ca 1 5ca. 1.5

SS

SS

S ca. 1.1

The Concept of Low Bandgap Based on Benzenoid and Quinoid Equivalence

S S S S

Benzenoid and Quinoid Equivalence

SS

SS

SS

SS

TA TB

E E<<EA EB<<

SS

SS

SS

SS

IA IB

EA EBA B

Poly(isothianaphthene). Wudl, F.; Kobayashi, M.; Heeger, A. J. J. Org. Chem. 1984, 49, 3382–3384.The Electronic and Electrochemical Properties of Poly(isothianaphthene). Kobayashi, M.; Colaneri, N.;

l dl h hBoysel, M.; Wudl, F.; Heeger, A. J. J. Chem. Phys. 1985, 82, 5717–5723 Bredas, J.-L.; Heeger, J. A.; Wudl, F. J. Chem. Phys.1985, 85, 4673

Transparent to the Human Eye

Application of the Concept to a PEDOT Analog

S S S S

S

S

SS

S

SS

S

SS

S

S

S S S S

TATB

EA ≅ ΕΒ

B. Lee, V. Seshadri, G. A. Sotzing Langmuir 2005, 21, 10797

B. Lee, V. Seshadri, G. A. Sotzing Langmuir 2005, 21, 10797

The Concept of Low Bandgap Based on Intramolecular Donor-Acceptor Interactions

ON

HON

S

O*N

Hn O

O

SN

C12H25

n

Eg ca 0.5 eV

Havinga, E.E.; Pomp, A.; Ten Hoeve, W.; Wynberg, H. Synthetic Metals, 1995, 69, 581Havinga E E ; Pomp A ; Ten Hoeve W ; Wynberg H Polym Bull 1992 29 119Havinga, E.E.; Pomp, A.; Ten Hoeve, W.; Wynberg, H. Polym. Bull., 1992, 29, 119J. Eldo and A. Ajayaghosh Chem. Mater. 2002, 14, 410-418

J. P. Ferraris and T. L. Lambert J. CHEM. SOC., CHEM. COMMUN., 1991, 1268

J. P. Ferraris and T. L. Lambert J. CHEM. SOC., CHEM. COMMUN., 1991, 1268

J. P. Ferraris and T. L. Lambert J. Chem. Soc., Chem. Commun., 1991, 1268

Said Akoudad and J. Roncali J. C h e m.Soc. Chem. Commun., 1998, 2081

Said Akoudad and J. Roncali J. C h e m.Soc. Chem. Commun., 1998, 2081

I. F. Perepichka, E. Levillain and J. Roncali J. Ma t e r. C h e m., 2004, 14, 1679

I. F. Perepichka, E. Levillain and J. Roncali J. Ma t e r. C h e m., 2004, 14, 1679

The Concept of Low Bandgap Polymer Based on Small Bandgap MonomerBased on Small Bandgap Monomer

If the monomer units have a small HOMO LUMO gap it stands toIf the monomer units have a small HOMO-LUMO gap, it stands to reason the incorporation into a conjugated backbone ought to produce an even smaller bandgap polymer

An Example of a Very Low Bandgap Molecule

O

OO

A New Polymer with a 0.9 eV BandgapS S

nS S

FeCl3

THF

1 8

2.0

Monomer in CHCl

RR

1.4

1.6

1.8 Monomer in CHCl3 Polymer in CHCl3 Polymer Film

u.)

1.0

1.2

orpt

ion

(a.

0 4

0.6

0.8

Abs

o

0.0

0.2

0.4

300 400 500 600 700 800 900 1000 1100 1200

Wavelength (nm)Satish PatilWes Walker

Materials with Spectral Response: 400nm ~ 1400nm

8

9

10

11

12

(L/g

cm

)

O3

4

5

6

7

Abs

orpt

ion

Coe

ffici

ent '

SS

R

0

1

2

3

250 350 450 550 650 750 850 950 1050 1150 1250 1350 1450 1550 1650Wavelength(nm)

A

Rn

R =

Wavelength (nm)

4

10-3

10-2

Photo Current

-4 1eV

-3.9 eV

Electron Donor: FW-D1

10-6

10-5

10-4

J (A

/cm

2 )

-4.1eV

FW-D

1

PCB

M

10-9

10-8

10-7

-1 -0.5 0 0.5 1 1.5

Dark Current

-4.9 eV

-6.3 eV

P Bias (V)

Preliminary Results

Hexyl

S

SNi

S

nS

S

S

Hexyl

Rajeev Kumar/Britt Veldman

The Drive Toward n-Dopable Polymers

The Drive Toward n-Dopable Polymers

OC6H13

C6H13O

*

*

CN

NCn

OC6H13

C6H13O

OC6H13

C6H13O

*

*

CN

NCn

SCH3

C12H25O

OR

O

*

*

CN

NC

OR

O n12 25

CN-PPV1 (Eg = 2.1 eV)

* CNOC6H13

CN-PPV2 (Eg = 2.2 eV)λPL = 710 nm λPL = 610 nm

R = C8H17R = C10H21R = C12H25R = C16H33

Eg = 2.0 eVλPL = 611nmλEL = 603-618 nm

*

*

CN

NCnC6H13O

*

*

CN

NCn

*

*

CN

NCnOCH3

CN-PPV3 (Eg = 2.85 eV)

CN-PPV4 (Eg = 3.2 eV) CN-PPV5 (Eg = 3.05 eV)λPL = 516 nm; λEL = 510 nm

*

*

CN

NC

*S

*

*

CN OC6H13C12H25

*S*

CNC12H25

S

C12H25

( g ) g

n NCC6H13O n NC n

CN-PPV6 (Eg = 2.7 eV) CN-PT-co-PPV (Eg = 1.8 eV) CN-PT (Eg = 1.55 eV)

λPL = 950 nmλPL = 840 nm; λEL = 730 nm

*CN

*CN

CNN

*

nEg = 2.3 eVλEL = 560 nm

CNN

*

nEg = 2.5 eVλPL = 530 nmλEL = 560 nmλEL = 510 nm

N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes Efficient Light-Emitting Diodes Based on Polymers with High Electron Affinities Nature 1993, 365, 628-630

T. Nakagawa, D. Kumaki, J. Nishida, S. Tokito, Y. Yamashita Chem. Mater. 2008, 20, 2615–2617

Self-Doping and Water Solubility

Self-Doping Conducting Polymer/Water Soluble Conducting PolymerConducting Polymer

Ikenoue, Y.; Chiang, J.; Patil, A. O.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1988, 110, 2983–2985

Ikenoue, Y.; Chiang, J.; Patil, A. O.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1988, 110, 2983–2985

Ikenoue, Y.; Chiang, J.; Patil, A. O.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1988, 110, 2983–2985

A Water-Soluble PPV

S. Shi, F. Wudl Macromolecules 1990, 23, 2119

“Superquenching of a Water-Soluble PPV

L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson§, F. Wudl, G. Whitten PNAS, 1999, 12287

Biosensor Application

L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson§, F. Wudl, G. Whitten PNAS, 1999, 12287

Summary

By application of simple design conceptsBy application of simple design concepts conjugated poly processable,

t ll bl E d bl d tcontrollable Eg, n-dopable and water-soluble conjugated polymers could be j g p yprepared and applied to organic electronics and biologyelectronics and biology

top related