prize question: you can make anything …. lignin derivatives with epoxy functionality. chapter in...

Post on 03-Jul-2018

214 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Presentation at FRONTIERS IN BIOREFINING, St. Simons, SC

October 24, 2014

PRIZE QUESTION: YOU CAN MAKE ANYTHING FROM LIGNIN, BUT……. ?

WOLFGANG G. GLASSER cycleWood Solutions, Inc.

C&E News September 24, 1984, pg. 19-20

Coming of age….

Demonstrated Lignin Uses Macromolecular Uses Engineering Plastics Polymeric Foams Th’ plastic Elastomers Carbon Fibers (??)

Degradation Products Vanillin Phenol BTX (??) Commodity Chemicals

HSU, GLASSER. Appl. Polym. Symp. No. 28, 297-307 (1975). Wood Sci. 9(2), 97-103 (1976).

O. H.-H. HSU (1974) U.S. Pat. 4,017,474

D. L. REED (1979)

Modified KRAFT Lignin (ca. 1987)

W.-X. WANG (1988)

ARCO Chemical Company (1989)

TECNARO (ca. 1990)

IBM “Green Card” (1996)

CARBON FIBERS FROM LIGNIN (Picture by Weyerhaeuser Inc.)

A. Dodd, Abstracts of 2012-ACS Conference, San Diego, CA, CELL 229

TECNARO (2010)

TECNARO (2012)

SERGIO ROSSI’s ECOPUMP

cycleWood Solutions (2013)

Engineering Plastics from Lignin (Sponsored by public agencies and private corporations)

I. Synthesis of hydroxypropyl lignin. J. Appl. Polymer Sci. 29(4):1111-23 (1984) II. Characterization of hydroxyalkyl lignin derivatives. J. Appl. Polymer Sci. 29(5):1815-30 (1984) III. Structure property relationships in solution cast polyurethane films. J. Appl. Polymer Sci. 29 (5):1831-41 (1984) IV. Effect of crosslink density on polyurethane film properties--Variation NCO:OH ratio. Holzforschung 38(4):191-199

(1984) V. Effect of crosslink density on polyurethane film properties--Variation in polyol hydroxy content. Holzforschung

38(5):263-269 (1984) VI. Structure-property relationships of PEG-containing polyurethane networks. J. Appl. Polymer Sci. 30:2207-2224

(1985) VII. Structure property relationships of polybutadiene glycol-containing polyurethane networks. J. Appl. Polymer Sci.

30:3809-3823 (1985) VIII. Phenolic resin prepolymer synthesis and analysis. J. Adhesion 17(2):157-173 (1984) IX. Phenolic resin characterization and performance. J. Adhesion 17(3):185-206 (1984) X. Enthalpy relaxation of prepolymrs. J. Wood Chemistry and Technology 4(3):331-345 (1984) XII. Synthesis and performance of lignin adhesives with isocyanates and melamine. Holzforschung 39(6), 345-353

(1985) XIII. Effect of lignin structure on polyurethane network formation. Holzforschung 40(6), 353-360 (19860 XIV. Characterization of chain-extended hydroxypropyl lignins. Journal of Wood Chemistry and Technology 8(3):341-

359 (1988) XV. Polyurethane films from chain-extended hydroxypropyl lignin. Journal of Applied Polymer Science 36:759-772

(1988) XVI. Star-like macromers with propylene oxide. J. Appl. Polymer Sci. 37:3119-3135 (1989) XVII. Effect of molecular weight on polyurethane film properties. J. Appl. Polymer Sci. 37:2961-2971 (1989) XVIII. Bleaching of Hydroxypropyl Lignin with Hydrogen Peroxide XIX. Lignin Derivatives with Epoxy Functionality. Chapter in Lignin: Properties and Materials, ACS Symp. Ser. No. 397,

506-514 (1989) XX. Lignin Derivatives with Acrylate Functionality. Chapter in Lignin: Properties and Materials, ACS Symp. Ser. No.

397, 515-522 (1989). 21. Synthesis and properties of epoxidized lignin-poly(propylene oxide) copolymers. Journal of Wood Chemistry and

Technology13(1), 73-95 (1993) 22. Cure of lignin based epoxy resins. J. Adhesion 40, 229-241 (1993) 23. Network formation of lignin based epoxy resins. Macromol. Chem. Phys. 195, 65-80 (1994)

Multiphase Materials with Lignin I. Blends of hydroxypropyl lignin with poly(methyl methacrylate). Polymer 29: 1021-1029

(1988) II. Blends of hydroxypropyl lignin with poly(vinyl alcohol). Polymer 29: 1030-1036 (1988) III. Polyblends with ethylene-vinyl acetate copolymers. Journal of Wood Chemistry and

Technology 8(2):221-234(1988) IV. Blends of hydroxypropyl cellulose with lignin. J. Appl. Polymer Sci. 37:2399-2415 (1989) V. Effect of lignin structure on blend morphology with hydroxypropyl cellulose. Polymer

1333-1338 (1989) VI. Effect of cellulose derivative structure on blend morphology with lignin. Wood and Fiber

Science 21(1):80-90 (1989) VII. Block copolymers. Polymer 30(3):570-575 (1989) VIII. Interpenetrating polymer networks from polyurethanes and polymethyl methacrylate. J.

Appl. Polymer Sci. 41, 2813-2828 (1990) IX. Effect of lignin content on interpenetrating polymer network properties. Polymer 30(12):

2265-2268 (1990) X. A novel graft copolymer with hydroxyalkyl lignin. Mokuzai Gakkaishi 39, 198-205 (1993) XI. Star-like copolymers with caprolactone. Macromolecules 27, 5-11 (1994) XII. Blends of polyvinyl chloride with lignin-caprolactone copolymers. J. Appl. Polymer Sci.

51, 563-571 (1994) XIII. Block copolymers with cellulose propionate. Polymer 35 (9), 1977-1985 (1994) XIV. Star-like copolymers with styrene. J. Wood Chem. Technol. 14(1), 119-126 XV. Blends of cellulose acetate butyrate with lignin esters. J. Applied Polymer Sci. 74, 448-

457 (1999)

Coming of age….

Demonstrated Lignin Uses Macromolecular Uses Engineering Plastics Polymeric Foams Th’ plastic Elastomers Carbon Fibers (??)

Degradation Products Vanillin Phenol BTX (??) Commodity Chemicals

LIGNIN VALUE Lignin represents one of the lowest-cost

chemical resources available on earth ($0.10-0.20/Kg), depending on source, purity, price of oil. (Commodity Lignins)

Weyerhaeuser (John Tao, NYTimes of August 15, 2010): 10-20 X Fuel equivalent value when isolated. (Refined Commodity Lignins)

DECHEMA (Michels and Wagemann, German Biorefinery Project, Biofuels, Bioprod. Bioref. 4, 263 [2010]): >EU400/t from a 400,000 t dry wood/a biorefinery plant. (Biorefinery Lignins)

LIGNIN MARKETS VS. VALUES (Total Market Potential: 50-100 billion lb from pulp mills)

(Current non-fuels markets: 2 billion lb)

Market Volume

Unit Price (Multiples of Fuel Equivalent Value)

1 10 25 35 50++

Commodity Lignins By-Products of Papermaking

Refined Lignins – Refined by ultrafiltration or modification

of commodity lignins

Biorefinery Lignins – Isolated by Tailor-Made

Pretreatment (“Boutique Lignins”)

Conclusion you can make anything from lignin if you refine by….

GROUP # 2

Fractionate or Modify

GROUP # 3

Tailor-Make (by Pretreatment or Isolation)

GROUP 2 – Refining KRAFT LIGNIN by

FRACTIONATION

Liquid-Solid Extraction (traditional) Liquid-Liquid Extraction (non-solvent precipitation)

Membrane Separation (ceramic membrane)

MODIFICATION

Common Esters Common Ethers Functional Derivatives Copolymer Segments (crystalline or glassy) Many Options

Gargulak, Lebo. ACS Symp. Ser. No. 742, 304 (1999)ft Lignin Structure

Potential Benefits of Fractionation

Greater Molecular Uniformity

Greater L/D Ratio Increased GUA-OH

Functionality Lower Tg

Greater Reactivity Others

Ultrafiltration of kraft lignin with ceramic membranes. (KTH, Stockholm, Sweden)

Tailoring the Molecular and Thermo-Mechanical Properties of Kraft Lignin by Ultra-Filtration.

O. Sevastyanova et al., JAPS

D. S. Argyropoulos et al., ACS Sustainable Chem. Eng. 2, 2014, 959-968

Whole KL by P-NMR (Argyropoulos et al.)

Whole KL by H-NMR

H-NMR Spectrum of acetylated (whole) softwood kraft lignin

31P NMR Spectrum According to Crestini and Argyropoulos, J. Agr. Food Chem. 45(4), 1214 (1997)

LignoBoost Lignin, Unfractionated: Gua-OH, 1.9 mmol/g

LignoBoost Lignin, CH2Cl2-fractionated: Gua-OH, 3.8 mmol/g

31P-NMR Results GUA-OH peak indicates doubling unsubstituted phenolic guaiacyl group-concentration in lower molecular weight fractions of fractionated kraft lignin

Potential Benefits of Modification

Hydroxyalkylation as Internal Plasticization Method

Thermoplastic Elastomers (Star-like Block Copolymers)

Enc. Polym. Sci. Eng., Vol. 8, 795-852 (1987) Macromolecules 27 (1), 5-11 (1994)

• Solubility • Glass Transition Temperature • Color/Bleachability • Uniform Functionality • Reactivity

• Melt-Processability • Partial Crystallinity • Variable Tm • Low Melt-Viscosity • Blend Compatibility

HYDROXYPROPYL LIGNIN (HPL)

De Oliveira, Glasser, J. Appl. Polym. Sci. 37, 1989, 3119-3135

Where n=1

Dave, Prasad, Marand, Glasser. Polymer 34 (15), 3144 (1993) Shimizu et al., Biomass and Bioenergy 14(3), 195 (1998) Sudo et al., J. Appl. Polym. Sci. 44(1), 127 (1992), and Sudo et al., J. Appl. Polym. Sci. 48(8), 1485 (1993).

DAVE, SUDO (1992)

Self-assembled structures of “Soy Protein Isolate” with Lignin and Hydroxypropyl Lignin: I: weak interaction; II: strong interaction; III: no interpenetration; IV: interpenetration

Wei et al., Macromol. Mater. Eng. 291, 524 (2006)

DeOliveira, Glasser. J. Appl. Polym. Sci. 51, 563 (1994)

Stress-Strain Curves of PVC Blends with Unmodified Lignin (a-c) and Lignin-CL Block Copolymers (d-f)

Glass Transition Temperatures of Lignin Esters

Internal Plasticization

Plasticization effect is nearly constant:

Esters of lignin: ca. 1.5-2.0 C/% wt. gain Ethers of lignin: ca. 1.5-2.0 C/% wt. gain Esters of cellulose: ca. 2.0-2.5 C/% wt. gain

Prize Question -

….you can make anything from lignin, but…..

???

Q: ….you can make anything from lignin, but…..

….it takes work (fractionation or modification) CycleWood has perfected the

art of Kraft Lignin modification on the multi-ton scale

Acknowledgment

top related