precisionanalysisofpartitioninginterwelltracertest ... ·...

Post on 18-Jun-2018

213 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

�� NAPL��������� � �� �PITT���������

����*�� ��**��� **��� *��� �*

Precision analysis of Partitioning Interwell Tracer Test

for estimating a NAPL in aquifer

Junko NISHIWAKI*, Changyuan TANG**, Yasuo SAKURA**

Masaru MIZOGUCHI* and Tsuyoshi MIYAZAKI*

* Graduate School of Agricultural and Life Sciences, The University of Tokyo

** Graduate School of Science and Technology, Chiba University

Abstract

Partitioning Interwell Tracer Test (PITT) developed in the petroleum industry is a useful

method to quantify the volume of Non-aqueous phase liquid (NAPL) in contaminated aquifer.

PITT provides us information about the characterization of the NAPL volume and distribution in

relatively large scale area. When we perform PITT, we use the basic assumption that tracers are

partitioned to NAPL completely during PITT. However, the assumption is not verified yet.

Under practical conditions, we have to be careful of (+) loss of NAPL during PITT, (,) NAPL

migration process, (-) sorption of NAPL to organic materials or minerals in aquifer, (.) in-

homogeneous tracer partitioning to NAPL because of the heterogeneous NAPL distribution and

form, (/) accuracy of measuring tracer partitioning coe$cients. The purposes of the study are (+)

to estimate the unknown quantity of NAPL placed in a column filled with glass beads and water,

and in a pipette filled with water, and (,) to analyze the accuracies of these estimations by PITT

method. As a result, the ratios of estimated NAPL volumes and actual NAPL volumes ranged

from *./3�+... The reliability of NAPL estimation by means of PITT decreased when the flow

rates of tracers were too low.

Key words : PITT, NAPL, column experiment, pipette experiment

+� � � � �

��� ������������� !"NAPL

#Non-Aqueous Phase Liquid ; $%�&�'()*+,-%�./01�23456�789:;+< =>=,?-"01@ABCDEFGH ;"G� I�JKL�./�,-%M)NO+01PQR+;BSTPQ"UV�WX3YZ�[2\ +< ]"^� ,-)_`a+01�b�cdefga+\I�h�iG"jk�lmnG�23op� qdrfga+\01�bcst

)BuvGH ;\;w�23op+<NAPL"_`xyB�zGR+3� 56"{�� $%�&GR+|}%\B~�=|�\=:_`a+< ]=:=�=�� ��%�L)���@)_`a+#Oolman et al., +33/ ; Frind et al., +333(<� ��9:;+�� 01���_`�UV��\=:B� �l���������� �l������������ !3R+< =>= NAPL�����c�+|})�� �?���� #REV( "L��B� q�)� ��¡G¢£9+����"m¤��c¥¦:;

*§¨e©e©ª«©o�¬©­®¬ ¯++-�20/1 °¨±�o +�+�+**²�e©e©ª³´¬©­®¬ ¯,0-�2/,, µ�±�o +�--

���� : PITT� NAPL� ¶·¸¹�� º»¼n¹�

J. Jpn. Soc. Soil Phys.

./"��&No. 31, p. +-,. �,**.�

� �Mayer and Miller, +33,�� �������� ��������������������� NAPL

������������ �!"#$�%&'���'���� NAPL�

�( �� PITT �Partitioning Interwell Tracer

Test� �)�� PITT�� ��*����������� +31*���*�+,��-.���'��� �-�/��*�0��123��4� PITT�����NAPL���5��'�4�� ��67�� �Jinet al., +33/�� 7.�� 8�9:�!�;< �Wilson and

Mackay, +33/ ; Hunkeler et al., +331 ; Deeds et al.,

+333, ,*** ; Whitley et al., +333�� =>?�=@A��BCDE��FG��H �Jin et al., +331�� IJ�KL��MN �Young et al., +333 ; Mariner et al., +333��7OPO#MN�Q�.�'4���-� PITT� NAPL����F�)��RD�

'4�S��� !"S4TU-)�� �.� PITT

�V#WXY�Z��S� �Dwarakanath et al., +333��)�� �#D[� � NAPL��\]$�^&�NAPL�_`� �NAPL�a��!�bc� �%d$�e&�f&�!�����g' �Jin et al.,

+331�� �(hi# NAPL)jk*�!�����(hi#�+� �lm#�����+no�p�Lee et al., +332 ; Dwarakanath and Pope, +332� #q�U4'�� Ors���t,7�'4#4�-�� ����NAPL� �uv�./��]

�q�!"��+7��-�4"<w0�U4'�t,�� 7.#�V#xy����(z{� !�)�� �#D[� �����+�^4'� ����NAPL��|}12~� |}�]� ����3������#� �4#q�bc�5.-���67�)��8MN�9:�� NAPL������ PITTV#�;�G�9:8�K�5.-������)�� ����� ���^!������4� PITT<�9:��4� PITTV#���� NAPL������|}=12~�bc� ^!�����>�bc������

,� PITT����

,�+ PITT���PITT��� ��]�^&��+����:����)�� PITT�0���3�F?@T�"����0���3�AB�'� ���� NAPL��������( �)�� �-�<j�� 0�&��3�C�D���D������ �3��H�S�4.�'4��

�/:��O�� 0��zEG�)������!"�i�uy�FG^!�H����I��� ��� FG�-.�C��� �0�&���+�J�+G�6�o�K�&�� ���� H��� �L#M3��N�� �  +��J�+����NAPL�O&'H���P��

�� i��+����� ¡¢�&��-��)��+no �KN,W� �Q�£4 NAPL�v¤�+7����� NAPL$��+7�'4��]r&J�+���!¥SH���P����]�R��� ���+�!�S¦§T��]Y �R¨� ��4' NAPL�����( � PITT�)��

,�, PITT���PITT�!�'U.��©Sª7#«V��� NAPL

� VN�)¥� ¬­�®7�� �Jin et al., +33/��

VN¯q�ttp°ttn�

KN�W±±±±±±±±±±±±�,²+�

���� ttp��+����Wh���] �min�� ttn

�J�+����Wh���] �min�� KN, W �NAPL���+no� q �����X³�]���mLmin°+� �)��Wh���] ttp, ttn�� ���&��./�Y¦���Z�7���C�S¦§T�����´��������S��� q[.S¬­�®7�� �Jin et al., +33/ ; Young et al., +333��

tti¯ *

*

����� ��������� �� ��

��� �±±±±±±±±±�,²,�

���[µ¶ i��+ �partitioning� �·\�� p, O��J�+ �non-partitioning� �·\�� n�).D�� Cd�]¬¸���L# �C-C*���Cin-C*� �)¥�C*, Cin� �¹�� º\L#�FGL#�)�� t��]

��+ <��� PITT»^ Fig. + Schematic diagram of PITT in a field.

%d�&_G ` 31¼ �,**.�14

�min�� tf���������� �min�� tin��������� �min� ��������������� NAPL������ KN, W���������� �������

KN�W�Ci�N

Ci�W���������������,�-�

� !"�� ##�� Ci, N� NAPL������� i

���� Ci, W��$�������� i�������%�������&��'� �()�* ,+�,�(- .�/0"�� � +�- �� ������������+1234�5.� 6� 34!� KN, W. �,.

-� 7� 80�9"�#��(1#�� � ,�- �� ���������"��� NAPL"�:���!"� #��� ��;�� <�(=� >����$?�@�A=%!1#����� BC�D#�&"��������E'��� F(� ,+�">���E'.� G((34�5�*��)9�#��()� &"�*�H,+�"�+,-.�IJ�K/��/0!"�� 6�.�2� L1��10"� PITT�2 3�*� �M6� ,+�- �456�NO!"���PQ� 7BR�S01�� #�#��B8!�T9&��#P����

-� � � � �

�9� 7BR��1������������0 6�� ��U� V: *..,�(�WQ�;X + mm�YZ[�\���]<6�^Z_�� NAPL.=`&��@� PITTabcBR �^Z_BR� �� >12��� NAPL.d?�=`&��@� PITTabcBR�efg�BR� �h��� ^Z_BR�@ABC��PITTabc�62� ��efg�BR� PITT3��i�!j�#��D!�6� W�Ek(l� NAPL�F����GHm?. PITT� &(no��E'�Hp�IJ�Iq&��r�Bs6�� tu�BR�BRJK�LMv��12BR C� wWxBR P��0n&������HNAPL� F�NJK�62Yyz

{�|Z}~� �FID : OP GC+.B� %$Yyz� ��1���NQ��� ,R�S��z|Z_�^Z_���� 1*� �0 min�� +R��� +**� �0 min�� ����+-*� �0 min�� S�: +/�min�+, ����y����� ,**�� b~y����� ,**�� �� ,���� !0�� T��������62����c� ��������62 .��c ,f����c �%$ .M,P� ��NAPL�62���yzz���� �%$ TCE� ��1��

-�+ ������������ .M,P������� �g��RW�� 6������� �����c� .M,P��'��U� +* mL� TCE ,.* mL �VFW / : +� �X�Y���cZ�[�6� ������U�"���������C� �Yyz�0 6�� ������U������C*� �62� ,/� /*� +**� ,** ppm� .�\��1���g��R�w/�U��].�������&IJ�^ ��r�� -�\�Q��� 6��&(no���]j9� +_`K6��a �No. +�� ��]j9� ,

_`K6��a �No. ,�� � +,� `KU� /� �]&��1Q¡¢� ,bc6��a �No. -� ���� No.

+� No. ,�W£80� TCE�������U��+,d-..e¤6(1�'� TCE�>���������� e¤�+12� No. +� No. -80� TCE��������+,d-..�]�W�2e¤6��'���������� e¤�+12¥f�¦p��19"�Q��+12*� �];U� TCE.�"���§�21���� �]U ,� `K!j�U��"� /.*¨+*�- mL��12Yyz���������C� ��N6�� %���� C*, C��1� !0��©ª«�h���'�gh�s&#�� Ci, W� Ci, N�t� r2� �,. -� 7W� KN, W�¬r��

-�, �������-�,�+ �������YZ[�\�]<6�YZ^Z_ �,/ cmi� jX +.2 cm� �k;� 2� $l80 &F­���MASTER FLEX 1/+3�*/� ��12mn��@A!j�� [�\�&®�o¯�r� ^Z_pq���c°�c��g±��62r�6�� ��U­���s²!j� NAPL�$l>�t³�o¯�r�^Z_�A�����K6 �u ,�� NAPL�62 TCE�^Z_vl80��6� �u�A, B�� BR� TCE� +´4�µ�!j��' �C+� �� u ,�WQ� ,´4��w!j��' �C,� � ,�\�6��BR C+�� 0.* mL� TCE�^Z_Nl� ���

����¶80wW� 1.* cm� +�x�:�·�8������6�� ��BR C,��� TCE� -.* mL9+ ,�x��/2��6� ��������¶80wW� +* cm, ,* cm�� C+, C,�*�y TCEF� 0.* mL�zF����

TCE��U������'U� +.*¨+*�, mL�¸ �{ *.+ s� ��6� ¹� &F­����12mn��|>º»6�� &F�pBR�*� *.*0 mL min�+�6��BR� /� ¼�� ^Z_Oq80���cZ�|>

�M : }n NAPLF2 ��r���������R �PITT� ���6�+12 15

��������� ��� ���������������������������� !�"#$%�&'()� *+�" � + /.*,+*-- mL�./�0123�45�6�78�9:� ;<�"=<>78?@ ABCDEF G<45�6�HIJKLM A,. ,NF �O�" A,. +F N�./�45�6�P�Q:� N A,. ,F +RST#+UVLMWtX��" 45�6�78?@+YZ[\]�� C+, C,X^� +* min, 78?@+_;[\]��`a�YZb"cY��*>d> 3/," +*.* minX� %" RST#+#eR�*>d> .-" -1X�

-�,�, �������+* mL.+f��gh�4� ,ijk;l� Amno

0* cmF pqrsX At -F� gh�4uv�wK��xy;l" TCE+z{�����gh�4|}vAt~A, BF � TCE��vX�pq��[� TCEP" TCE��" 45�6�����/� .����:� pq P+� TCE ..* mL�gh�4��+|}v� +���~����" 45�6����" wK�� *.*0 mL min-+��� pq P,

��� P-� TCE ..* mL� ,#e� ,��#�����" �P�*>d> *.*0" *.+, mL min-+X� P

.� TCE /.* mL� ,#e� ,��#�����"

��, ���pq�NtFig. , Setup for column experiments.

��- gh�4pq�NtFig. - Setup for pipette experiments.

��+��� � 31� A,**.F16

��� *.+, mL min�+���� �� TCE���� ���������������������� ��� !� TCE"#�����$%&'()*���+� ��,��� �����,�� -./�����01���234 5��6��� � 47���-./8�� TCE���9�:;�<��=>�"?@+A��BC��DEFE�� 4�G%&�H���,�����4�� TCE�+I&>�+� TCE +.*

mL�J%&����4KH�� � LMN4� +�O%��������� -./P�������QRC +.*S+*�, mL����T(��4UV���� D�WXRCY��Z[\+]� 4�^_`��� a ��b� ��0 TCE�cY�de�fgh� �i�+*&� >>+� j k,. ,l �mn����opVqt����� rs��tuv4w&�H����xy�<�zA��{+� P+|P.+DEFE +*� ,*�1� / min, xy�<�}B��{+�~��zA����z+DEFE 0**� +*2*� -0*� +31+min�������mn����Im�DEFE ..� .+� ,1� ,,����

.� � � � �

.�+ ���� .������� � /� .M,P��/�� ��4O%� ������� kNo. +, No. ,, No. -l +�,Yxy4��xy kC*l +���n kC�C*l 4� ���������xy kppml 4�&�

� .��������� No. +, No. ,, No. -�)�9�:;��xy��=xy+*��� >�>�RC� ������ TCE��� �9�:;�=>�"�@+A&� � ���RC k,. -l j4�=� KN,W4KH&�� �*.*1|*.+-����}B=n4O��� ��"�������� TCE�J%&�� �����@+A&�H� KN, W�*���������#�� /�� .M,P� No. +, No. ,, No. -�)����xy��o���� TCE��� "�@+A&� BC�����R�� No. +��0 No. ,������46�� No. -�xy�o"zA=>�RC� ��%&>�+���� TCE��� "�6� %��&>�"¡R&� k,. -l j4�=�¢£�� .M,P�� ¤m�� No. +��0 No. ,+�DEFE 2.,2�1.0-� No. -+� +*..��� No. -" JinC k+331l +�=CE�=& KN, W�+*.,��=n4O��� � ¤m�� � "�¥�¦%&�+�V�pV��)�§¨%&� �R�� �� � +©�=ªpV�����NAPL�"«¬�����=E­�� "�¥�¦%&��®��pV�¯°CE&�>��H� No. +, No. ,��=������NAPL����"«¬+���� "�¥�¦��R��"� No. -�����'(��� "�¥�¦���¯°CE&��fgh� � -./� ��±&�²³�pV�

2|,*pV+*&"� ������´�µ¶4¯����� ��� ������������ � ������ .M,P4a���� BC�� �·¸46

�. ��&�����xy�¹tpV���LMº+������� �TCE� Fig. . Partitioning of ethanol between aqueous and TCE phases under di#erent

tracer initial concentrations, time and stirring conditions.

�� : ³� NAPL�cY��H�� ���� kPITTl �r�»�¼=� 17

����������KN, W�+*.. ����.�, �������� 0�� ++������������ !�"#$% &'� ()�*+,-.�/0 1�23� 4Cmax567�/0� 8/0 4C�Cmax5 � 9)�*:;4min5 <� 9)�:;;=>?@<�*� AB;=�8C��D:;>EFGH@�I� "#$% J<�I�KLMNO.<:;;=6�D PQ��I6R<� S�� TUVWX� ��� .M,P� Cmax 4ppm5*1.Y.� C+6 -12� --.2� C,6 .-1� -..2� P+6,+.� 3..,� P,6 -./� 0..1� P-6 ,*/� 2,.1� P.6 ,0-�//.-6R<� �Z(%*� ���[W\W 4ttp5 ���]���[W\W 4ttn5 �^_`a:; 4min5 6R<�

.�,�+ �� ���� 0���� 1�1.Y. C+� C,�"#$% &

'�"#$% 4� 0� 15 b6� c !d� .M,P�/0�We>TUVWX�f.�+,-.�� -O�� .M,

P��We:;�f.*� C+�8C� C,63ghQ��S�� TUVWX�/0ij* C+, C,dklmn

��@o &�� h .M,P�/0ij�op*?@q� /0brs�6* C+�8C C,�ij>tuh6RQ�� v�/0wxs�6*� C,�ij* C+�qy6RQ�� -O�� c !d .M,P�/0wxs��zg>brs��8C�tuh6RQ�� S�TUVWX�8C� .M,P�/0ij*� /0brs�� w

xs�d�tuh6RQ��.�,�, ����� ���P+�P.6JO.�"#$% 1.Y.� � 2�++�

&'� ! {�� TCE*����|}�~p6����'C�� ! 4� 2�� ++5 6� TUVWX .M,P

��We�*��� !k���6*@hQ��S�"#$%*� �� !6d/0�We:S6*TUVWX .M,P>klmnop &� 1�� .M,P

�zg>tuh�@q�W��� �n�� -O� P+,

P,, P.� .M,P�/0wxs�6*� @IOh6@���p�/0x�>��Q��

.�- ��NAPL���� !�qJO.�c�[W\W�^_`a:; ttp��� ttn 4min5� S�1.O 4,. +5 ���������� NAPL� VN 4mL5 � +�&'�S���� !����� TUVWX�^_`a:;4min5* C+6 .*2� C,6 -1,6Rq� .M,P6* C+6+,*,*� C,6 +,+**6RQ�� ���hO� mn��TCE>���d1���o���Q� .M,P� TCE

������>�n<�>�h<� -O�� ����� 0.* mL���� NAPL� VN*� C+6 -./ mL,

C,6 .., mL� TCE> ,� ��h.����¡¢�£> ������¤hQ��¥����� !����� TUVWX�^_`a:; 4min5 * P+�P.61.Y. .*+� ,10� +3-� +0.6Rq� .M,P6* P+�P.61.Y. 3+-� +,,,*� /0+�

��/ ?@<�[W\W¦§/0�¨#:;�©ª«¬­6� .M,P�B�TCE��Fig. / Partitioning of .M,P between aqueous and TCE phases under di#erent tracer

initial concentrations, time and stirring conditions.

®¯�°±² ³ 31´ 4,**.518

.3+����� ��� ��� ��� .M,P ������������������ ��� !�"#NAPL$ VN% �& '($ ..* mL�)* P++P-�%,-.- -.* /.. ..- mL, P.�%'($ /.* mL�)* -.2 mL�����

/� � �

/�+ ������� �/012 3456789�:;<� =>?@ABC;-�D��EF:GH�I� =J?@7"#��:�;;�=J?@<% =>GH�I��NAPLK=

>L- NAPLM���* NOPQKR�S:0T�EU:VWXYZ��[ =J?@7\]�:;<�PITT ^_<�:GH�I� =>?@7`a�:�b�cdefg<hij-:�

/�+�+ ��������k��<l� .M,P mOn�o�������p

-�qrL-� st 0 1u ;< j .M,P� TCE�=>L-�;<�� :� Lj� .M,P n�o��� C

+���� C,�p-�qrL-�;<% TCE� ,vw�xy�:z{ sC,u � +vw�!<!��xy�:z{ sC+u B[GH�I�<NAPL< |}~��

��0 �� C+ sTCE 0.* mLu /012Fig. 0 Breakthrough curves of run C+ with 0.* mL of NAPL.

��1 �� C, sTCE -.*�-.* mLu /012Fig. 1 Breakthrough curves of run C, with -.* �-.* mL of NAPL.

�� : �� NAPL$"# �b =>GH�I��� sPITTu ������� 19

����������� ���� C+�� TCE

����������� .M,P������� C, !"#$%&�'�()���� ����*�+,-�� "#./01� 23014� .M,P

�5678�9:;%<�=>?@A��B��� ���� .M,P�1CDE� TCEF��G�HI�JK?L��MN)���� �O�� .M,P� TCEF�18���?4HIL1CPQ���R�S� 9:;%<

�$%&T�JK�UR�56�V���T�JK�L�WU���B�� ���� HIL1CDE�Q������ TCEF��1XYCZ��[#1\� ,

]�� ����� ^��P1_I?`ab���cdW� +]P�e�I�1CDE� ���b������ .M,P�"#./01� C+�=> C,�fg�@A��B��� ���� TCE� ,hi�1��?L

��2 ,- P+ jkl=mno ,.1 cm, mLp+, Zq *.*0 mL minp+r �st56Fig. 2 Breakthrough curves of run P+. Specific surface of TCE is ,.1 cm, mLp+ and

flow rate is *.*0 mL minp+.

��3 ,- P, jkl=mno /.* cm, mLp+, Zq *.*0 mL minp+r �st56Fig. 3 Breakthrough curves of run P,. Specific surface of TCE is /.* cm, mLp+ and

flow rate is *.*0 mL minp+.

uv�wxy z 31{ j,**.r20

��� TCE������� PITT� �������� .M,P����� TCE���������� �!"�#�$%#&'()�* +,-./01��2� C,�34� C+5�6�7!"* �)2� TCE� ,

89,:�);<�=>,2� TCE�����TCE�,��();<" .M,P����?@()� �!""A#BC�)�*�),DE� C+�-./01��F��#G!"�2� TCE� +89,H#H!"

=>,2 TCEI1, .M,P�JK �LM�N� I1�� .M,P��O�PE�!""A#BC�)�*

/�+�, ������� Q;�RS TU 2V++W �XYZRS#2[G��\]^_`_�a_bLM� c5d-.ef1��ghi�,j#klm<�G� -./01���n .M,P�ghi��F��#G!"�� �)2 TCE�aop]q�,rs�tuE"�#�$%#v:)�* aop]

��+* RS P- Twxy��� /.* cm,mLz+, {| *.+,mLminz+W �}~ghFig. +* Breakthrough curves of run P-. Specific surface of TCE is /.* cm, mLz+ and

flow rate is *.+,mLminz+.

��++ RS P. Twxy��� -.. cm,mLz+, {| *.+,mLminz+W �}~ghFig. ++ Breakthrough curves of run P.. Specific surface of TCE is -.. cm,mLz+ and

flow rate is *.+,mLminz+.

�� : JK NAPL|&��"A���]^_`_�S TPITTW ����,�<; 21

�������� TCE������ �� .M,P

����������������������������� ��! TCE"���#$%�� .M,P

�&�'$�������������()���*+��� ����,-.�/0 1���()���*+ .M,P���2.! 34567�89���� .M,P� TCE���! :�; TCE<�=�#$>�?�@AB�CD��EF��/0�GH�! P+, P,, P-� .M,P��()���IJK���)L�M.�! 34567���()��NO�P.��.��0 G�� .M,P� TCE��"����;! TCE���� .M,P����� Q �$���������R��,-.�/�! :�S3TU5�VW� ��X��0

/�, PITT���NAPL������� Y,. +Z [��?�\]��E^NAPL� VN YmLZ �6_����� NAPL� Vr YmLZ ���� PITT`� P YVN�VrZ �^ab/0

/� ,� + ��������PITT`� P� C+� *./3! C,� *.1*� TCE� ,cd�e��fg��89�h�� Y� +Z0 G��TCE� ,cd��i���G��#$! ��� NAPL

�jk/lm��n�op��`�q��r���R

��,-.�/0/�,�, ���������PITT`� P� P+sP.�:�t� *.1.! +..! +.+! *.1/

��� Y� +Z0G�.��u,vb/�P�!1wx� NAPL�! j#yz�{�����? P+� P,��ub/0 NAPL

� ,cd�ek� ..* mLx��� P,�E^ NAPL�� /.. mL, +cd�89 YP+Z -.* mL�X��0 be|!34567��}~��67�R!�D NAPL��89��:�������?/�� NAPL���'E^b/�q� ���0 �� PITT`�� P+�*.1.! P,� +..�O|.R +.*.�����X$!E^`��#?��?-��0��! P+sP.����?�lm���n����r?�,vb/0 P+sP.:�t��lm���n� ,.1!/.*! /.*! -.. cm, mL�+�X$! R�lm���n�p�?NO PITT`��h?��^b/�! P,� P-�`��h?��F��/0 ��67�� Y� +Z �#��!PITT`��:�t� +..! +.+�X$! �� P,�`��h?��?-?0 P-�`� +.+���b����,-.�/0 P-� .M,P��()������K� P,��u��P.�X��G�.! �����������?G�� PITT`�q���P�� ���,-.�/0 G�G��! !Q���� YttZ �E^[ Y,. ,[Z.R����/0 �.! PITT��;��?��!be| tail��P�������� �)Lb/ YP+! P.Z � tt���"¡��! PITT��;¢�����£���;�h������¤'¥' YP,Z �! tt����¦�w.���p"¡��! 1�����p������§¨b/� tt�©ª"¡�#�'/.�X/0���«�¬��­����r?�®�/�P! �����? P+� P, Y*.*0 mL min�+Z! j#y��� ,$� P-� P. Y*.+, mL min�+Z ���ub/0 1w���p�?89! .M,P������jk/ P-���()�����P.�X$! �����+IJK���)L�'! E^`�R +.+�%��?/0 �� P.�r?����()������M.�! E^`�R *.1/

��w�Rh'���0 1� TCEx��� P-���? Y..* mLZ ������ P+� P,��! .M,P

��()���������X$! `�� *.1.� +..�X1$h?��?-?01�&67��! ������ Jin et al., +33/��M.�/#¯�ª}�°±�²F�����!PITT�j?� NAPL��E^b/�P�[ Y,. +Z �!Q���� Y,. ,[Z �±����/�P! ��£��

��+ 67��j#y��Table + Experimental conditions and results

for all the runs.

67' ttn ttp S q VN Vr P

C+

C,

P+

P,

P-

P.

.*2

-1,

.*+

,10

+3-

+0.

+5*,*

+5+**

3+-

+5,,*

/0+

.3+

³³

,41

/4*

/4*

-4.

*4*0

*4*0

*4*0

*4*0

*4+,

*4+,

-4/

.4,

-4*

/4.

.4-

-42

0.*

0.*

..*

..*

..*

/.*

*4/3

*41*

*41.

+4.

+4+

*41/

ttp : ��«�¬� Y. M , PZ �!Q����Y[ ,. , ; minZ

ttn : (��«�¬� Y�����Z �!Q���� Y[ ,. , ; minZ

q : �� YmL min�+ZVN : E^ NAPL� Y[ ,. + ; �)´�µ67#$¶P��·¸ YK¹+*..,Z ��?�]� ;

mLZVr : 6_� NAPL� Y6_����� TCE� ;

mLZP : PITT`� YVr�VN����^aZS : lm���n Ycm, mL�+Z

*º�+,� » 31¼ Y,**.Z22

����������������� � ���� ���� �Rd� ������� �ttp�ttn� ������ !� "#$%$����&��'()�������)*+� ,�-./�01�23���4���,5��67��)� ��"#$%$��-./)89���:����!5;� � PITT<��=>�?@��5;��A � P-�BCDE��!5;��-./�F�=G PITT<���5� ��� NAPL�"#$%$��HI��J��KG��L ��� M�� �;�� HI��J��K>���N�O�G P,��P��<���5��;A ��� HI��J��KG��� �N�O��Q�G���R�4�� �G,� �� �N�S)TG�S�S�� �BC���N�O�G P+� P,�� PITT

<���;A � ��)U��� 6V� Jin et al.,

+33/�W�� � �5�� X�Y � Z[\�!G�� *.*/mL min]+^*.+/mL min]+��N�BC�_G� ������ /^++��� A � �������BC���� �2^,*����"�#�� ���� `$_a��K BC �Dria, +323� )b�� cd��e)P������ � Jin5�� cd���e�%f�g !)�������� hi)jk�l&��mK��� n� �N��K�Q'(���op�'�e1q�rs(t� �� � � �A�� hi)jk�u�b��"#$%$�N�PITT<�@7� !)v)� ;�l&���*)4��G,�

0� � �

�wx�+��� NAPL,y&� !� PITT<��)!t��5;)��� n� �� !)��"#$%$ �.M,P� �'��"#$%$ �z{|$}� ��!G� NAPL�~�0q�HI��J� 8b��N��G� PITT<�����*+�-m ���DE� �[��$��Y � Z[\BC��

� PITT<� *./3^*.1*�.��� TCE,�y&����K� �TCE���"#$%$��HI��J��KG�K) PITT<��=>���y��� ��)��bn/��� ���"BC�� � PITT

<� *.1.^+..�.��� TCE,�y&�K��=GPITT<���)� TCE�"#$%$��HI��J��KG��4�� n� �"#$%$�N�O��Q� PITT<���V���a;A �o���� PITT�wx�� "#$%$����cd

�)�e)%��G�G��&�V�_a�� ��op������)0+� wx���� � �wx��� ��op��_)8G�� �N� NAPL��J�"#$%$���op�u�U ����G�� � NAPL,y&<��@7�����1�� G�

2� � �

�wx�_�) n� �2�� ¡¢£$"¤¥¦¥§wx¤¥{$�¨3©4ª«¬� � ­®¯°±)��wx�²5)8G�³)´6�5µ¶W7���G �K�� � � � #·¢$�6 �,8� )�)¸�¶W��G �K�� � ¹>º»9����

�����

Deeds, N.E., Pope, G.A. and McKinney, D.C. (+333) :

Vadose Zone Characterization at a Contami-

nated Field Site Using Partitioning Interwell

Tracer Technology. Environmental Science and

Technology, -- (+0) : ,1./�,1/+.

Deeds, N.E., McKinney, D.C. and Pope, G.A. (,***) :

Laboratory characterization of non-aqueous

phase liquid/tracer interaction in support of a

vadose zone partitioning interwell tracer test.

Journal of Contaminant Hydrology, .+ : +3-�,*..

Dria, D.E. (+323) : A Study of three-phase relative

permeabilities and dispersivities under carbon

dioxide flooding conditions in a heterogeneous

carbonate core, Ph. D. dissertation, Univ. of

Texas, Austin.

Dwarakanath, V. and Pope, G.A. (+332) : New Ap-

proach for Estimating Alcohol Partition Coe$-

cients between Nonaqueous Phase Liquids and

water. Environmental Science and Technology,

-, (++) : +00,�+000.

Dwarakanath, V., Deeds, N. and Pope, G.A. (+333) :

Analysis of Partitioning Interwell Tracer Tests.

Environmental Science and Technology, -- (,+) :

-2,3�-2-0.

Frind, E.O., Molson, J.W., Schirmer, M. and Guiguer,

N. (+333) : Dissolution and mass transfer of multi-

ple organics under field conditions : The Borden

emplaced source. WATER RESOURCES RE-

SEARCH, -/ (-) : 02-�03..

Hunkeler, D., Hoehn, E., Hohener, P. and Zeyer, J.

(+331) : ,,,Rn as a Partitioning Tracer To Detect

Diesel Fuel Contamination in Aquifers : Labora

�: : � NAPL,y&� !���"#$%$¼C �PITT� �)!t)TG� 23

tory Study and Field Observations. Environ-

mental Science and Technology, -+ : -+2*�-+21.

Jin, M., Delshad, M., Dwarakanath, V., McKinney, D.

C., Pope, G.A., Sepehrnoori, K., Tilburg, C.E. and

Jackson, R.E. (+33/) : Partitioning tracer test for

detection, estimation, and remediation perform-

ance assessment of subsurface nonaqueous

phase liquids. WATER RESOURCES RE-

SEARCH, -+ (/) : +,*+�+,++.

Jin, M., Butler, G.W., Jackson, R.E., Mariner, P.E.,

Pickens, J.F., Pope, G.A., Brown, C.L. and

McKinney, D.C. (+331) : Sensitivity Models and

Design Protocol for Partitioning Tracer Tests in

Alluvial Aquifers. Ground Water, -/ (0) : 30.�31,.

Lee, C.M., Meyers, S.L., Wright, C.L., Coates, J.T.,

Haskell, P.A. and Falta, R.W. (+332) : NAPL

Compositional Changes Influence Partitioning

Coe$cients. Environmental Science and Tech-

nology, -, (,,) : -/1.�-/12.

Mariner, P.E., Jin, M., Studer, J.E. and Pope, G.A.

(+333) : The First Vadose Zone Partitioning

Interwell Tracer Test for Nonaqueous Phase

Liquid and Water Residual. Environmental Sci-

ence and Technology, -- (+0) : ,2,/�,2,2.

Mayer, A.S. and Miller, C.T. (+33,) : The influence of

porous medium characteristics and measure-

ment scale on pore-scale distributions of residual

nonaqueous -phase liquids. Journal of Contami-

nant Hydrology, ++ : +23�,+-.

Oolman, T., Godard, S.T., Pope, G.A., Jin, M. and

Kirchner, K. (+33/) : DNAPL Flow Behavior in a

Contaminated Aquifer : Evaluation of Field

Data. Groundwater Monitering & Remediation,

Fall : +,/�+-1.

Whitley, G.A., McKinney, D.C., Pope, G.A., Rouse, B.A.

and Deeds, N.E. (+333) : Contaminated Vadose

Zone Characterization Using Partitioning Gas

Tracers. Journal of Environmental Engineering,

+,/ (0) : /1.�/2,.

Wilson, R.D. and Mackay, D.M. (+33/) : Direct Detec-

tion of Residual Nonaqueous Phase Liquid in the

Saturated Zone Using SF0 as a Partitioning

Tracer. Environmental Science and Technology,

,3 (/) : +,//�+,/2.

Young, C.M., Jackson, R.E., Jin, M., Londergan, J.T.,

Mariner, P.E., Pope, G.A., Anderson, F.J. and

Houk, T. (+333) : Characterization of a TCE

DNAPL ZONE in Alluvium by Partitioning

Tracers. Groundwater Monitering & Remedia-

tion, Winter : 2.�3..

����� : ,**.� + � ,2������ : ,**.� . � -*�

���� � 31 �,**.�24

top related