phy 113 c general physics i 11 am – 12:15 pm tr olin 101 plan for lecture 2:

Post on 22-Feb-2016

29 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

PHY 113 C General Physics I 11 AM – 12:15 PM TR Olin 101 Plan for Lecture 2: Chapter 2 – Motion in one dimension Time and Position Time and Velocity Time and Acceleration Special relationships for constant acceleration. Some updates/announcements. iclicker exercises: - PowerPoint PPT Presentation

TRANSCRIPT

PHY 113 C Fall 2012 -- Lecture 2 18/29/2013

PHY 113 C General Physics I11 AM – 12:15 PM TR Olin 101

Plan for Lecture 2:

Chapter 2 – Motion in one dimension

1. Time and Position

2. Time and Velocity

3. Time and Acceleration

4. Special relationships for constant acceleration

PHY 113 C Fall 2012 -- Lecture 2 28/29/2013

Some updates/announcements

PHY 113 C Fall 2012 -- Lecture 2 38/29/2013

iclicker exercises:Webassign Experiences so far

A. Have not tried itB. Cannot loginC. Can loginD. Have logged in and have completed one or more

example problems.

Textbook Experiences

E. Have no textbook (yet)F. Have complete physical textbookG. Have electronic version of textbookH. Textbook is on orderI. Other

PHY 113 C Fall 2012 -- Lecture 2 48/29/2013

Comment on Webassign #1 problem:

7. A pet lamb grows rapidly, with its mass proportional to the cube of its length. When the lamb's length changes by 16%, its mass increases by 16.8 kg. Find the lamb's mass at the end of this process.

Problem solving steps1. Visualize problem – labeling

variables2. Determine which basic physical

principle(s) apply3. Write down the appropriate

equations using the variables defined in step 1.

4. Check whether you have the correct amount of information to solve the problem (same number of knowns and unknowns).

5. Solve the equations.6. Check whether your answer makes

sense (units, order of magnitude, etc.).

PHY 113 C Fall 2012 -- Lecture 2 58/29/2013

7. A pet lamb grows rapidly, with its mass proportional to the cube of its length. When the lamb's length changes by 16%, its mass increases by 16.8 kg. Find the lamb's mass at the end of this process.

L

p L

LL

M MM

kLMkLM

i

if

ff

ffii

16.0

kg 8.16

33

kg 8.4611.16

1.16 kg 8.161/

/

1//

:clearsdust When the

3

3

3

3

3

3

33

3

if

iff

if

if

if

ff

LLLL

MM

LLLL

kLkLkL

MM

PHY 113 C Fall 2012 -- Lecture 2 68/29/2013

i>clicker exercise:What did you learn from this problem?

A. It is a bad idea to have a pet lambB. This was a very hard questionC. I hope this problem will not be on an examD. My physics instructor is VERY meanE. All of the above.

PHY 113 C Fall 2012 -- Lecture 2 78/29/2013

Motion in one-dimension

PHY 113 C Fall 2012 -- Lecture 2 88/29/2013

Graphical representation of position (displacement) x(t)

t (s)

PHY 113 C Fall 2012 -- Lecture 2 98/29/2013

Comment: Your text mentions the notion of a “scalar quantity” in contrast to a “vector quantity” which will be introduced in Chapter 3. In most contexts, a scalar quantity – like one-dimensional distance or displacement can be positive or negative.

Another comment: Your text describes the time rate of change of displacement as “velocity” which, in one-dimension is a signed scalar quantity. In general “speed” is the magnitude of velocity – a positive scalar quantity.

PHY 113 C Fall 2012 -- Lecture 2 108/29/2013

Graphical representation of position (displacement): x(t) time rate of change of displacement = velocity: v(t)

t (s)

dtdx

ttxttxtv

Δt

)()()(

:velocity

lim0

4

204040

2040)20()40()(

m/s-s

mm--ss

xxtv

PHY 113 C Fall 2012 -- Lecture 2 118/29/2013

Instantaneous velocity

t (s)

vA

vB

vC

vE

vF

vD

PHY 113 C Fall 2012 -- Lecture 2 128/29/2013

Demonstration of tangent line limit

dtdx

ttxttxtv

Δt

)()()(

: velocityousInstantane

lim0

PHY 113 C Fall 2012 -- Lecture 2 138/29/2013

Average velocity versus instantaneous velocity

dtdx

ttxttxtv

Δt

)()()(

: velocityousInstantane

lim0

AB

AB

AB

t

tB

A

tttxtx

tt

dttv

v

B

A

)()(

)(

: velocityAverage

PHY 113 C Fall 2012 -- Lecture 2 148/29/2013

Average velocity

AB

ABB

A tttxtxv

)()(

:result stated Previouslyiclicker exercise:

This results is:

A. ExactB. Approximate

AB

AB

AB

t

t

AB

t

t

AB

t

t

N

ii

B

A tttxtx

tt

tdx

tt

dtdt

tdx

tt

dttv

N

tvv

B

A

B

A

B

A

)()()()()()(

:Why

1

PHY 113 C Fall 2012 -- Lecture 2 158/29/2013

Webassign Example

PHY 113 C Fall 2012 -- Lecture 2 168/29/2013

Instantaneous velocity using calculus

2765)(

:Suppose42 ttttx

38146)( ttdtdxtv

x

v

PHY 113 C Fall 2012 -- Lecture 2 178/29/2013

Anti-derivative relationship

:m/s 3.0 and 0 suppose -- Example)( :Then

:Suppose

motionelocity Constant v

00

00

0

vxtvxtx

vdtdx

t

x

PHY 113 C Fall 2012 -- Lecture 2 188/29/2013

Velocity

AB

ABB

A tttxtxv

dtdxtv

)()(: velocityAverage

)(

: velocitysInstanteou

PHY 113 C Fall 2012 -- Lecture 2 198/29/2013

Acceleration

AB

ABB

A tttvtva

dtxd

dtdx

dtd

dtdvta

)()(:onaccelerati Average

)(

:onaccelerati sInstanteou

2

2

PHY 113 C Fall 2012 -- Lecture 2 208/29/2013

Rate of acceleration

4

4

3

3

3

3

2

2

2

2

3

3

2

2

:onaccelerati of rate of rate sInstanteou

:onaccelerati of rate sInstanteou

dtxd

dtdx

dtd

dtvd

dtdv

dtd

dtad

dtda

dtd

dtxd

dtdx

dtd

dtd

dtvd

dtdv

dtd

dtda

iclicker exerciseHow many derivatives of position are useful for describing motion:

A. 1 (dx/dt)B. 2 (d2x/dt2)C. 3 (dx3/dt3)D. 4 (dx4/dt4)E.

PHY 113 C Fall 2012 -- Lecture 2 218/29/2013

Anti-derivative relationship

202

100

00

000

)(

)( :Then

0 ,0 and :Suppose

motionon acceleratiConstant

tatvxtx

tavtv

x)x(v)v(adtdv

PHY 113 C Fall 2012 -- Lecture 2 228/29/2013

Examples

2000

202

10000

m/s 8.9 5m/s 0

)(

avx

tatvxx(t)tavtv

v(t)

x(t)

PHY 113 C Fall 2012 -- Lecture 2 238/29/2013

Examples

2000

202

10000

m/s 8.9 5m/s 0

)(

avx

tatvxx(t)tavtv

v(t)

x(t)

PHY 113 C Fall 2012 -- Lecture 2 248/29/2013

Summary

t

t

t

t

dttatvdtdvta

dttvtxdtdxtv

0

0

')'()( )(

')'()( )(

PHY 113 C Fall 2012 -- Lecture 2 258/29/2013

x(t)

v(t)

Another example

PHY 113 C Fall 2012 -- Lecture 2 268/29/2013

From webassign:

mssmsxst

smssmsvst

255/221)5( :5at position

/105/2)5( :5at velocity

22

2

PHY 113 C Fall 2012 -- Lecture 2 278/29/2013

Another example

t

t

dttvtx0

')'()(

m

sx

4533021

)3(

m

sxsx

105 230 )3(

)5(

(m/s)

(s)

PHY 113 C Fall 2012 -- Lecture 2 288/29/2013

Another example -- continued

dttdvta )()(

(m/s)

(s)

2m/s 1003030

03)0()3()(

vvta

2m/s 03500

35)3()5()(

vvta

PHY 113 C Fall 2012 -- Lecture 2 298/29/2013

Special relationships between t,x,v,a for constant a:

t

t

t

t

dttatvdtdvta

dttvtxdtdxtv

0

0

')'()( )(

')'()( )(

:iprelationsh General

200

2

0

21

2100)(

0)(:iprelationsh Special

attvxattvxtx

atvatvtv

PHY 113 C Fall 2012 -- Lecture 2 308/29/2013

Special relationships between t,x,v,a for constant a:

20

20

0

200

0

21)(

21)(

)(:iprelationsh Special

vtva

xtxa

vtvt

attvxtx

atvtv

PHY 113 C Fall 2012 -- Lecture 2 318/29/2013

Special case: constant velocity due to earth’s gravityIn this case, the “one” dimension is the vertical direction with “up” chosen as positive:

a = -g = -9.8 m/s2

y(t) = y0 + v0t – ½ gt2

y0 = 0 v0 = 20 m/s

At what time tm will the ball hit the ground ym = -50m ?

Solve: ym = y0 + v0tm – ½ gtm2

quadratic equation physical solution: tm = 5.83 s

PHY 113 C Fall 2012 -- Lecture 2 328/29/2013

Helpful mathematical relationships(see Appendix B of your text)

g

yygvvt

yytvgtt

gttvyy

mm

mmmm

mmm

02

00

002

200

2

021:for equation Quadratic

21

top related