project no. 20‐07 / task 395 mash equivalency of nchrp 350 ... · final report. task 1 –collect...

Post on 17-May-2020

14 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

PROJECT No. 20‐07 / Task 395MASH Equivalency of 

NCHRP 350‐Approved Bridge Railings

SCOBS T7 SubcommitteeJune 14, 2017

Disclaimer

“This investigation was sponsored by TRB under the NCHRP Program. Data reported are work in progress. The contents of this presentation has not been reviewed by the project panel or NCHRP, nor do they constitute a standard, specification, or regulation.”

Acknowledgements• Waseem Dekelbab, PhD, PE, PMP, Senior Program Officer 

• Project Panel– SCOBS T7, TCRS, State DOTs, Consultants 

3

Research Team

• Roger Bligh, P.I.• William Williams, Co‐P.I.• Chiara Silvestri Dobrovolny• Sana Moran• Nathan Schulz

Research Objectives• Identify and prioritize bridge rail systems • Determine MASH equivalent test levels• Determine whether individual bridge rails can be submitted to FHWA for determination of federal‐aid reimbursement eligibility or whether testing is needed. 

5

Tasks

6

Task 1.  Identification and Prioritization

Task 2.  Develop Methodology for Bridge Rail Analysis

Task 3.  Analysis of Bridge Rails

Task 4.  MASH Coordination Effort

Task 5.  Eligibility Letters

Task 6.  Presentations

Task 7.  Final Report

Task 1 – Collect Bridge Rail Information

7

• Electronic survey of State DOT personnel:

Type of bridge rails usedRelative frequency of usePrior test information Intended future use

• Categorize and prioritize systems

Bridge Rail Prioritization

8

34 survey responses (33 DOT Agencies and FHWA Federal Lands) Responses organized based on bridge rail categories and

subcategories:

Concrete-Onlyo Vertical profileo Post and beamo New Jersey profileo Single Slope profileo F-Shape profile

Metal-Onlyo Deck-Mountedo Side-Mounted

Combination Traffic-Pedestriano With Sidewalko Without Sidewalk

Metal on Concrete Curb/Parapet With Curb

o 3 metal memberso 2 metal memberso 1 metal member

With Parapeto 3 metal memberso 2 metal memberso 1 metal member

Wood-Only Noise Wall-Only Retrofit-Only

Weighted Frequency of Use (WFofU)

9

Prioritization by WFofU

10

WFofU10 ‐ 19

WFofU≥ 20

11

Rail Selection – Example 1

12

TL‐4 F‐Shape

TL‐4; Concrete Only; F‐Shape(WFofU = 67)

• 32" F‐shape– Submitted by 10 states (WV, PA, VA, LA, OR, MA, ME, FL, WS, TX)

– Height inadequate for MASH TL‐4  Evaluate for TL‐3

– Select most critical configuration based on reinforcement

• 42" F‐shape– Submitted by 4 states (IL, ME, FL, WS)– Select most critical based on reinforcement

14

Rail Selection – Example 2

15

TL‐3 Combined w/ Curb (2 Metal Railing)

• SBB36c Two Tube Rail (Wyoming)–MT

TL‐3; Combined w/ Curb (2 Metal Railing) (WFofU = 19)

Task 2 ‐ Assess Analysis Methodologies

• Assess methodologies previously used/accepted by FHWA

• Develop methodology for evaluating MASH compliance of existing bridge rails– Crash tested and/or FHWA eligible railings

• Consider:– Previous level of testing– MASH impact severity– MASH evaluation criteria

Simulation Study for MASH TL‐3 Bridge Rail Analysis

• Finite element simulations being conducted to determine minimum rail height and lateral impact loads for MASH Test Level 3– Rigid vertical wall– MASH 2270P vehicle

27‐inch Rail Height

29‐inch Rail Height

Global Equivalencies• Stability

Minimum Rail Height (in)

Test Level NCHRP 350a MASH

3 27 29b

4 32 365 42 42

a AASHTO LRFD Bridge Design Specifications, Section 13b Resulting minimum rail height from simulation analysis

Global Equivalencies• Strength

Test Level

NCHRP 350a MASH

Lateral Impact 

Force (kips)

Resultant Force 

Height (in)

Moment(kip‐in)

Lateral Impact 

Force (kips)

Resultant Force 

Height (in)

Moment(kip‐in)

TL‐3 54 24 1296 71 19.5 1385

TL‐4 54 32 1728 68b 25b 1700

a AASHTO LRFD Bridge Design Specifications, Section 13b Impact force and resulting height corresponds to 36 in tall barrier

• AASHTO LRFD Bridge Design Specifications– Figures A13.1.1-2 and A13.1.1-3

Rail Geometrics

Global Equivalencies• Rail Geometrics – Pickup Truck Crash Test Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12

Ratio

 of R

ail C

ontact W

idth to

 Heigh

t

Post Setback Distance (in)

Post Setback Criteria

350 TL‐3

MASH TL‐3

350 TL‐4

MASH TL‐4

MASH TL‐5

350 Failed Tests

MASH Failed Tests

Not Recommended

Preferred

Oregon Bridge Rail (Crooked River)

F411

NY (2‐member)

T4(A) Bridge Rail

T77

T101

Caltrans ST‐10T131

Global Equivalencies• Rail Geometrics – Pickup Truck Crash Test Data

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

Vertical Clear Ope

ning

 (in)

Post Setback Distance (in)

Snag Potential

350 TL‐3

MASH TL‐3

350 TL‐4

MASH TL‐4

MASH TL‐5

350 Failed Tests

MASH Failed Tests

High Potential

Low Potential

T4(A)Bridge Rail

F411

T77

Oregon Bridge Rail (Crooked 

River)

NY (2‐member)

T101

T131Caltrans ST‐10

Global Equivalencies• Rail Geometrics – Small Car Crash Test Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12

Ratio

 of R

ail C

ontact W

idth to

 Heigh

t

Post Setback Distance (in)

Post Setback Criteria

350 TL‐3

MASH TL‐3

350 TL‐4

MASH TL‐4

MASH TL‐5

350 Failed Test

Preferred

Not Recommended

T202

Global Equivalencies• Rail Geometrics – Small Car Crash Test Data

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14

Vertical Clear Ope

ning

 (in)

Post Setback Distance (in)

Snag Potential

350 TL‐3

MASH TL‐3

350 TL‐4

MASH TL‐4

MASH TL‐5

350 Failed Test

High Potential

Low Potential

T202

Caltrans ST‐10 Bridge Rail Test 

http://www.dot.ca.gov/research/operations/roadsidesafety/guardrail_system/index.htm

Caltrans ST‐10 Bridge Rail Test 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12

Ratio

 of R

ail C

ontact W

idth to

 Heigh

t

Post Setback Distance (in)

Post Setback Criteria

Caltrans ST‐10

Preferred

Not Recommended0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

Vertical Clear Ope

ning

 (in)

Post Setback Distance (in)

Snag Potential

Caltrans

High Potential

Low Potential

Caltrans ST‐10 Bridge Rail Test 

http://www.dot.ca.gov/research/operations/roadsidesafety/guardrail_system/index.htm

Global Equivalencies• Bridge rail systems were separated into categories to establish global test equivalency– Solid Concrete Parapet– Concrete Post and Beam– Metal Rail 

• Deck or Side Mounted– Metal Rail on Curb

• Curb height less than or equal to 11 inches– Metal Rail on Concrete Parapet

• Concrete parapet height greater than or equal to 12 inches

Global Equivalencies

* Concrete parapet height greater than or equal to 24 inches

NCHRP 350 Rail System Type

MASH Test LevelTL‐2 TL‐3 TL‐4 TL‐5

Solid Concrete Parapet TL‐2TL‐3TL‐4

TL‐5

Concrete Post and Beam

TL‐2TL‐3TL‐4

TL‐5

Metal Rail Deck Mounted

TL‐2TL‐3TL‐4

TL‐5

Metal Rail on CurbTL‐2TL‐3TL‐4

TL‐5

Metal Rail on Concrete Parapet*

TL‐2TL‐3TL‐4

TL‐5

• Analyze existing data to determine if equivalent MASH test levels can be established– Supplemented by limited finite element impact simulations

• Evaluate prioritized bridge rails (Task 1) using approved methodology (Task 2)– Conservative analysis–MASH equivalent test level– Crash testing needed?

Task 3 ‐ Analyze Selected Bridge Rails

Key MASH Considerations

• Structural Adequacy– Strength

• Rail Height– Stability

• Rail Geometry– Occupant risk

Structural Adequacy

• Increased impact severity results in increased impact forces

TestImpact Severity (k‐ft) Percent 

DifferenceNCHRP 350 MASH

3‐10 27.3 55.9 +105%

3‐11 101.4 115.2 +13%

4‐12 98.5 154.4 +56%

Structural Adequacy

Test Level

NCHRP 350a MASH

Lateral Impact 

Force (kips)

Resultant Force 

Height (in)

Moment(kip‐in)

Lateral Impact 

Force (kips)

Resultant Force 

Height (in)

Moment(kip‐in)

TL‐3 54 24 1296 71 19.5 1385

TL‐4 54 32 1728 68b 25b 1700

Rail height

• Minimum height for vehicle stability varies with test level

Test Level NCHRP 350* MASH

3 27 29

4 32 365 42 42

* AASHTO LRFD Bridge Design Specifications, Section 13

Rail Geometry

• Rail geometry effects vehicle‐barrier interaction– Post setback distance– Vertical clear opening– Contact surface area

• Increased impact severity increases       snagging potential

• Applicability of AASHTO LRFD Bridge Design Specification relationships unknown– Different vehicles– Different impact conditions

• AASHTO LRFD Bridge Design Specifications– Figures A13.1.1-2 and A13.1.1-3

Rail Geometrics

Bridge Rail Analysis Categories

• Analysis templates created for the following categories:– Solid Concrete Parapet– Concrete Post and Beam– Steel Post and Beam– Combination Steel Post and Concrete Parapet

Stability Analysis• From templates

Note: Yellow cell = input; Green cell = results check

Geometric Analysis

• From templates

Note: Yellow cell = input; Green cell = results check

Strength Analysis• From templates

Note: Yellow cell = input; Green cell = results check

Analyzed Bridge Rails

44

Analyzed Bridge Rails

45

Analyzed Bridge Rails

46

• Coordinate with pooled fund efforts and other research initiatives– Collect available information – Share information to avoid duplication of effort–Work toward compiling information on all MASH devices 

• Roadside Safety Pooled Fund Program–MASH Implementation Coordination Effort

• Develop and maintain databases for MASH implementation needs and testing

Task 4 – MASH Coordination

MASH Database

Task 5 – FHWA Eligibility Requests

• Prepare necessary documentation and rationale for submission of eligibility requests to FHWA

• Selected, prioritized bridge rail systems• Methodology and rationale should be applicable to other rail systems

FHWA Open Letter(May 26, 2017)

FHWA Open Letter ‐ Interpretation

• “All roadside hardware devices must complete the full suite of recommended tests as described in AASHTO MASH” to be considered for an eligibility letter.

• Project team’s interpretation is that FHWA will not issue eligibility letters based on engineering analysis.

Project Schedule• Draft final report due August 6, 2017• Project end date October 6, 2017

Contact Information• William Williams

w‐williams@tti.tamu.edu979‐862‐2297

• Roger Blighr‐bligh@tti.tamu.edu(979) 845‐6375

top related