precisionanalysisofpartitioninginterwelltracertest ... ·...

12
腑腗 NAPL 腘腏腒腈腄腉腈腕腔腋腌腀腊腀腎腍 PITT腈腓腖腐腇腅腃腆 膼膱*臃膤**膫臓 臼臸**膧膦 ** Precision analysis of Partitioning Interwell Tracer Test for estimating a NAPL in aquifer Junko NISHIWAKI*, Changyuan TANG**, Yasuo SAKURA** Masaru MIZOGUCHI* and Tsuyoshi MIYAZAKI* * Graduate School of Agricultural and Life Sciences, The University of Tokyo ** Graduate School of Science and Technology, Chiba University Abstract Partitioning Interwell Tracer Test (PITT) developed in the petroleum industry is a useful method to quantify the volume of Non-aqueous phase liquid (NAPL) in contaminated aquifer. PITT provides us information about the characterization of the NAPL volume and distribution in relatively large scale area. When we perform PITT, we use the basic assumption that tracers are partitioned to NAPL completely during PITT. However, the assumption is not verified yet. Under practical conditions, we have to be careful of (+) loss of NAPL during PITT, (,) NAPL migration process, (-) sorption of NAPL to organic materials or minerals in aquifer, (.) in- homogeneous tracer partitioning to NAPL because of the heterogeneous NAPL distribution and form, (/) accuracy of measuring tracer partitioning coe$cients. The purposes of the study are (+) to estimate the unknown quantity of NAPL placed in a column filled with glass beads and water, and in a pipette filled with water, and (,) to analyze the accuracies of these estimations by PITT method. As a result, the ratios of estimated NAPL volumes and actual NAPL volumes ranged from *./3+... The reliability of NAPL estimation by means of PITT decreased when the flow rates of tracers were too low. Key words : PITT, NAPL, column experiment, pipette experiment +腇腅腈腆 膝臯腭腳腽膀腣膖膉臒膠膌膩臹腜腛腞 NAPL Non-Aqueous Phase Liquid ; 臭臇腝腤腦臡 膋臇臧臂膊臏臞腎臈臘腐膪腒腧腘腉腦腓腍腓臡 臵膋腞膊臏臅膜腟臤臍膓臖腙腏腜腉腞腙臄膌臚膯臀臧臂臡膋臇臢腝腌腑腦膊臏至膂腈腦腉腟膃臫至膂腞臆 臥腣臱膁腎膬膻膏臞腚腜腦腖腞膭臡膋腝臗膮腕腦 膊臏臹膵腩膐臝臶膍腕腦腚臄膌膹腡腙腞膳膕腣腰腲 臞腎臊腔膐膿臶膍腕腦腚膊臏臹膵腩膒臑 腝腟膽膚腙腏腜腉腚腉腊臞腎臊腔腦NAPL 腞臗膮膟臛腟腙腈腦腎臘腐腞臁膩臭臇 臉腙腈腦腗腢臇腚腟臺腓腗臕腚腓腘臗膮腕腦腖腓 腘腓腠腓腠臷自臇臔臀腝腹腃腾臅腝臗膮腕腦 Oolman et al., +33/ ; Frind et al., +333腆腀 膨腨腧腘腉腦膷腜膊臏臗膮臆臥膸腓腘腟腰腪腱膀腹腽膀腮腰腃膀膔臮膲膣膡臔腜腛腎腈腦腓腍腓 NAPL 腑腃腕臦腩臠 腦腗腢腝致腜臜臵臒臙臌 REV腞臀膥臟腟膅臲 腝腸腫腃腾腶腙臬腥腧腦腱膀腹腾腞腲腯腃腾腩臣腋腘腉 * 臩膛臝膑臝膑膇臰膑臊膎膑膢膙膎 ++-20/1 臻膛膞+++ ** 臝膑臝膑膇膴臐膎膑膢膙膎 ,0-2/,, +-- 腉腁腋腁腊 : PITTNAPL腬腼腻膶膣腷腺腴腵膶膣 J. Jpn. Soc. Soil Phys. 臧臂腞臹No. 31, p. +-,. ,**.

Upload: haphuc

Post on 18-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

�� NAPL��������� � �� �PITT���������

����*�� ��**��� **��� *��� �*

Precision analysis of Partitioning Interwell Tracer Test

for estimating a NAPL in aquifer

Junko NISHIWAKI*, Changyuan TANG**, Yasuo SAKURA**

Masaru MIZOGUCHI* and Tsuyoshi MIYAZAKI*

* Graduate School of Agricultural and Life Sciences, The University of Tokyo

** Graduate School of Science and Technology, Chiba University

Abstract

Partitioning Interwell Tracer Test (PITT) developed in the petroleum industry is a useful

method to quantify the volume of Non-aqueous phase liquid (NAPL) in contaminated aquifer.

PITT provides us information about the characterization of the NAPL volume and distribution in

relatively large scale area. When we perform PITT, we use the basic assumption that tracers are

partitioned to NAPL completely during PITT. However, the assumption is not verified yet.

Under practical conditions, we have to be careful of (+) loss of NAPL during PITT, (,) NAPL

migration process, (-) sorption of NAPL to organic materials or minerals in aquifer, (.) in-

homogeneous tracer partitioning to NAPL because of the heterogeneous NAPL distribution and

form, (/) accuracy of measuring tracer partitioning coe$cients. The purposes of the study are (+)

to estimate the unknown quantity of NAPL placed in a column filled with glass beads and water,

and in a pipette filled with water, and (,) to analyze the accuracies of these estimations by PITT

method. As a result, the ratios of estimated NAPL volumes and actual NAPL volumes ranged

from *./3�+... The reliability of NAPL estimation by means of PITT decreased when the flow

rates of tracers were too low.

Key words : PITT, NAPL, column experiment, pipette experiment

+� � � � �

��� ������������� !"NAPL

#Non-Aqueous Phase Liquid ; $%�&�'()*+,-%�./01�23456�789:;+< =>=,?-"01@ABCDEFGH ;"G� I�JKL�./�,-%M)NO+01PQR+;BSTPQ"UV�WX3YZ�[2\ +< ]"^� ,-)_`a+01�b�cdefga+\I�h�iG"jk�lmnG�23op� qdrfga+\01�bcst

)BuvGH ;\;w�23op+<NAPL"_`xyB�zGR+3� 56"{�� $%�&GR+|}%\B~�=|�\=:_`a+< ]=:=�=�� ��%�L)���@)_`a+#Oolman et al., +33/ ; Frind et al., +333(<� ��9:;+�� 01���_`�UV��\=:B� �l���������� �l������������ !3R+< =>= NAPL�����c�+|})�� �?���� #REV( "L��B� q�)� ��¡G¢£9+����"m¤��c¥¦:;

*§¨e©e©ª«©o�¬©­®¬ ¯++-�20/1 °¨±�o +�+�+**²�e©e©ª³´¬©­®¬ ¯,0-�2/,, µ�±�o +�--

���� : PITT� NAPL� ¶·¸¹�� º»¼n¹�

J. Jpn. Soc. Soil Phys.

./"��&No. 31, p. +-,. �,**.�

� �Mayer and Miller, +33,�� �������� ��������������������� NAPL

������������ �!"#$�%&'���'���� NAPL�

�( �� PITT �Partitioning Interwell Tracer

Test� �)�� PITT�� ��*����������� +31*���*�+,��-.���'��� �-�/��*�0��123��4� PITT�����NAPL���5��'�4�� ��67�� �Jinet al., +33/�� 7.�� 8�9:�!�;< �Wilson and

Mackay, +33/ ; Hunkeler et al., +331 ; Deeds et al.,

+333, ,*** ; Whitley et al., +333�� =>?�=@A��BCDE��FG��H �Jin et al., +331�� IJ�KL��MN �Young et al., +333 ; Mariner et al., +333��7OPO#MN�Q�.�'4���-� PITT� NAPL����F�)��RD�

'4�S��� !"S4TU-)�� �.� PITT

�V#WXY�Z��S� �Dwarakanath et al., +333��)�� �#D[� � NAPL��\]$�^&�NAPL�_`� �NAPL�a��!�bc� �%d$�e&�f&�!�����g' �Jin et al.,

+331�� �(hi# NAPL)jk*�!�����(hi#�+� �lm#�����+no�p�Lee et al., +332 ; Dwarakanath and Pope, +332� #q�U4'�� Ors���t,7�'4#4�-�� ����NAPL� �uv�./��]

�q�!"��+7��-�4"<w0�U4'�t,�� 7.#�V#xy����(z{� !�)�� �#D[� �����+�^4'� ����NAPL��|}12~� |}�]� ����3������#� �4#q�bc�5.-���67�)��8MN�9:�� NAPL������ PITTV#�;�G�9:8�K�5.-������)�� ����� ���^!������4� PITT<�9:��4� PITTV#���� NAPL������|}=12~�bc� ^!�����>�bc������

,� PITT����

,�+ PITT���PITT��� ��]�^&��+����:����)�� PITT�0���3�F?@T�"����0���3�AB�'� ���� NAPL��������( �)�� �-�<j�� 0�&��3�C�D���D������ �3��H�S�4.�'4��

�/:��O�� 0��zEG�)������!"�i�uy�FG^!�H����I��� ��� FG�-.�C��� �0�&���+�J�+G�6�o�K�&�� ���� H��� �L#M3��N�� �  +��J�+����NAPL�O&'H���P��

�� i��+����� ¡¢�&��-��)��+no �KN,W� �Q�£4 NAPL�v¤�+7����� NAPL$��+7�'4��]r&J�+���!¥SH���P����]�R��� ���+�!�S¦§T��]Y �R¨� ��4' NAPL�����( � PITT�)��

,�, PITT���PITT�!�'U.��©Sª7#«V��� NAPL

� VN�)¥� ¬­�®7�� �Jin et al., +33/��

VN¯q�ttp°ttn�

KN�W±±±±±±±±±±±±�,²+�

���� ttp��+����Wh���] �min�� ttn

�J�+����Wh���] �min�� KN, W �NAPL���+no� q �����X³�]���mLmin°+� �)��Wh���] ttp, ttn�� ���&��./�Y¦���Z�7���C�S¦§T�����´��������S��� q[.S¬­�®7�� �Jin et al., +33/ ; Young et al., +333��

tti¯ *

*

����� ��������� �� ��

��� �±±±±±±±±±�,²,�

���[µ¶ i��+ �partitioning� �·\�� p, O��J�+ �non-partitioning� �·\�� n�).D�� Cd�]¬¸���L# �C-C*���Cin-C*� �)¥�C*, Cin� �¹�� º\L#�FGL#�)�� t��]

��+ <��� PITT»^ Fig. + Schematic diagram of PITT in a field.

%d�&_G ` 31¼ �,**.�14

�min�� tf���������� �min�� tin��������� �min� ��������������� NAPL������ KN, W���������� �������

KN�W�Ci�N

Ci�W���������������,�-�

� !"�� ##�� Ci, N� NAPL������� i

���� Ci, W��$�������� i�������%�������&��'� �()�* ,+�,�(- .�/0"�� � +�- �� ������������+1234�5.� 6� 34!� KN, W. �,.

-� 7� 80�9"�#��(1#�� � ,�- �� ���������"��� NAPL"�:���!"� #��� ��;�� <�(=� >����$?�@�A=%!1#����� BC�D#�&"��������E'��� F(� ,+�">���E'.� G((34�5�*��)9�#��()� &"�*�H,+�"�+,-.�IJ�K/��/0!"�� 6�.�2� L1��10"� PITT�2 3�*� �M6� ,+�- �456�NO!"���PQ� 7BR�S01�� #�#��B8!�T9&��#P����

-� � � � �

�9� 7BR��1������������0 6�� ��U� V: *..,�(�WQ�;X + mm�YZ[�\���]<6�^Z_�� NAPL.=`&��@� PITTabcBR �^Z_BR� �� >12��� NAPL.d?�=`&��@� PITTabcBR�efg�BR� �h��� ^Z_BR�@ABC��PITTabc�62� ��efg�BR� PITT3��i�!j�#��D!�6� W�Ek(l� NAPL�F����GHm?. PITT� &(no��E'�Hp�IJ�Iq&��r�Bs6�� tu�BR�BRJK�LMv��12BR C� wWxBR P��0n&������HNAPL� F�NJK�62Yyz

{�|Z}~� �FID : OP GC+.B� %$Yyz� ��1���NQ��� ,R�S��z|Z_�^Z_���� 1*� �0 min�� +R��� +**� �0 min�� ����+-*� �0 min�� S�: +/�min�+, ����y����� ,**�� b~y����� ,**�� �� ,���� !0�� T��������62����c� ��������62 .��c ,f����c �%$ .M,P� ��NAPL�62���yzz���� �%$ TCE� ��1��

-�+ ������������ .M,P������� �g��RW�� 6������� �����c� .M,P��'��U� +* mL� TCE ,.* mL �VFW / : +� �X�Y���cZ�[�6� ������U�"���������C� �Yyz�0 6�� ������U������C*� �62� ,/� /*� +**� ,** ppm� .�\��1���g��R�w/�U��].�������&IJ�^ ��r�� -�\�Q��� 6��&(no���]j9� +_`K6��a �No. +�� ��]j9� ,

_`K6��a �No. ,�� � +,� `KU� /� �]&��1Q¡¢� ,bc6��a �No. -� ���� No.

+� No. ,�W£80� TCE�������U��+,d-..e¤6(1�'� TCE�>���������� e¤�+12� No. +� No. -80� TCE��������+,d-..�]�W�2e¤6��'���������� e¤�+12¥f�¦p��19"�Q��+12*� �];U� TCE.�"���§�21���� �]U ,� `K!j�U��"� /.*¨+*�- mL��12Yyz���������C� ��N6�� %���� C*, C��1� !0��©ª«�h���'�gh�s&#�� Ci, W� Ci, N�t� r2� �,. -� 7W� KN, W�¬r��

-�, �������-�,�+ �������YZ[�\�]<6�YZ^Z_ �,/ cmi� jX +.2 cm� �k;� 2� $l80 &F­���MASTER FLEX 1/+3�*/� ��12mn��@A!j�� [�\�&®�o¯�r� ^Z_pq���c°�c��g±��62r�6�� ��U­���s²!j� NAPL�$l>�t³�o¯�r�^Z_�A�����K6 �u ,�� NAPL�62 TCE�^Z_vl80��6� �u�A, B�� BR� TCE� +´4�µ�!j��' �C+� �� u ,�WQ� ,´4��w!j��' �C,� � ,�\�6��BR C+�� 0.* mL� TCE�^Z_Nl� ���

����¶80wW� 1.* cm� +�x�:�·�8������6�� ��BR C,��� TCE� -.* mL9+ ,�x��/2��6� ��������¶80wW� +* cm, ,* cm�� C+, C,�*�y TCEF� 0.* mL�zF����

TCE��U������'U� +.*¨+*�, mL�¸ �{ *.+ s� ��6� ¹� &F­����12mn��|>º»6�� &F�pBR�*� *.*0 mL min�+�6��BR� /� ¼�� ^Z_Oq80���cZ�|>

�M : }n NAPLF2 ��r���������R �PITT� ���6�+12 15

��������� ��� ���������������������������� !�"#$%�&'()� *+�" � + /.*,+*-- mL�./�0123�45�6�78�9:� ;<�"=<>78?@ ABCDEF G<45�6�HIJKLM A,. ,NF �O�" A,. +F N�./�45�6�P�Q:� N A,. ,F +RST#+UVLMWtX��" 45�6�78?@+YZ[\]�� C+, C,X^� +* min, 78?@+_;[\]��`a�YZb"cY��*>d> 3/," +*.* minX� %" RST#+#eR�*>d> .-" -1X�

-�,�, �������+* mL.+f��gh�4� ,ijk;l� Amno

0* cmF pqrsX At -F� gh�4uv�wK��xy;l" TCE+z{�����gh�4|}vAt~A, BF � TCE��vX�pq��[� TCEP" TCE��" 45�6�����/� .����:� pq P+� TCE ..* mL�gh�4��+|}v� +���~����" 45�6����" wK�� *.*0 mL min-+��� pq P,

��� P-� TCE ..* mL� ,#e� ,��#�����" �P�*>d> *.*0" *.+, mL min-+X� P

.� TCE /.* mL� ,#e� ,��#�����"

��, ���pq�NtFig. , Setup for column experiments.

��- gh�4pq�NtFig. - Setup for pipette experiments.

��+��� � 31� A,**.F16

��� *.+, mL min�+���� �� TCE���� ���������������������� ��� !� TCE"#�����$%&'()*���+� ��,��� �����,�� -./�����01���234 5��6��� � 47���-./8�� TCE���9�:;�<��=>�"?@+A��BC��DEFE�� 4�G%&�H���,�����4�� TCE�+I&>�+� TCE +.*

mL�J%&����4KH�� � LMN4� +�O%��������� -./P�������QRC +.*S+*�, mL����T(��4UV���� D�WXRCY��Z[\+]� 4�^_`��� a ��b� ��0 TCE�cY�de�fgh� �i�+*&� >>+� j k,. ,l �mn����opVqt����� rs��tuv4w&�H����xy�<�zA��{+� P+|P.+DEFE +*� ,*�1� / min, xy�<�}B��{+�~��zA����z+DEFE 0**� +*2*� -0*� +31+min�������mn����Im�DEFE ..� .+� ,1� ,,����

.� � � � �

.�+ ���� .������� � /� .M,P��/�� ��4O%� ������� kNo. +, No. ,, No. -l +�,Yxy4��xy kC*l +���n kC�C*l 4� ���������xy kppml 4�&�

� .��������� No. +, No. ,, No. -�)�9�:;��xy��=xy+*��� >�>�RC� ������ TCE��� �9�:;�=>�"�@+A&� � ���RC k,. -l j4�=� KN,W4KH&�� �*.*1|*.+-����}B=n4O��� ��"�������� TCE�J%&�� �����@+A&�H� KN, W�*���������#�� /�� .M,P� No. +, No. ,, No. -�)����xy��o���� TCE��� "�@+A&� BC�����R�� No. +��0 No. ,������46�� No. -�xy�o"zA=>�RC� ��%&>�+���� TCE��� "�6� %��&>�"¡R&� k,. -l j4�=�¢£�� .M,P�� ¤m�� No. +��0 No. ,+�DEFE 2.,2�1.0-� No. -+� +*..��� No. -" JinC k+331l +�=CE�=& KN, W�+*.,��=n4O��� � ¤m�� � "�¥�¦%&�+�V�pV��)�§¨%&� �R�� �� � +©�=ªpV�����NAPL�"«¬�����=E­�� "�¥�¦%&��®��pV�¯°CE&�>��H� No. +, No. ,��=������NAPL����"«¬+���� "�¥�¦��R��"� No. -�����'(��� "�¥�¦���¯°CE&��fgh� � -./� ��±&�²³�pV�

2|,*pV+*&"� ������´�µ¶4¯����� ��� ������������ � ������ .M,P4a���� BC�� �·¸46

�. ��&�����xy�¹tpV���LMº+������� �TCE� Fig. . Partitioning of ethanol between aqueous and TCE phases under di#erent

tracer initial concentrations, time and stirring conditions.

�� : ³� NAPL�cY��H�� ���� kPITTl �r�»�¼=� 17

����������KN, W�+*.. ����.�, �������� 0�� ++������������ !�"#$% &'� ()�*+,-.�/0 1�23� 4Cmax567�/0� 8/0 4C�Cmax5 � 9)�*:;4min5 <� 9)�:;;=>?@<�*� AB;=�8C��D:;>EFGH@�I� "#$% J<�I�KLMNO.<:;;=6�D PQ��I6R<� S�� TUVWX� ��� .M,P� Cmax 4ppm5*1.Y.� C+6 -12� --.2� C,6 .-1� -..2� P+6,+.� 3..,� P,6 -./� 0..1� P-6 ,*/� 2,.1� P.6 ,0-�//.-6R<� �Z(%*� ���[W\W 4ttp5 ���]���[W\W 4ttn5 �^_`a:; 4min5 6R<�

.�,�+ �� ���� 0���� 1�1.Y. C+� C,�"#$% &

'�"#$% 4� 0� 15 b6� c !d� .M,P�/0�We>TUVWX�f.�+,-.�� -O�� .M,

P��We:;�f.*� C+�8C� C,63ghQ��S�� TUVWX�/0ij* C+, C,dklmn

��@o &�� h .M,P�/0ij�op*?@q� /0brs�6* C+�8C C,�ij>tuh6RQ�� v�/0wxs�6*� C,�ij* C+�qy6RQ�� -O�� c !d .M,P�/0wxs��zg>brs��8C�tuh6RQ�� S�TUVWX�8C� .M,P�/0ij*� /0brs�� w

xs�d�tuh6RQ��.�,�, ����� ���P+�P.6JO.�"#$% 1.Y.� � 2�++�

&'� ! {�� TCE*����|}�~p6����'C�� ! 4� 2�� ++5 6� TUVWX .M,P

��We�*��� !k���6*@hQ��S�"#$%*� �� !6d/0�We:S6*TUVWX .M,P>klmnop &� 1�� .M,P

�zg>tuh�@q�W��� �n�� -O� P+,

P,, P.� .M,P�/0wxs�6*� @IOh6@���p�/0x�>��Q��

.�- ��NAPL���� !�qJO.�c�[W\W�^_`a:; ttp��� ttn 4min5� S�1.O 4,. +5 ���������� NAPL� VN 4mL5 � +�&'�S���� !����� TUVWX�^_`a:;4min5* C+6 .*2� C,6 -1,6Rq� .M,P6* C+6+,*,*� C,6 +,+**6RQ�� ���hO� mn��TCE>���d1���o���Q� .M,P� TCE

������>�n<�>�h<� -O�� ����� 0.* mL���� NAPL� VN*� C+6 -./ mL,

C,6 .., mL� TCE> ,� ��h.����¡¢�£> ������¤hQ��¥����� !����� TUVWX�^_`a:; 4min5 * P+�P.61.Y. .*+� ,10� +3-� +0.6Rq� .M,P6* P+�P.61.Y. 3+-� +,,,*� /0+�

��/ ?@<�[W\W¦§/0�¨#:;�©ª«¬­6� .M,P�B�TCE��Fig. / Partitioning of .M,P between aqueous and TCE phases under di#erent tracer

initial concentrations, time and stirring conditions.

®¯�°±² ³ 31´ 4,**.518

.3+����� ��� ��� ��� .M,P ������������������ ��� !�"#NAPL$ VN% �& '($ ..* mL�)* P++P-�%,-.- -.* /.. ..- mL, P.�%'($ /.* mL�)* -.2 mL�����

/� � �

/�+ ������� �/012 3456789�:;<� =>?@ABC;-�D��EF:GH�I� =J?@7"#��:�;;�=J?@<% =>GH�I��NAPLK=

>L- NAPLM���* NOPQKR�S:0T�EU:VWXYZ��[ =J?@7\]�:;<�PITT ^_<�:GH�I� =>?@7`a�:�b�cdefg<hij-:�

/�+�+ ��������k��<l� .M,P mOn�o�������p

-�qrL-� st 0 1u ;< j .M,P� TCE�=>L-�;<�� :� Lj� .M,P n�o��� C

+���� C,�p-�qrL-�;<% TCE� ,vw�xy�:z{ sC,u � +vw�!<!��xy�:z{ sC+u B[GH�I�<NAPL< |}~��

��0 �� C+ sTCE 0.* mLu /012Fig. 0 Breakthrough curves of run C+ with 0.* mL of NAPL.

��1 �� C, sTCE -.*�-.* mLu /012Fig. 1 Breakthrough curves of run C, with -.* �-.* mL of NAPL.

�� : �� NAPL$"# �b =>GH�I��� sPITTu ������� 19

����������� ���� C+�� TCE

����������� .M,P������� C, !"#$%&�'�()���� ����*�+,-�� "#./01� 23014� .M,P

�5678�9:;%<�=>?@A��B��� ���� .M,P�1CDE� TCEF��G�HI�JK?L��MN)���� �O�� .M,P� TCEF�18���?4HIL1CPQ���R�S� 9:;%<

�$%&T�JK�UR�56�V���T�JK�L�WU���B�� ���� HIL1CDE�Q������ TCEF��1XYCZ��[#1\� ,

]�� ����� ^��P1_I?`ab���cdW� +]P�e�I�1CDE� ���b������ .M,P�"#./01� C+�=> C,�fg�@A��B��� ���� TCE� ,hi�1��?L

��2 ,- P+ jkl=mno ,.1 cm, mLp+, Zq *.*0 mL minp+r �st56Fig. 2 Breakthrough curves of run P+. Specific surface of TCE is ,.1 cm, mLp+ and

flow rate is *.*0 mL minp+.

��3 ,- P, jkl=mno /.* cm, mLp+, Zq *.*0 mL minp+r �st56Fig. 3 Breakthrough curves of run P,. Specific surface of TCE is /.* cm, mLp+ and

flow rate is *.*0 mL minp+.

uv�wxy z 31{ j,**.r20

��� TCE������� PITT� �������� .M,P����� TCE���������� �!"�#�$%#&'()�* +,-./01��2� C,�34� C+5�6�7!"* �)2� TCE� ,

89,:�);<�=>,2� TCE�����TCE�,��();<" .M,P����?@()� �!""A#BC�)�*�),DE� C+�-./01��F��#G!"�2� TCE� +89,H#H!"

=>,2 TCEI1, .M,P�JK �LM�N� I1�� .M,P��O�PE�!""A#BC�)�*

/�+�, ������� Q;�RS TU 2V++W �XYZRS#2[G��\]^_`_�a_bLM� c5d-.ef1��ghi�,j#klm<�G� -./01���n .M,P�ghi��F��#G!"�� �)2 TCE�aop]q�,rs�tuE"�#�$%#v:)�* aop]

��+* RS P- Twxy��� /.* cm,mLz+, {| *.+,mLminz+W �}~ghFig. +* Breakthrough curves of run P-. Specific surface of TCE is /.* cm, mLz+ and

flow rate is *.+,mLminz+.

��++ RS P. Twxy��� -.. cm,mLz+, {| *.+,mLminz+W �}~ghFig. ++ Breakthrough curves of run P.. Specific surface of TCE is -.. cm,mLz+ and

flow rate is *.+,mLminz+.

�� : JK NAPL|&��"A���]^_`_�S TPITTW ����,�<; 21

�������� TCE������ �� .M,P

����������������������������� ��! TCE"���#$%�� .M,P

�&�'$�������������()���*+��� ����,-.�/0 1���()���*+ .M,P���2.! 34567�89���� .M,P� TCE���! :�; TCE<�=�#$>�?�@AB�CD��EF��/0�GH�! P+, P,, P-� .M,P��()���IJK���)L�M.�! 34567���()��NO�P.��.��0 G�� .M,P� TCE��"����;! TCE���� .M,P����� Q �$���������R��,-.�/�! :�S3TU5�VW� ��X��0

/�, PITT���NAPL������� Y,. +Z [��?�\]��E^NAPL� VN YmLZ �6_����� NAPL� Vr YmLZ ���� PITT`� P YVN�VrZ �^ab/0

/� ,� + ��������PITT`� P� C+� *./3! C,� *.1*� TCE� ,cd�e��fg��89�h�� Y� +Z0 G��TCE� ,cd��i���G��#$! ��� NAPL

�jk/lm��n�op��`�q��r���R

��,-.�/0/�,�, ���������PITT`� P� P+sP.�:�t� *.1.! +..! +.+! *.1/

��� Y� +Z0G�.��u,vb/�P�!1wx� NAPL�! j#yz�{�����? P+� P,��ub/0 NAPL

� ,cd�ek� ..* mLx��� P,�E^ NAPL�� /.. mL, +cd�89 YP+Z -.* mL�X��0 be|!34567��}~��67�R!�D NAPL��89��:�������?/�� NAPL���'E^b/�q� ���0 �� PITT`�� P+�*.1.! P,� +..�O|.R +.*.�����X$!E^`��#?��?-��0��! P+sP.����?�lm���n����r?�,vb/0 P+sP.:�t��lm���n� ,.1!/.*! /.*! -.. cm, mL�+�X$! R�lm���n�p�?NO PITT`��h?��^b/�! P,� P-�`��h?��F��/0 ��67�� Y� +Z �#��!PITT`��:�t� +..! +.+�X$! �� P,�`��h?��?-?0 P-�`� +.+���b����,-.�/0 P-� .M,P��()������K� P,��u��P.�X��G�.! �����������?G�� PITT`�q���P�� ���,-.�/0 G�G��! !Q���� YttZ �E^[ Y,. ,[Z.R����/0 �.! PITT��;��?��!be| tail��P�������� �)Lb/ YP+! P.Z � tt���"¡��! PITT��;¢�����£���;�h������¤'¥' YP,Z �! tt����¦�w.���p"¡��! 1�����p������§¨b/� tt�©ª"¡�#�'/.�X/0���«�¬��­����r?�®�/�P! �����? P+� P, Y*.*0 mL min�+Z! j#y��� ,$� P-� P. Y*.+, mL min�+Z ���ub/0 1w���p�?89! .M,P������jk/ P-���()�����P.�X$! �����+IJK���)L�'! E^`�R +.+�%��?/0 �� P.�r?����()������M.�! E^`�R *.1/

��w�Rh'���0 1� TCEx��� P-���? Y..* mLZ ������ P+� P,��! .M,P

��()���������X$! `�� *.1.� +..�X1$h?��?-?01�&67��! ������ Jin et al., +33/��M.�/#¯�ª}�°±�²F�����!PITT�j?� NAPL��E^b/�P�[ Y,. +Z �!Q���� Y,. ,[Z �±����/�P! ��£��

��+ 67��j#y��Table + Experimental conditions and results

for all the runs.

67' ttn ttp S q VN Vr P

C+

C,

P+

P,

P-

P.

.*2

-1,

.*+

,10

+3-

+0.

+5*,*

+5+**

3+-

+5,,*

/0+

.3+

³³

,41

/4*

/4*

-4.

*4*0

*4*0

*4*0

*4*0

*4+,

*4+,

-4/

.4,

-4*

/4.

.4-

-42

0.*

0.*

..*

..*

..*

/.*

*4/3

*41*

*41.

+4.

+4+

*41/

ttp : ��«�¬� Y. M , PZ �!Q����Y[ ,. , ; minZ

ttn : (��«�¬� Y�����Z �!Q���� Y[ ,. , ; minZ

q : �� YmL min�+ZVN : E^ NAPL� Y[ ,. + ; �)´�µ67#$¶P��·¸ YK¹+*..,Z ��?�]� ;

mLZVr : 6_� NAPL� Y6_����� TCE� ;

mLZP : PITT`� YVr�VN����^aZS : lm���n Ycm, mL�+Z

*º�+,� » 31¼ Y,**.Z22

����������������� � ���� ���� �Rd� ������� �ttp�ttn� ������ !� "#$%$����&��'()�������)*+� ,�-./�01�23���4���,5��67��)� ��"#$%$��-./)89���:����!5;� � PITT<��=>�?@��5;��A � P-�BCDE��!5;��-./�F�=G PITT<���5� ��� NAPL�"#$%$��HI��J��KG��L ��� M�� �;�� HI��J��K>���N�O�G P,��P��<���5��;A ��� HI��J��KG��� �N�O��Q�G���R�4�� �G,� �� �N�S)TG�S�S�� �BC���N�O�G P+� P,�� PITT

<���;A � ��)U��� 6V� Jin et al.,

+33/�W�� � �5�� X�Y � Z[\�!G�� *.*/mL min]+^*.+/mL min]+��N�BC�_G� ������ /^++��� A � �������BC���� �2^,*����"�#�� ���� `$_a��K BC �Dria, +323� )b�� cd��e)P������ � Jin5�� cd���e�%f�g !)�������� hi)jk�l&��mK��� n� �N��K�Q'(���op�'�e1q�rs(t� �� � � �A�� hi)jk�u�b��"#$%$�N�PITT<�@7� !)v)� ;�l&���*)4��G,�

0� � �

�wx�+��� NAPL,y&� !� PITT<��)!t��5;)��� n� �� !)��"#$%$ �.M,P� �'��"#$%$ �z{|$}� ��!G� NAPL�~�0q�HI��J� 8b��N��G� PITT<�����*+�-m ���DE� �[��$��Y � Z[\BC��

� PITT<� *./3^*.1*�.��� TCE,�y&����K� �TCE���"#$%$��HI��J��KG�K) PITT<��=>���y��� ��)��bn/��� ���"BC�� � PITT

<� *.1.^+..�.��� TCE,�y&�K��=GPITT<���)� TCE�"#$%$��HI��J��KG��4�� n� �"#$%$�N�O��Q� PITT<���V���a;A �o���� PITT�wx�� "#$%$����cd

�)�e)%��G�G��&�V�_a�� ��op������)0+� wx���� � �wx��� ��op��_)8G�� �N� NAPL��J�"#$%$���op�u�U ����G�� � NAPL,y&<��@7�����1�� G�

2� � �

�wx�_�) n� �2�� ¡¢£$"¤¥¦¥§wx¤¥{$�¨3©4ª«¬� � ­®¯°±)��wx�²5)8G�³)´6�5µ¶W7���G �K�� � � � #·¢$�6 �,8� )�)¸�¶W��G �K�� � ¹>º»9����

�����

Deeds, N.E., Pope, G.A. and McKinney, D.C. (+333) :

Vadose Zone Characterization at a Contami-

nated Field Site Using Partitioning Interwell

Tracer Technology. Environmental Science and

Technology, -- (+0) : ,1./�,1/+.

Deeds, N.E., McKinney, D.C. and Pope, G.A. (,***) :

Laboratory characterization of non-aqueous

phase liquid/tracer interaction in support of a

vadose zone partitioning interwell tracer test.

Journal of Contaminant Hydrology, .+ : +3-�,*..

Dria, D.E. (+323) : A Study of three-phase relative

permeabilities and dispersivities under carbon

dioxide flooding conditions in a heterogeneous

carbonate core, Ph. D. dissertation, Univ. of

Texas, Austin.

Dwarakanath, V. and Pope, G.A. (+332) : New Ap-

proach for Estimating Alcohol Partition Coe$-

cients between Nonaqueous Phase Liquids and

water. Environmental Science and Technology,

-, (++) : +00,�+000.

Dwarakanath, V., Deeds, N. and Pope, G.A. (+333) :

Analysis of Partitioning Interwell Tracer Tests.

Environmental Science and Technology, -- (,+) :

-2,3�-2-0.

Frind, E.O., Molson, J.W., Schirmer, M. and Guiguer,

N. (+333) : Dissolution and mass transfer of multi-

ple organics under field conditions : The Borden

emplaced source. WATER RESOURCES RE-

SEARCH, -/ (-) : 02-�03..

Hunkeler, D., Hoehn, E., Hohener, P. and Zeyer, J.

(+331) : ,,,Rn as a Partitioning Tracer To Detect

Diesel Fuel Contamination in Aquifers : Labora

�: : � NAPL,y&� !���"#$%$¼C �PITT� �)!t)TG� 23

tory Study and Field Observations. Environ-

mental Science and Technology, -+ : -+2*�-+21.

Jin, M., Delshad, M., Dwarakanath, V., McKinney, D.

C., Pope, G.A., Sepehrnoori, K., Tilburg, C.E. and

Jackson, R.E. (+33/) : Partitioning tracer test for

detection, estimation, and remediation perform-

ance assessment of subsurface nonaqueous

phase liquids. WATER RESOURCES RE-

SEARCH, -+ (/) : +,*+�+,++.

Jin, M., Butler, G.W., Jackson, R.E., Mariner, P.E.,

Pickens, J.F., Pope, G.A., Brown, C.L. and

McKinney, D.C. (+331) : Sensitivity Models and

Design Protocol for Partitioning Tracer Tests in

Alluvial Aquifers. Ground Water, -/ (0) : 30.�31,.

Lee, C.M., Meyers, S.L., Wright, C.L., Coates, J.T.,

Haskell, P.A. and Falta, R.W. (+332) : NAPL

Compositional Changes Influence Partitioning

Coe$cients. Environmental Science and Tech-

nology, -, (,,) : -/1.�-/12.

Mariner, P.E., Jin, M., Studer, J.E. and Pope, G.A.

(+333) : The First Vadose Zone Partitioning

Interwell Tracer Test for Nonaqueous Phase

Liquid and Water Residual. Environmental Sci-

ence and Technology, -- (+0) : ,2,/�,2,2.

Mayer, A.S. and Miller, C.T. (+33,) : The influence of

porous medium characteristics and measure-

ment scale on pore-scale distributions of residual

nonaqueous -phase liquids. Journal of Contami-

nant Hydrology, ++ : +23�,+-.

Oolman, T., Godard, S.T., Pope, G.A., Jin, M. and

Kirchner, K. (+33/) : DNAPL Flow Behavior in a

Contaminated Aquifer : Evaluation of Field

Data. Groundwater Monitering & Remediation,

Fall : +,/�+-1.

Whitley, G.A., McKinney, D.C., Pope, G.A., Rouse, B.A.

and Deeds, N.E. (+333) : Contaminated Vadose

Zone Characterization Using Partitioning Gas

Tracers. Journal of Environmental Engineering,

+,/ (0) : /1.�/2,.

Wilson, R.D. and Mackay, D.M. (+33/) : Direct Detec-

tion of Residual Nonaqueous Phase Liquid in the

Saturated Zone Using SF0 as a Partitioning

Tracer. Environmental Science and Technology,

,3 (/) : +,//�+,/2.

Young, C.M., Jackson, R.E., Jin, M., Londergan, J.T.,

Mariner, P.E., Pope, G.A., Anderson, F.J. and

Houk, T. (+333) : Characterization of a TCE

DNAPL ZONE in Alluvium by Partitioning

Tracers. Groundwater Monitering & Remedia-

tion, Winter : 2.�3..

����� : ,**.� + � ,2������ : ,**.� . � -*�

���� � 31 �,**.�24