new developments in zeolite science and technology · zeolites and zeolite-like materials 13 w.m....

Post on 16-Jun-2020

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Stud ies i n Sur face Science and Catalysis 2 8

N e w Developments in Zeol ite Science and Technology Proceedings o f t h e 7 t h In te rnat iona l Zeo l i te Con fe rence T o k y o , A u g u s t 17-22, 1986

Edited by Y. M u r a k a m i Department of Synthetic Chemstry, Nagoya University, Nagoya, Japan

A. l i j ima Geological Institute, University of Tokyo, Tokyo, Japan

J . W . W a r d Union Oil Company of California, U.S.A.

Kodansha 1986 Elsevier Tokyo Amsterdam-Oxford -New York-Tokyo

C o n t e n t s

Speakers are a s t e r i s k e d . Figures i n parentheses r e f e r t o the Lectures' numbers.

Chairman o f Organizing Committee & Subcommittees ν Sponsors v i L i s t o f C o n t r i b u t o r s v i i Preface xv Contents x v i i

I n t r o d u c t o r y Talk a n d P lenary L e c t u r e s

INTRODUCTORY TALK

P o r o u s C r y s t a l s : A P e r s p e c t i v e R.M. B a r r e r *

PLENARY LECTURES

Z e o l i t e s and Z e o l i t e - l i k e M a t e r i a l s 13 W.M. M e i e r *

E x p l o r a t i o n o f t h e V o i d S i z e and S t r u c t u r e o f Z e o l i t e s and M o l e c u l a r S i e v e s U s i n g C h e m i c a l R e a c t i o n s 23 P.A. J a c o b s , * J.A. M a r t e n s

Geology and Minera logy

G e o l o g i c O c c u r r e n c e o f Z e o l i t e s and Some A s s o c i a t e d M i n e r a l s 35 R.L. Hay* (GM-1-1)

The C r y s t a l C h e m i s t r y o f N a t u r a l Z e o l i t e s 41 G. G o t t a r d i * (GM-1-3)

Geology o f t h e I t a y a Z e o l i t e D e p o s i t , Yamagata, N o r t h e a s t Honshu 51 Y. Watanabe,* M. U t a d a , A. I i j i m a (GM-4-1)

Z e o l i t e s from T e r t i a r y T u f f a c e o u s Rocks i n Y e o n g i l A r e a , K o r e a 59 J.H. Noh,* S . J . Kim (GM-4-2)

xv

x v i Contents

A n a l c i m e - B e a r i n g P y r o c l a s t i t e s from W e s t e r n T a u r u s M o u n t a i n s , T u r k e y 6 7 Ν. T u z c u * (GM-4-3)

I d e n t i f i c a t i o n and C h a r a c t e r i z a t i o n o f N a t u r a l Z e o l i t e s by M a g n e t i c R e s o n a n c e 71 S. N a k a t a , * S. A s a o k a , T. Kondoh, H. T a k a h a s h i (GM-5-1)

C l i n o p t i l o l i t e D e p o s i t i n t h e P i n e R i d g e I n d i a n R e s e r v a t i o n , South D a k o t a , U.S.A. 79 W.H. Raymond* (GM-5-2)

H y d r o t h e r m a l Z e o l i t e O c c u r r e n c e from t h e Smrekovec Mt. A r e a , S l o v e n i a , Y u g o s l a v i a 87 P. Koviö,* Ν. K r o s l - K u s c e r (GM-5-3)

Z e o l i t e s o f Y a k u t i a 9 3 Κ.Ye. K o l o d e z n i k o v , * V.V. S t e p a n o v (GM-5-4)

Synthes is

A l u m i n o p h o s p h a t e M o l e c u l a r S i e v e s and t h e P e r i o d i c T a b l e 10 3 E.M. F l a n i g e n , * B.M. L o k , R.L. P a t t o n , S.T. W i l s o n (SY-7-1)

P a r a m e t e r s A f f e c t i n g t h e Growth o f L a r g e S i l i c a l i t e C r y s t a l s 113 D.T. H a y h u r s t , * J . C . L e e (SY-7-3)

New Route t o P e n t a s i l - T y p e Z e o l i t e s U s i n g a Non A l k a l i n e Medium i n t h e P r e s e n c e o f F l u o r i d e I o n s 121 J . L . Guth, H. K e s s l e r , * R. Wey (SY-7-4)

T i t a n i u m - S i l i c a l i t e : A N o v e l D e r i v a t i v e i n t h e P e n t a s i l F a m i l y 129 G. P e r e g o , * G. B e l l u s s i , C. Cor n o , Μ. T a r a m a s s o , F . (SY-8-1) Buoncmo, A. E s p o s i t o

The S y n t h e s i s and C h a r a c t e r i z a t i o n o f I r o n S i l i c a t e M olecu­l a r S i e v e s 137 W.J. B a l l , J . Dwyer,* A.A. G a r f o r t h , W.J. S m i t h (SY-8-2)

P r e p a r a t i o n and C h a r a c t e r i z a t i o n o f I r o n B i d i m e n s i o n a l Z e o l i t i c M o n t m o r i l l o n i t e 145 G. M u r a l i D h a r , * M. V i t t a l , T.G. N a r e n d r a Babu (SY-8-3)

C o m p a r a t i v e S t u d y o f Z e o l i t e . A S y n t h e s i s i n B a t c h and Semi-b a t c h R e a c t o r s 15 3 M. T r a s s o p o u l o s , R.W. Thompson* (SY-9-1)

P r e p a r a t i o n and P r o p e r t i e s o f a New S y n t h e t i c Analogue o f N a t u r a l Z e o l i t e M a z z i t e 161 G.V. T s i t s i s h v i l i , * M.K. C h a r k v i a n i (SY-9-2)

The R o l e o f I n t e r f a c i a l E n e r g y i n Z e o l i t e S y n t h e s i s R.A. v a n S a n t e n , J . K e i j s p e r , G. Ooms, A.G.T.G. K o r t b e e k *

169 (SY-9-3)

Contents x v i i

The S y n t h e s i s o f Z e o l i t e NaA from Homogeneous S o l u t i o n s and S t u d i e s o f i t s P r o p e r t i e s 177 Pang Wenqin,* S. Ueda, Μ. Ko i z u m i (SY-10-1)

C l e a r Aqueous N u c l e i S o l u t i o n f o r F a u j a s i t e S y n t h e s i s 185 S. K a s a h a r a , * K. I t a b a s h i , K. Igawa (SY-10-2)

C r y s t a l l i z a t i o n o f H i g h - S i l i c a Z e o l i t e i n t h e M i x t u r e o f Water and O r g a n i c S o l v e n t 19 3 M. Sugimoto,* Κ. T a k a t s u , N. Kawata, T. K o n i s h i (SY-10-3)

The T e m p l a t i n g E f f e c t d u r i n g t h e F o r m a t i o n o f ZSM-5 Type Z e o l i t e 201 Song T i a n y o u , Xu R u r e n , * L i L i y u n , Ye Z h a o h u i (SY-11-1)

The I n f l u e n c e o f Temp l a t e S i z e and Geometry on F a u j a s i t e C r y s t a l l i z a t i o n 207 D.E.W. Vaughan,* K.G. S t r o h m a i e r (SY-11-2)

B i s - Q u a t e r n a r y Ammonium Compounds as T e m p l a t e s i n t h e C r y s t a l l i z a t i o n o f Z e o l i t e s and S i l i c a M o l e c u l a r S i e v e s 215 J . L . C a s c i * (SY-11-3)

Mechanism o f Z e o l i t e C r y s t a l l i z a t i o n w i t h o u t U s i n g T e m p l a t e R e a g e n t s o f O r g a n i c B a s e s 223 F.-Y. D a i , * M. S u z u k i , ( l a t e ) H. T a k a h a s h i , Y. S a i t o (SY-11-4)

R o l e o f A l k a l i and Tetrapropylammonium C a t i o n s i n (M)ZSM-5 H y d r o g e l P r e c u r s o r s 231 J.B. Nagy, P. B o d a r t , E.G. Derouane,* Z. G a b e l i c a , (SY-12-1) A. N a s t r o

N u c l e a t i o n and Growth o f NH4-ZSM-5 Z e o l i t e s 239 L.-Y. Hou,* L.B. Sand, R.W. Thompson (SY-12-2)

A p p l i c a t i o n o f 2 9 S i and 2 7A1 NMR t o D e t e r m i n e t h e D i s t r i ­b u t i o n o f A n i o n s i n Sodium S i l i c a t e and Sodium A l u m i n o -S i l i c a t e S o l u t i o n s 247 A.V. McCormick, A.T. B e l l , * C . J . Radke (SY-12-3)

I n f l u e n c e o f Sodium S a l t s on Z e o l i t e Nu-10 C r y s t a l l i z a t i o n 255 R. A i e l l o , * A. N a s t r o , C. P e l l e g r i n o (SY-12-4)

C r y s t a l l i z a t i o n o f Z e o l i t i c A l u m i n o s i l i c a t e s i n B i c a t i o n i c S y s tems I n c l u d i n g L i t h i u m 26 3 C. C o l e l l a , * M. de'Gennaro, V. I o r i o (SY-12-5)

Ion Exchange and M o d i f i c a t i o n

I o n E xchange i n Z e o l i t e s : Some R e c e n t D e v e l o p m e n t s i n Theory and P r a c t i c e 27 3 R.P. Townsend* (IM-1-1)

M o d e l l i n g and C a l c u l a t i n g I o n - E x c h a n g e P r o c e s s e s o f M e t a l S o r p t i o n by N a t u r a l C l i n o p t i l o l i t e 283 V.A. N i k a s h i n a , * M.M. S e n y a v i n , L . I . M i r o n o v a , V.A. T y u r i n a (IM-1-3)

x v i i i Contents

T e r n a r y E x c h a n g e E q u i l i b r i a I n v o l v i n g H 3 0 + , Ν Η ι , + and N a + I o n s i n S y n t h e t i c Z e o l i t e s o f t h e F a u j a s i t e S t r u c t u r e 289 K.R. F r a n k l i n , R.P. Townsend, S . J . Whelan, C . J . Adams* (IM-1-4)

Germanium M e t h o x i d e : New R e a g e n t f o r C o n t r o l l i n g t h e P o r e -O p e n i n g S i z e o f Z e o l i t e by CVD 29 7 M. Niwa,* C.V. H i d a l g o , T. H a t t o r i , Y. Murakami (IM-2-1)

The I n f l u e n c e o f S t r u c t u r a l M o d i f i c a t i o n by S i l a n a t i o n on t h e I o n - E x c h a n g e P r o p e r t i e s o f M o r d e n i t e L.P. 305 P. De Hülsters,* J . V e r b i e s t , J . P h i l i p p a e r t s , G. P e e t e r s , (IM-2-2) E . F . V a n s a n t

I n t e r a c t i o n o f T r i c o o r d i n a t e d P h o s p h o r u s Compounds w i t h Z e o l i t e s 311 Th. B e i n , * D.B. C h a s e , R.D. F a r l e e , G.D. S t u c k y (IM-2-3)

The I m p l a n t a t i o n o f B o r o n - N i t r o g e n Compounds i n M o r d e n i t e LP and t h e i r I n f l u e n c e on t h e A d s o r p t i o n P r o p e r t i e s 319 J . P h i l i p p a e r t s , * G. P e e t e r s , E . F . V a n s a n t , P. De Hülsters, (IM-2-4) J . V e r b i e s t

M o d i f i c a t i o n o f Y Type Z e o l i t e by F e r r i c N i t r a t e S o l u t i o n 329 S. H i d a k a , * A. l i n o , K. N i t a , Y. Maeda, K. M o r i n a g a , (IM-2-5) N. Yamazoe

E f f e c t o f R a r e E a r t h L o a d i n g i n Y - Z e o l i t e on i t s D e a l u m i n a -t i o n d u r i n g T h e r m a l T r e a t m e n t 337 J.W. R o e l o f s e n , * H. M a t h i e s , R.L. de G r o o t , P.CM. van (IM-3-1) Woerkom, H. Angad G a u r

The E f f e c t o f D e a l u m i n a t i o n on t h e S t r u c t u r e and A c i d i c P r o p e r t i e s o f O f f r e t i t e 345 C. F e r n a n d e z , A. A u r o u x , * J . C . V e d r i n e , J . Grosmangin, (IM-3-2) G. S z a b o

F a u j a s i t e s E n r i c h e d i n S i l i c o n . A C o m p a r i s o n o f P r o c e s s e s and P r o d u c t s 351 D. A k p o r i a y e , A.P. C h a p p i e , D.M. C l a r k , J . Dwyer,* I . S . (IM-3-3) E l l i o t t , D . J . R a w l e n c e

S t r u c t u r e

Z e o l i t e S t r u c t u r a l I n v e s t i g a t i o n s by High R e s o l u t i o n S o l i d S t a t e MAS NMR 361 G.T. K o k o t a i l o , * C A . F y f e , G . J . Kennedy, G.C. Gobbi, H. ( S T - 9 - 1 ) S t r o b l , C T . P a s z t o r , G.E. B a r l o w , S. B r a d l e y

D i s t r i b u t i o n o f Aluminum i n t h e S y n t h e t i c M o r d e n i t e s 369 K. I t a b a s h i , * T. Okada, K. Igawa ( S T - 9 - 3 )

G e n e r a t i o n o f New P a r a m a g n e t i c Rhodium S p e c i e s i n NaX Z e o l i t e and C o o r d i n a t i o n w i t h A d s o r b a t e s 377 D. G o l d f a r b , L . K e v a n * ( S T - 1 0 - 1 )

Contents x i x

Combined EPR-DRS S p e c t r o s c o p i e s on Z e o l i t e s : C o o r d i n a t i o n o f C u ( I I ) t o an Oxygen S i x - R i n g 385 D. P a c k e t , R.A. S c h o o n h e y d t * ( S T - 1 0 - 2 )

A d s o r p t i o n o f Xenon: A New Method f o r S t u d y i n g Z e o l i t e s 39 3 J . F r a i s s a r d , * T. I t o , M. S p r i n g u e l - H u e t , J . Demarquay ( S T - 1 0 - 3 )

I n S i t u S y n t h e s i s o f I r i d i u m C a r b o n y l C l u s t e r s E n c a g e d i n Y - Z e o l i t e 401 G. B e r g e r e t , * P. G a l l e z o t , F . L e f e b v r e ( S T - 1 1 - 1 )

S u r f a c e S t a t e s o f A l u m i n o p h o s p h a t e and Z e o l i t e M o l e c u l a r S i e v e s 409 S.L. S u i b , * A.M. W i n i e c k i , A. K o s t a p a p a s , L.B. Sand ( S T - 1 1 - 2 )

D i s t r i b u t i o n o f t h e B i v a l e n t N i c k e l I o n i n ZSM-5 M o l e c u l a r S i e v e s 415 L i u Z h e n y i , * Zhang W a n g j i n , Yu Q i n , Lü G u a n g l i e , L i ( S T - 1 1 - 3 ) Wangrong, Wang S h u j u , Zhang Y o u s h i , L i n B i n g x i o n g

The A p p l i c a t i o n o f E l e c t r o n e g a t i v i t y E q u a l i z a t i o n C o n c e p t s t o Z e o l i t e s 423 W.J. M o r t i e r * ( S T - 1 1 - 4 )

Q u a t e r n a r y Ammonium C a t i o n E f f e c t s on t h e C r y s t a l l i z a t i o n o f Z e o l i t e s o f t h e O f f r e t i t e - E r i o n i t e F a m i l y , P a r t I I . E l e c t r o n D i f f r a c t i o n S t u d i e s 429 J.V. S a n d e r s , M.L. O c c e l l i , * R.A. I n n e s , S.S. P o l l a c k ( S T - 1 2 - 1 )

The Absence o f T-O-T A n g l e s o f 180° i n Z e o l i t e s 437 A. A l b e r t i * ( S T - 1 2 - 2 )

The S t r u c t u r e o f Z e o l i t e Li-A(BW) by S i n g l e C r y s t a l D a t a 443 E . K. A n d e r s e n , * G. P l o u g - S ^ r e n s e n ( S T - 1 2 - 3 )

D i s t r i b u t i o n o f C a t i o n s and Water M o l e c u l e s i n t h e H e u l a n d i t e - T y p e Framework 449 K. Sugiyama,* Y. Take*uchi ( S T - 1 2 - 4 )

S t r u c t u r a l S t u d i e s o f G a l l o s i l i c a t e Z e o l i t e s 457 J.M. Newsam,* D.E.W. Vaughan ( S T - 1 2 - 5 )

A d s o r p t i o n and D i f fus ion

I n t r a c r y s t a l l i n e D i f f u s i o n o f C 8 A r o m a t i c I s o m e r s i n NaX Z e o l i t e and N a t u r a l F a u j a s i t e 467 M. Goddard, D.M. Ru t h v e n * (AD-3-1)

The Use o f Computer G r a p h i c s t o S t u d y A d s o r p t i o n , D i f f u s i o n and C a t a l y s i s i n Z e o l i t e s 475 A.K. Nowak,* A.K. Cheetham (AD-3-2)

The E f f e c t s o f Steam T r e a t m e n t I m p r e g n a t i o n w i t h P, Mg and I o n E xchange on D i f f u s i o n i n HZSM-5 Z e o l i t e 481 Chuanchang Wu,* G u a n l i n Q i n , Yuming X i e (AD-3-3)

xx Contents

S t u d i e s on t h e S u r f a c e A c i d i t y o f HY Z e o l i t e by Combined I R and TPD 4 87 L i Q u a n z h i , * Zhang R u i m i n g , Xue Z h i y u a n (AD-4-1)

B r o n s t e d S i t e P o p u l a t i o n on E x t e r n a l and on I n t e r n a l S u r f a c e o f S h a p e - S e l e c t i v e C a t a l y s t s 495 J . T a k e , * Y. Y a m a g u c h i , K. Miyamoto, H. Ohyama, M. Misono (AD-4-2)

A Method f o r C a l c u l a t i n g A c t i v a t i o n E n e r g y D i s t r i b u t i o n o f D e s o r p t i o n f r om Temperature-Programmed D e s o r p t i o n S p e c t r u m o f Ammonia 50 3 Κ. H a s h i m o t o , * T. Masuda, T. Mori (AD-4-3)

One D i m e n s i o n a l Gas A d s o r b e d i n t h e Z e o l i t i c P o r e 511 T. T a k a i s h i * (AD-5-1)

S m e c t i t e M o l e c u l a r S i e v e s . P a r t I . Hydrogen, D e u t e r i u m , and Neon i n E x p a n d e d F l u o r h e c t o r i t e s 521 R.M. B a r r e r , * R . J . B . C r a v e n (AD-5-3)

A d s o r p t i o n o f H y d r o c a r b o n s i n (Na,K)-ZSM5, - Z S M l l and " A l -F r e e " NaZSM5 and N a Z S M l l 531 Y.H. Ma,* T.D. Tang, L.B. Sand, L.Y. Hou (AD-5-4)

A d s o r p t i o n P r o p e r t i e s o f M i c r o p o r o u s A l u m i n o p h o s p h a t e A l P 0 4 - 5 539 H. S t a c h , H.^Thamm, K. F i e d l e r , B. G r a u e r t , W. W i e k e r , (AD-6-1) E . J a h n , G. Öhlmann*

H y d r o c a r b o n A d s o r p t i o n C h a r a c t e r i z a t i o n o f Some High S i l i c a Z e o l i t e s · 547 E . L . Wu, G.R. L a n d o l t , A.W. C h e s t e r * (AD-6-2)

A d s o r p t i o n E q u i l i b r i u m o f E t h y l e n e - C a r b o n D i o x i d e M i x t u r e on Z e o l i t e ZSM5 555 J i n - G u Wang,* Y.H. Ma, Yang-Chun Chang, H a i - Q i n g L i , T.D. (AD-6-3) Tang

S i m u l a t i o n o f P r e s s u r e S w i n g A d s o r p t i o n f o r A i r S e p a r a t i o n 563 K. C h i h a r a , * Y. Yoneda, S. M o r i s h i t a , M. S u z u k i (AD-6-4)

E f f e c t o f t h e I n t e r a c t i o n b e t w e e n A d m o l e c u l e s on the S o r p t i o n E q u i l i b r i u m a t t h e L i q u i d - S o l i d I n t e r f a c e f o r t h e Y Z e o l i t e 571 S.-K. Ihm,* H.-S. L e e (AD-6-5)

M o l e c u l a r M o b i l i t y o f H y d r o c a r b o n Z S M 5 / S i l i c a l i t e S y s t e m s S t u d i e d by S o r p t i o n U p t a k e and F r e q u e n c y Response Methods 579 M. Bülow, Η. S c h l o d d e r , L.V.C. R e e s , * R.E. R i c h a r d s (AD-7-1)

Z e o l i t i c D i f f u s i v i t i e s o f B i n a r y Gas M i x t u r e s by t h e F r e ­q u e ncy R e s p o n s e Method 5 87 Y. Y a s u d a , * Y. Yamada, I . M a t s u u r a (AD-7-2)

N u c l e a r R e l a x a t i o n S t u d i e s o f A r o m a t i c s i n F a u j a s i t e Type Z e o l i t e s 595 Η. L e c h e r t , * W.D. B a s l e r , K.P. W i t t e r n (AD-7-3)

Contents x x i

Study o f t h e M o b i l i t y o f C a 2 + i n Ca, Na-A by n - P e n t a n e S o r p t i o n 601 D. F r a e n k e l * (AD-7-4)

F o u r D i f f e r e n t S t a t e s o f Benzene A d s o r b e d i n F a u j a s i t e s 609 A. de Mallmann, D. B a r t h o m e u f * (AD-8-1)

Combined UV and I R S p e c t r o s c o p i c S t u d i e s on t h e A d s o r p t i o n o f SO2 o n t o F a u j a s i t e - T y p e Z e o l i t e s 617 H.G. K a r g e , * Μ. £aniecki, Μ. Z i o ^ e k (AD-8-2)

H e a t C a p a c i t i e s and A d s o r p t i o n E n e r g i e s o f H e l i u m A d s o r b e d on Y Z e o l i t e s w i t h V a r i o u s C a t i o n s 625 N. Wada,* Y. Yamamoto, H. K a t o , T. I t o , T. Watanabe (AD-8-3)

NMR I n v e s t i g a t i o n s o f S e l f - D i f f u s i o n i n P e n t a s i l s 633 J . Kärger, Η. P f e i f e r , * D. F r e u d e , J . C a r o , Μ. Bülow, (AD-8-4) G. Öhlmann

Catalys is

C a t a l y t i c and A c i d i c P r o p e r t i e s o f Boron P e n t a s i l Z e o l i t e s 643 G. C o u d u r i e r , J . C . V ^ d r i n e * (CA-1-1)

D i s p r o p o r t i o n a t i o n o f P a r a f f i n s I . P e n t a n e s 653 N.Y. Chen* (CA-1-3)

Shape S e l e c t i v e C r a c k i n g o f O c t a n e i n t h e P r e s e n c e o f A n o t h e r H y d r o c a r b o n on HZSM-5 661 S. Namba,* K. S a t o , K. F u j i t a , J.H. Kim, T. Y a s h i m a (CA-1-4)

P o r e S i z e and Shape E f f e c t s i n Z e o l i t e C a t a l y s i s 669 J.G. B e n d o r a i t i s , A.W. C h e s t e r , * F.G. Dwyer, W.E. Garwood (CA-2-1)

The N a t u r e o f t h e C a t a l y t i c S i t e s i n HZSM-5 — A c t i v i t y Enhancement 677 R.M. Lago, W.O. Haag,* R . J . M i k o v s k y , D.H. O l s o n , S.D. (CA-2-2) H e l l r i n g , K.D. S c h m i t t , G.T. K e r r

I n f l u e n c e o f t h e A c t i v a t i o n C o n d i t i o n s on t h e C a t a l y t i c B e h a v i o u r o f O f f r e t i t e 6 85 F . Hernandez, C. O l i v e r , F . F a j u l a , * F . F i g u e r a s (CA-2-3)

I n v e s t i g a t i o n o f C a r b o n a c e o u s D e p o s i t s on a LaY Z e o l i t e C a t a l y s t by CP/MAS-13C-NMR S p e c t r o s c o p y 693 S. M a i x n e r , C.Y. Chen, P . J . G r o b e t , P.A. J a c o b s , J . (CA-2-4) Weitkamp*

F o r m a t i o n and N a t u r e o f Coke D e p o s i t s on Z e o l i t e s HY and HZSM-5 701 M. G u i s n e t , * P. Magnoux, C. C a n a f f (CA-2-5)

P r e p a r a t i o n o f B i f u n c t i o n a l Pt/H-ZSM5 C a t a l y s t s and t h e i r A p p l i c a t i o n f o r Propane C o n v e r s i o n 709 C.W.R. E n g e l e n , J . P . W o l t h u i z e n , J.H.C. v a n H o o f f , * (CA-3-1) H. W. Zandbergen

x x i i Contents

T r a n s f o r m a t i o n o f Propene i n t o A r o m a t i c H y d r o c a r b o n s o v e r ZSM-5 Z e o l i t e s 717 M. S h i b a t a , H. K i t a g a w a , Y. Sendoda, Y. Ono* (CA-3-2)

A r o m a t i z a t i o n o f H y d r o c a r b o n s o v e r P l a t i n u m A l k a l i n e E a r t h Z e o l i t e s 725 T.R. Hughes,* W.C. B u s s , P.W. Tamm, R.L. J a c o b s o n (CA-3-3)

A l k y l a t i o n o f C h l o r o b e n z e n e o v e r H-Mordenite and H-ZSM-5: E f f e c t o f S i / A l R a t i o 733 Chen Fang Ren, G. C o u d u r i e r , C. N a c c a c h e * (CA-4-1)

The S e l e c t i v e A l k y l a t i o n o f A n i l i n e w i t h M e t h a n o l o v e r ZSM-5 Z e o l i t e 739 P.Y. Chen, M.C. Chen, Y.Y. Chu, N.S. Chang, T.K. Chuang* (CA-4-2)

P a r a - S e l e c t i v e C h l o r i n a t i o n o f C h l o r o b e n z e n e on M o d i f i e d Y-Type Z e o l i t e s 747 T. M i y a k e , * Κ. S e k i z a w a , T. H i r o n a k a , M. Nakano, S. F u j i i , (CA-4-3) Y. T s u t s u m i

Some C a t a l y t i c A p p l i c a t i o n s o f ZSM-5 Z e o l i t e : P a r a - S e l e c t i v e D e a l k y l a t i o n and Vapor Phase Beckmann R e a r r a n g e m e n t 75 5 H. S a t o , * Ν. I s h i i , K. H i r o s e , S. Nakamura (CA-5-1)

R e a c t i o n o f E t h a n o l and Ammonia t o P y r i d i n e o v e r ZSM-5-Type Z e o l i t e s 763 F . J . v a n d e r Gaag, F . L o u t e r , H. v a n Bekkum* (CA-5-2)

C a t a l y t i c V a p o r - P h a s e H y d r a t i o n o f Lower O l e f i n s o v e r P r o t o n i c Z e o l i t e C a t a l y s t s 771 E. K i k u c h i , * T. Matsuda, K. Shimomura, K. K a w a h a r a , (CA-5-3) Y. M o r i t a

M a n u f a c t u r e o f D i m e t h y l a m i n e U s i n g Z e o l i t e C a t a l y s t 779 Y. A s h i n a , T. F u j i t a , M. F u k a t s u , * K. Niwa, J . Y a g i (CA-5-4)

The I n f l u e n c e o f Hydrogen S u l f i d e i n H y d r o c r a c k i n g o f n-Dodecane o v e r P a l l a d i u m / F a u j a s i t e C a t a l y s t s 787 H. Dauns, S. E r n s t , * J . Weitkamp (CA-6-1)

The K i n e t i c s o f H y d r o d e n i t r o g e n a t i o n o v e r a Z e o l i t e C a t a l y s t 795 I . E . M a x w e l l , * J.A. v a n de G r i e n d (CA-6-2)

H y d r o t h e r m a l A g i n g o f C r a c k i n g C a t a l y s t s — I I I : E f f e c t o f Vanadium on t h e S t r u c t u r e o f LaY Z e o l i t e s 80 3 F. Maug£, J . C . C o u r c e l l e , Ph. E n g e l h a r d , P. G a l l e z o t , * (CA-6-3) J . Grosmangin

On the H y d r o d e s u l f u r i z a t i o n A c t i v i t y o f Z e o l i t e s C o n t a i n i n g T r a n s i t i o n M e t a l s 811 N. D a v i d o v a , * P. K o v a c h e v a , D. Shopov (CA-6-4)

P e n t a s i l - T y p e Z e o l i t e s : R a d i c a l F o r m a t i o n , A c t i v i t y i n t h e O l e f i n O l i g o m e r i z a t i o n and A r o m a t i z a t i o n , P r o c e s s e s o f Coke D e p o s i t i o n 819 A.A. S l i n k i n , A.V. K u c h e r o v , D.A. K o n d r a t y e v , T.N. (CA-6-5) Bondarenko, A.M. R u b i n s t e i n , Kh.M. M i n a c h e v *

Contents x x i i i

New H o r i z o n s i n C a t a l y s i s U s i n g M o d i f i e d and U n m o d i f i e d P e n t a s i l Z e o l i t e s 827 W. Hölderich* (CA-7-1)

C a t a l y t i c and A c i d i c P r o p e r t i e s o f SAPO-5 M o l e c u l a r S i e v e 835 Xu Q i n h u a , * Y a n A i z h e n , Bao S h u l i n , Xu K a i j u n (CA-7-3)

M o l e c u l a r S i e v e E f f e c t s i n C a r b o n i o g e n i c R e a c t i o n s C a t a l y z e d by S i l i c o a l u m i n o p h o s p h a t e M o l e c u l a r S i e v e s 843 R . J . P e l l e t , * G.N. Long, J.A. Rabo (CA-7-4)

M e t a l l o s i l i c a t e Z e o l i t e s a s C a t a l y s t s f o r A l k y l a t i o n o f T o l u e n e w i t h M e t h a n o l 851 R.B. B o r a d e , A.B. H a l g e r i , T.S.R. P r a s a d a Rao* (CA-8-1)

New A s p e c t s i n C a t a l y t i c P e r f o r m a n c e o f N o v e l M e t a l l o s i l i -c a t e s H a v i n g t h e P e n t a s i l P o r e - O p e n i n g S t r u c t u r e 859 T. I n u i , * A. Miyamoto, H. Matsuda, H. Nagata, Y. Makino, (CA-8-2) K. F u k u d a , F . Okazumi

T r a n s a l k y l a t i o n o f A l k y l a r o m a t i c Compounds on S i l i c a t e s w i t h ZSM-5 S t r u c t u r e C o n t a i n i n g A I , B, and Ga 867 H.K. B e y e r , * G. B o r b e l y (CA-8-3)

S e l e c t i v e S y n t h e s i s o f C 3 and Ci+ H y d r o c a r b o n s from S y n t h e s i s Gas by U t i l i z i n g H y b r i d C a t a l y s t s C o n t a i n i n g Y-Type Z e o l i t e s 875 K. F u j i m o t o , * H. S a i m a , H. Tominaga (CA-9-1)

Molybdenum Z e o l i t e s a s F i s c h e r - T r o p s c h C a t a l y s t s : Compara­t i v e S t u d y o f t h e A d s o r p t i o n and D e c o m p o s i t i o n o f Mo(CO)6 i n D i f f e r e n t Z e o l i t e s 883 Yong Y.S., R.F. Howe* (CA-9-2)

R e a c t i o n Mechanism f o r S e l e c t i v e S y n t h e s i s o f G a s o l i n e -Range I s o a l k a n e s f r om S y n g a s o v e r RuPtHY Z e o l i t e s 891 T. T a t s u m i , * Y.G. S h u l , Y. A r a i , H. Tominaga (CA-9-3)

Mechanism o f t h e ZSM-5 C a t a l y z e d F o r m a t i o n o f H y d r o c a r b o n s from Methanol-P'ropanol 899 L.-M. Tau, A.W. F o r t , Β.Η. D a v i s * (CA-10-1)

D e a c t i v a t i o n o f M o d i f i e d P e n t a s i l Z e o l i t e s f o r Me t h a n o l C o n v e r s i o n t o O l e f i n s a t Hi g h T e m p e r a t u r e 90 7 Guoquan Chen, J u a n L i a n g , * Q i n g x i a Wang, Guangyu C a i , (CA-10-2) S u q i n Zhao, M u l i a n g Y i n g

C o m p a r a t i v e I n v e s t i g a t i o n o f Time on S t r e a m S e l e c t i v i t y C h anges d u r i n g M e t h a n o l C o n v e r s i o n on D i f f e r e n t Z e o l i t e s 915 H. S c h u l z , * W-Böhringer, W. B a u m g a r t n e r , Zhao S i w e i (CA-10-3)

P a r t i c l e S i z e E f f e c t on t h e S e l e c t i v i t y f o r Me t h a n o l S y n t h e s i s on F a u j a s i t e X S u p p o r t e d P l a t i n u m 923 N . I . J a e g e r , * G. S c h u l z - E k l o f f , A. S v e n s s o n (CA-11-1)

H y d r o c o n v e r s i o n o f η-Octane on Pt/USY Z e o l i t e s : E f f e c t o f A l l o y i n g P t w i t h Cu 929 M. Dufaux, M. L o k o l o , P. M e r i a u d e a u , * C. N a c c a c h e , Y. Ben (CA-11-2) Taärit

x x i v Contents

Sodium C l u s t e r s i n Z e o l i t e s a s A c t i v e S i t e s f o r C a r b a n i o n C a t a l y z e d R e a c t i o n s 9 35 L.R.M. M a r t e n s , * P . J . G r o b e t , W.J.M. V e r m e i r e n , P.A. (CA-11-3) J a c o b s

C a t a l y t i c D e c o m p o s i t i o n o f N i t r i c Monoxide o v e r Copper I o n -E x c h a n g e d Z e o l i t e s 943 M. Iwamoto,* H. F u r u k a w a , S. Kagawa (CA-11-4)

Z i n c and A l u m i n i u m S u b s t i t u t i o n s i n M F I - S t r u c t u r e s : S y n t h e s i s , C h a r a c t e r i z a t i o n and C a t a l y s i s 951 W.J. B a l l , S . A . I . B a r r i , S. C a r t l i d g e , B.M. Maunders, (CA-12-1) D.W. W a l k e r *

A c i d - B a s e and C a t a l y t i c P r o p e r t i e s o f A l k a l i M e t a l E x c h a n g e d ZSM5 957 M. D e r e w i n s k i , J . H a b e r , * J . P t a s z y n s k i , J.A. L e r c h e r , (CA-12-2) G. Rumplmayr

I n t e r a c t i o n o f N i c k e l I o n s w i t h E t h y l e n e M o l e c u l e s i n E t h y l e n e D i m e r i z a t i o n o v e r Ni-X Z e o l i t e s 965 L u b i n Zheng,* Gongwei Wang, X i n l a i B a i (CA-12-3)

η-Heptane I s o m e r i z a t i o n o v e r P l a t i n u m - L o a d e d M o r d e n i t e C a t a l y s t s 973 K. Mahos,* R. Nakamura, H. N i i y a m a (CA-12-4)

O x i d a t i v e H e t e r o g e n o u s C a t a l y s i s o v e r Z e o l i t e s 981 D.B. T a g i y e v , * K.M. M i n a c h e v (CA-12-5)

A p p l i c a t i o n

Development o f Z e o l i t e f o r Non-Phosphated D e t e r g e n t s i n J a p a n 991 I . Yamane,* T. Nakazawa (AP-2-1)

S t u d i e s on t h e I n i t i a l P r o d u c t i n t h e S y n t h e s i s o f Z e o l i t e A from C o n c e n t r a t e d S o l u t i o n s 1001 Y. T s u r u t a , * T. S a t o h , T. Y o s h i d a , 0. Okumura, S. Ueda (AP-2-3)

Sodium A l u m i n o s i l i c a t e s i n t h e Washing P r o c e s s . P a r t I X : Mode o f A c t i o n o f Z e o l i t e A / A d d i t i v e S y s t e m s 1009 C. P. Kurzendörfer, Μ. L i p h a r d , W. von R y b i n s k i , M.J. (AP-2-4) Schwuger*

C a l c i u m I o n E x c h a n g i n g B e h a v i o r o f Z e o l i t e A i n the Washing P r o c e s s 1017 T. Mukaiyama,* H. N i s h i o , O. Okumura (AP-2-5)

C a r b o h y d r a t e S e p a r a t i o n s U s i n g Z e o l i t e M o l e c u l a r S i e v e s 1025 J.D. Sherman,* C.C. Chao (AP-6-1)

P o l y v a l e n t C a t i o n E x c h a n g e d X Z e o l i t e s w i t h Improved Gas S e p a r a t i o n P r o p e r t i e s 1033 C G . Coe,* G.E. P a r r i s , R. S r i n i v a s a n , S.R. A u v i l (AP-6-2)

Contents xxv

Vacuum F r e e z e D r y i n g o f Food U s i n g N a t u r a l Z e o l i t e 1041 A. T a k a s a k a , * Y. Matsuda (AP-6-3)

N a t u r a l Z e o l i t e s i n E n e r g y S t o r a g e and Heat Pumps 104 7 S. Ölkü* (AP-6-4)

The E f f e c t o f Z e o l i t e on R u m i n a l B a c t e r i a P o p u l a t i o n and i t s A c t i v i t y i n H e i f e r s F e d S u n f l o w e r : Sorghum S i l a g e 1055 J . G a l i n d o , * A. E l l a s , M.R. G o n z a l e z (AP-6-5)

Interaction of Tricoordinated Phosphorus Compounds with Zeolites

Th. Bein, D. B. Chase, R. D. Farlee and G. D. Stucky Central Research and Development Department, Ε. I . du Pont de Nemours and Company, Experimental Station E262, Wilmington, Delaware 19898, USA

Vapor phase chemisorption of dimethylphosphine (DMP), t r i -methylphosphine and trimethylphosphite (TMP) i n a c i d i c f a u j a s i t e has been studied with i n s i t u IR and MAS-NMR techniques. E f f e c t s of pore f i l l i n g on the s p e c t r a l properties of trimethylphosphine are discussed. Protonation of DMP i n a r e v e r s i b l e a c ^ - b a s e reaction with dry HY z e o l i t e i s indicated by a single Ρ resonance at -56 ppm due to PCCH^^i^ and by the appearence of di f f e r e n t P-H stretching modes. An acid catalyzed Arbuzov rearrangement converts TMP into dimethylmethylphosphonate which s p l i t s off methoxy groups upon heat treatment i n the z e o l i t e .

INTRODUCTION Phosphorus compounds have gained considerable i n t e r e s t i n the surface

chemistry of metal oxides. Research a c t i v i t y encompasses chemisorption studies [1-11], anchoring of phosphine ligands (see e.g., [12,13]), modification of a c i d i c surface properties [14-16], s e l e c t i v e poisoning of acid s i t e s [17], t i t r a t i o n of these properties [18,19], and f i n e tuning of z e o l i t e pore geometries for shape s e l e c t i v e c a t a l y t i c reactions [20-22].

The chemisorption and protonation of trimethylphosphine i n the acid form of f a u j a s i t e s has been studied by means of IR and P-NMR techniques [8,18,19]. Different p^sphonium species which depend on the degree of loading have been reported. Ρ MAS-NMR resonances between -32 and -58 ppm were assigned to Lewis acid-base complexes with a c i d i c species l i k e ΑΙ«0^ c l u s t e r s generated upon dehydroxylation of the HY z e o l i t e [19].

In contrast to the acid-base reactions discussed above, d e t a i l s of the more severe modifications of z e o l i t e s with other phosphorus compounds l i k e P(0R)~, PCl^ or phosphates are much l e s s understood. The purpose of the present worfc i s to understand i n the above context the I n t e r a c t i o n of HY z e o l i t e with DMP, trimethylphosphine and with trimethylphosphite, r e s p e c t i v e l y . The study also emphasizes the value of s o l i d state NMR and i n s i t u IR techniques as powerful diagnostic tools for phosphorus/zeolite systems.

EXPERIMENTAL 1. Materials

Vapor of dimethylphosphine ( A l f a ) was admitted into a storage f l a s k with dried molecular sieve 4A. Trimethylphosphite and trimethylphosphine (Strem Chemicals) were stored over sieve 4A without further p u r i f i c a t i o n . ΝΗ,Υ z e o l i t e with the composition N a g i N H ^ ^ A l ^ S i . ^y^^S4 n H 2 ° W a S o b t a i n e d f r o m Linde (LZ-Y62). Prior to use, the ammonium form of the z e o l i t e was degassed by heating for 12 hours at 670 Κ under 10 tor r to y i e l d the dry proton form (HY). The l i n e a r heating rate was 2 K/min.

311

312 (IM-2-3)

2. Methods Samples for s o l i d state NMR experiments were prepared as follows. Batches of

dry HY were weighed into a small quartz holder, introduced into a tubular quartz reactor and evacuated at a greaseless vacuumline (10 t o r r ) for 30 min. A degassed and frozen v i a l with the phosphine was allowed to warm up to 273 Κ and dosed manometrically onto the z e o l i t e . After e q u i l i b r a t i n g for 120 min at 295 K, the z e o l i t e was pumped off for 30 min, and weight changes were recorded i n the drybox. Heat treatments were done i n the same reactor under vacuum, with a heating^rate o f . l K/min.

The Ρ and C MAS-NMR spectra were obtained on a Bruker CXP-300 instrument. Andrews type rotors were f i l l e d with ca. 200 mg of sample i n the drybox and introduced into the NMR probe i n a glovebag under flowing nitrogen. Dry nitrogen was used a j the drive gas for the rotor to obtain spinning rates between 2 and 4 kHz. For P, a 30° to 90° pulse with 10 s recycle time was used, depending on the T p to obtain quantitative j p e c t r a . For C, 5 ms cro s s - p o l a r i z a t i o n with 1 to 10 s recycle time was used. Η-decoupling time was 20-60 ms i n both cases. Chemical s h i f t s were referred to 85% ^PO, or (CH^)^Si. No s i g n i f i c a n t oxidation of the phosphines was observed during the NMR experiments.

I n ^ s i t u i n f r a r e d experimentS2were done with self-supporting z e o l i t e wafers (5 mg/cm ) , compacted at 100 kg/cm , i n a controlled-atmosphere c e l l with CaF^ windows connected to a Nicolet 7000 FT-IR spectrometer. Sample treatment was si m i l a r to that of the NMR samples, with the exception of shorter temperature c y c l e s .

RESULTS AND DISCUSSION 1. Acid/base Reactions between Ze o l i t e s and P ( C H 3 ) 3 , PH(CH 3) 2

1.1. Reactions with trimethylphosphine Vapor of trimethylphosphine was dosed into the cage system of dry HY. The

qu a l i t a t i v e d e t a i l s of our r e s u l t s are consistant with both IR and NMR data reported i n the l i t e r a t u r e ^ j e , 1 9 ] .

In F i g . 1, a s e r i e s of Ρ MAS-NMR spectra of trimethylphosphine dosed on dry HY to d i f f e r e n t degrees of loading i s presented. At a temperature of 295 K, the ze o l i t e i s saturated with 5.0 molecules of phosphine per supercage ( 5 . 0 / s . c ) . A sharp resonance at -69 ppm ( F i g . l a ) i s assigned to physisorbed phosphine (2.0/s.c.) and the broader band at -3.4 ppm, proton decoupled, represents 3.0 trimethylphosphonium ions per s.c. In a proton coupled spectrum, a doublet with the t y p i c a l P-H s c a l a r coupling constant of ca. 500 Hz and strong sideband i n t e n s i t y due to P-H dipolar coupling i s observed ( F i g . l b ) .

IR data demonstrate that upon saturation l e s s than 3.0 protons^per s.c. represent the a c c e s s i b l e "supercage protons" observed at 3650 cm since also the 3550 cm band i s reduced i n i n t e n s i t y .

I f 2.8 molecules of trimethylphosphine per s.c. are dosed into the z e o l i t e , protonation i s complete as shown i n F i g . l c : only the phosphonium resonance appears, s h i f t e d to -6 ppm with s i g n i f i c a n t l y reduced sideband i n t e n s i t y . Degassing the sample at 570 Κ under vacuum for 60 min further narrows the phosphonium resonance at -5 ppm with a wel l resolved doublet due to P-H s c a l a r coupling ( F i g . I d ) .

The r e s u l t s of the quantitative dosing and desorption experiments can be understood i n terms of the following model: At lower loadings of the phosphine, there are only phosphonium ions present i n the supercage. Weak repulsion between these species as well as the space a v a i l a b l e i n the cage accoun^for a r e l a t i v e l y high mobility of the ions which r e s u l t s i n a narrow Ρ resonance. I f the loading exceeds the number of protons a v a i l a b l e , a crowded s i t u a t i o n i s expected with trimethylphosphine f i l l i n g up the remaining space and hindering the mobility of^Jhe phosphonium ion, thus changing the chemical s h i f t of the ion to -3 ppm. The Ρ chemical s h i f t of the ion remains -6 ppm up to a loading of 2.8 per s.c. which c l o s e l y corresponds to the maximum number of protons a v a i l a b l e . No evidence can be found for d i f f e r e n t species due to d i f f e r e n t origins of the protons as invoked i n a former study [19]. The data obtained i n

Th. Bein et a l . 313

α) H - d e c o u p l e d

b ) c o u p l e d

1 I I I I ι 1 1 ι ι I I I I I I — I — I — I — I — I — I — I — I I I I — I — I — I I 1 0 0 0 . 0 - 1 0 0

I — I — I — I — I — I — I I I I I I I I I I — I — I — I — ι — I — I — I I I I I I I L

1 0 0 0 . 0 - 1 0 0

P P M

F i g . 1. E f f e c t of pore f i l l i n g on the Ρ MAS-NMR spectrum of P(CH ) adsorbed i n dry ψί z e o l i t e . A, 5.0 per s.c. at 295 K, Η-decoupled. B, spectrum A, H-coupled.

C, 2.8 per s.c. at 295 K, H-coupled. Ij), sample C, degassed at 570 Κ for 60 min, H-coupled.

t h i s study suggest that the chemisorption of trimethylphosphine i n HY i s e s s e n t i a l l y an acid/ base reaction which i s only r e v e r s i b l e under severe degassing conditions.

1.2. Dimethylphosphine as a probe for acid suface s i t e s Dimethylphosphine (DMP) i s a weaker base compared to trimethylphosphine and

d i f f e r e n t behavior i n acid z e o l i t e s can therefore be anticipated. I f HY z e o l i t e i s saturated with DMP and subsequently degassed under vacuum at 295 K, only one species i s detected i n the Ρ NMR at -56 ppm. The Ρ resonance of neat DMP i s

314 (IM-2-3)

at -9£ ppm. We assign the observed species to the dimethylphosphonium ion (DMPH ) adsorbed i n the^zeolite ( F i g . 2 ) . In the IR experiment, DMP shows a strong band at 2289 cm due to the P-H stretching v i b r a t i o n . The i n t e n s i t y of th i s band allows the determination of adsorbed quantities of the phosphine. Upon adsorption of the molecule i n HY z e o l i t e ^ t h e band i s broadened. ( F i g . 3a). The concomitant disappearence of the 3650 cm band indicates complete proton transfer i n the supercage. Two new bands at 2495 and 2450 cm appear. These bands are interpreted as due to the symmetric and antisymmetric P-H stretching vibrations of DMPH generated i n the z e o l i t e . Degassing experiments indicate that adsorption and proton t r a n s f e r are r e v e r s i b l e with DMP ( F i g . 3b). The hydroxyl groups are restored to the o r i g i n a l i n t e n s i t y , whereas both the P-H and C-H bands dissappear.

These features demonstrate some advantages of DMP as a probe molecule for acid s i t e s on oxide surfaces compared to ^rimethylphosphine: In the IR, independent determination of DMP and DMPH i s possible. In the NMR experiment, DMP i s a r e v e r s i b l e probe for acid s i t e s showing no interference with remaining unprotonated species.

F i g . 2. (Top) Ρ M̂ S-NMR of P(CH 3) 2H i n HY, degassed at 295 K, H-decoupled.

2. Reactions of Trimethylphosphite with Zeolites 2.1. Adsorption at 295 Κ

I f HY i s saturated with 3.6 molecules^rimethylphosphite (TMP) per supercage, one dominant species i s observed i n the Ρ NMR at +36 ppm with a moderate sideband i n t e n s i t y (Fig.4a) This resonance indicates a subs t a n t i a l change i n the i s o t r o p i c s h i f t as compared to the value of the s t a r t i n g phosphine at +140 ppm. A small amount of a second species which shows cr o s s - p o l a r i z a t i o n (CP) i s represented by a resonance at +21 ppm.

The C NMR spectrum of the same system i s dominated by resonances in the methoxy-region at +55 and 53 ppm, i n addition to a smaller peak at +8 ppm which i s assigned to P-CH« (Fig.4b). The key for understanding these r e s u l t s i s a rearrangement reaction of the TMP to y i e l d tetracoordinated dimethylmethyl-phosphonate (DMMP) adsorbed i n the z e o l i t e .

A reaction sequence i s proposed which resembles the well-known Arbusov rearrangement of tri a l k y l p h o s p h i t e s :

Th. Bein e t a L 315

F i g . 3. IR spectra of a wafer of HY, degassed at 670 K, loaded with P(CH KH. A, 30 torr of the phosphine added at 295 K. B, degassed at 360, 440 and 610 Κ for 60 min.

A 3 1 - P d e c o u p l e d

ι j ι t ι ι ι l ι ι ι ι t t ι i ι l ι ι ι i ι ι ι t L L I J

1 0 0 0 . 0 - 1 0 0

P P M

I ι I ι I ι I ι I 1 1 9 0 7 0 5 0 3 0 1 0 - 1 0

P P M

F i g . 4. NMR spectra of trimethylphosphite adsorbed on HY z e o l i t e . A, Ρ MAS-NMR of HY,saturated with TMP at 295 Κ ( H-decoupled). B, spectrum of sample A, cross-polarized and Η-decoupled. (X = rotor s i g n a l )

316 (IM-2-3)

Η

0=P(OCH 3) 2

[ 3 1 P = +13 ppm)

(H 3CO) 3P (H 3CO) 2(CH 3)PO +

[ 3 1 P = 31 ppm]

[(H 3CO) 3PCH 3] +

Nucleophilic attack of TMP at a methoxy carbon of protonated TMP generates a trimethoxymethylphosphonium ion which acts as chain propagating species. Reaction of t h i s ion with TMP r e s u l t s i n DMMP. Dimethy^hydrogenphosphite i s expected to be a byproduct of t h i s reaction, and the Ρ resonance of t h i s molecule adsorbed into HY indeed resembles the second species observed upon adsorbing TMP i n HY.

I f DMMP i s adsorbed into HY, both the Ρ and C NMR features are s i m i l a r to those obtained with TMP. This presents strong evidence for the reaction proposed above.

2.2. Infrared r e s u l t s A thin wafer of HY saturated with TMP has been studied i n the infrared c e l l .

Proton t r a n s f e r from both supercage and weaker acid s i t e s towards the adsorbed phosphorus compounds i s observed i n the hydroxyl region^(consumption of the 3650 and 3550 cm bands). A new, broad band at ca. 2440 cm i s i n d i c a t i v e for a P-H inte r a c t i o n ( F i g . 5a).

H+ + (H 3CO) 3P > H 3C-0-P(0CH 3) 2 => (H 3(X» 3PCH 3 +

/ \

F i g . 5. IR spectra of a wafer of HY, degassed at 670 K, loaded with TMP. A, loaded at 295 K(5.5 t o r r ) , degassed at 295 Κ for 30 min. Β, degassed at 440 Κ for 60 min. C, degassed at 610 Κ for 60 min.

Fi g . 6. NMR spectra of TMP/HY adduct, degassed at 670 Κ for 12 hours. A, Ρ MAS-NMR of TMP/HY, H-coupled. B, C MAS-NMR of TMP/Hy, cross-polarized and Η-decoupled. (X = rotor)

Th. Bein et a l . 317

Evidence for the generation of DMMP i s found i n the C-H bending region: The new^methyl group i s represented by a band at 1304, whereas a pair at 146(j)/30 cm accounts for the raethoxy group. In addition, a shoulder at 1250 cm can be understood as being due to the newly generated P=0 double bond.

2.3. Thermal decomposition of the TMP/zeolite adducts Heating the phosphine-loaded wafer i n the inf r a r e d c e l l under vacuum (60 min

at 440 Κ and at 610 K) reduces the o v e r a l l C-H i n t e n s i t y ( F i g . 5b,c). However, the hydroxyl bands are not restored as would be expected upon simple d i s s o c i a t i o n of a phosphonium species. In contrast, the OH-intensity decreases with heating time, in d i c a t i n g an i r r e v e r s i b l e reaction with the phosphorus compound.

NMR data provide further evidence for the species obtained upon thermal desorption treatments. I f TMP adsorbed i n p a r t i a l l y exchanged HY i s degassed at 670 Κ f^y 12 hrs, the rearrangement product DMMP transforms to another species with a Ρ resonance at +13 ppm and strong anisotropy as indicated by the sidebancLintensity ( F i g . 6a).

The C spectrum of TMP heated i n HY at 570 Κ for 12 hrs substantiates the findings of the IR experiments: The methoxy-bands are considerably smaller compared to the system at 295 K, whereas a large f r a c t i o n of methyl groups i s indicated by a resonance at 14 ppm ( F i g . 6b).

Both IR and NMR r e s u l t s suggest that the rearrangement product DMMP reacts i r r e v e r s i b l y with the z e o l i t e hydroxyl groups upon heating under vacuum. This reaction i s accompanied by a loss of methoxy groups which probably desorb from the z e o l i t e as methanol.

We propose the generation of stable condensation products between a (-0) P(0)CH unit and the z e o l i t e framework. Similar behavior of DMMP upon reaction with the hydroxyl groups of ^ 2 ^ 3 n a s keen reported i n the l i t e r a t u r e [3,4], Thermal desorption data together with chemical probing of the modified z e o l i t e w i l l be required to confirm the nature of t h i s reaction, including possible oligomerization of organic fragments i n the pore system.

A more detailed discussion of our studies on organophosphorus and organosilicon chemistry i n z e o l i t e s w i l l be published i n the near future [23].

The technical assistance of R.F. Carver and N. Rapposelli i s g r a t e f u l l y acknowledged.

REFERENCES 1. S. T. L i n and K. J . Klabunde, Langmuir J^, 600 (1985). 2. M. Higo, Y. Owaki and S. Kamata, Chem. L e t t . 1309 (1985). 3. Μ. K. Templeton and W. H. Weinberg, J . Am. Chem. Soc. \07_y 97 (1985). 4. Μ. K. Templeton and W. H. Weinberg, J . Am. Chem. Soc. K)7, 774 (1985). 5. T. Ohgushi, A. Yusa, K. Kinoshita and Y. Yatsurugi, B u l l . Chem. Soc. Jap.

_51, 419 (1978). 6. R. A. Schoonheydt, D. Van Wouwe and H. Leeman, J . C S . Faraday I , 7j5, 2519

(1980). 7. R. A. Schoonheydt, D. Van Wouwe and M. Vanhove, J . C o l l . I n t e r f . S e i . 83^

279 (1981). 8. R. A. Schoonheydt, D. Van Wouwe and H. Leeman, Z e o l i t e s 2> 109 (1982). 9. R. G. Herman, Inorg. Chim. Acta, 34, 119 (1979).

10. G. Geismar and U. Westphal, Z. anorg. a l l g . Chem., 487, 207 (1982). 11. S. P. Banerjee, Thermochim. Acta, _47, 207 (1981). 12. D. K. L i u , M. S. Wrighton, D. R. McKay and G. E. Maciel, Inorg. Chem. 23,

212 (1984). 13. J . P. Collman, J . A. Belmont and J . I . Brauman, J . Am. Chem. S o c , 105, 7288

(1983). 14. W. W. Kaeding and S. A. Butter, J . Cat a l . , 6^, 155 (1980).

318 (IM-2-3)

15. Μ. Derewinski, J . Haber, J . Ptaszynski, V. Shi r a l k a r and S. Dzwigaj, Stud. Surf. S e i . C a t a l . , 209 (1984).

16. Κ. H. Chandawar, S. B. Kulkarni and P. Ratnasamy, Appl. C a t a l . , 4_, 287 (1982).

17. J . Nunan, J . Cronin and J . Cunningham, J . C a t a l . 87̂ , 77 (1984). 18. W. P. Rothwell, W. X. Shen and J . H< Lunsford, J . Am. Chem. S o c , 106, 2452

(1984) . 19. J . H. Lunsford, W. P. Rothwell and W. Shen, J . Am. Chem. S o c , 107_, 1540

(1985) . 20. N. P. Forbus and W. W. Kaeding, U.S. 4,469,806, 4 Sep 1984. 21. N. P. Forbus and W. W. Kaeding, Eur.Pat.Appl. EP 89,787 28 Sep 1983. 22. Z. Gabelica, G. Debras, J . P. Gilson and E. G. Derouane, Calorim. Anal.

Therm., 14, 371 (1983). 23. T. Bein, D. B. Chase, D. R. Corbin, R. D. Farlee and G. D. Stucky, i n

preparation.

top related