quantifying chemical ozone loss in the arctic stratosphere ... › researchbriefs › o3loss... ·...

Post on 25-Jun-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

National Aeronautics and Space Administration

Global Modeling and Assimilation Office NASA Goddard Space Flight Center

GMAO RESEARCH BRIEF

Quantifying chemical ozone loss in the Arctic stratosphere with GEOS-STRATCHEM Data Assimilation System K. Wargan & J.E. Nielsen

BACKGROUND

SUMMARY A faithful representationof polar stratospheric chemistry inmodelsand its connection with dynamical variability is essential for ourunderstandingoftheevolutionoftheozonelayerinachangingclimateand during the projected continuing decline of ozone depletingsubstances in the atmosphere.We use a new configuration of theGoddard Earth Observing System Data Assimilation System with astratosphericchemistrymodeltostudyozonedepletionintheArcticpolarstratosphereduringtheexceptionallycold(inthestratosphere)winters2015/2016and2010/2011.

#2017-2, April 2017

Stratospheric ozone layer shields Earth’s biosphere from harmfulultravioletradiationandgreatly impactsthethermalstructureofthestratosphere, strongly affecting the climate. A growing number ofrecent studies suggest that the full inclusion of realistic ozone inatmosphericmodel simulationsmayhelp to improveboth seasonalweatherpredictionsandclimateprojections.

GMAO RESEARCH BRIEF Quantifying chemical ozone loss in the Arctic stratosphere with GEOS-STRATCHEM Data Assimilation System

Global Modeling and Assimilation Office NASA Goddard Space Flight Center

2

Thebest-knownandmostseveremanifestationofthe20thcenturystratosphericozoneloss is the seasonal occurrence of ozone holes over Antarctica. Although to a lesserdegree, the same chemical mechanism leads to springtime ozone depletion over theArctic.Themainpathwayofozonedestruction inpolar regions involvesconversionofchlorine reservoir species, chlorine nitrate (ClONO2) and hydrogen chloride (HCl), intoactivechlorinecompounds,ClOx,fromwhichchlorineatomsarereleasedinthepresenceofsunlight.Chlorinethencatalyticallydestroysozone.TheconversiontoClOxtakesplaceonsurfacesofsmallparticlesofpolarstratosphericclouds(PSCs).Thisprocessdependsonthreeconditions:

• Thepresenceofchlorinecompoundsinthestratosphere• LowtemperatureallowingtheformationofPSCs• Isolationoftheairmasswherethereactionstakeplace

Stratospheric chlorine loading is still high, although it is declining following theimplementation of the Montreal Protocol. Low temperatures and air isolation areattainedwithin thestratosphericpolarvortex,a large-scalecyclonicwindpattern thatformsoverthepoleduringwintertimeandlaststhroughthefirsthalfofspring.Whenthevortex isweak, its temperature iselevated inhibitingPSC formationandstrongmixingdispersesozone-depletingcompoundsatthesametimereplenishingthevortexozone.Ontheotherhand,astrongvortexactsinamannersimilartoalaboratorybeakerinwhichchlorine activation and ozone depletion take place with little mixing with themidlatitudinal ozone-rich air masses. The severity of polar stratospheric ozone lossstronglydependson the temperatureandstrengthof thepolarvortex,whichexhibitsstronginterannualvariability.The2015-2016winterwasoneofthecoldestonrecordintheArcticpolarstratosphere.ThisledtohighlevelsofchlorineactivationandrapidozonedepletionuntilthefirstweekofMarch,whenthevortexbrokedownseveralweeksearlierthanusuallypreventingfurtherchemicaldestructionofozone.Thepurposeofthisworkistwofold:

• Toestimatethe2015/2016Arcticozoneloss• TotesttheGoddardEarthObservingSystem(GEOS)DataAssimilationSystem

(DAS)withfullstratosphericchemistryforfutureatmosphericreanalyses.

GMAO RESEARCH BRIEF Quantifying chemical ozone loss in the Arctic stratosphere with GEOS-STRATCHEM Data Assimilation System

Global Modeling and Assimilation Office NASA Goddard Space Flight Center

3

ExperimentandResults

AnewconfigurationofGEOS-DAS isused to study thisozone loss.Ozoneevolution iscomputedwithSTRATCHEM,astratosphericchemistrymodulethatsimulatesover160chemical reactions among 34 transported and 17 derived species and contains a PSCscheme. STRATCHEM replaces the parameterized chemical module normally used inGEOS-DASexperiments,includingmultidecadalreanalyses.Theobservationsassimilatedby the system consist of radiance data from satellite-borne sensors, conventionalmeasurementsandozoneobservations.Thelatterareobtainedfromtwoinstruments:theMicrowaveLimbSounder(MLS)andtheOzoneMonitoringInstrument(OMI),bothonboardNASA’sEOSAurasatellite.Combiningthereal-worldstratosphericmeteorologyconstrainedbyobservationswithachemistrymodelenablestheproductionofaglobalthree-dimensional representation of the atmospheric composition and its evolutionduringaspecifiedperiodthatcanbereadilyevaluatedagainstsatellitedata.Figure 1 shows comparisons of the vortex-averaged GEOS ozone, HCl and chlorinemonoxide(ClO)withdatafromtheMLSinstrument.Thedatashownarefromthe480-Kpotentialtemperaturesurface,whichcorrespondstoabout20kmabovetheground.TheexcellentagreementbetweenthemodeledandMLSozoneisnotsurprisingbecauseMLSozone data are assimilated in this experiment. But there is also a good qualitativeagreementbetweentheGEOSandMLSHCl,whichisnotassimilated.TheslowerdeclineofthemodelHClconcentrationslikelyresultedfromdeficienciesintheGEOStransport.ThisconclusionissupportedbyadditionalanalysisoftheGEOSnitrousoxideindicatingthat downward transport of air inside the vortex is underestimated in GEOS. Preciseestimationoftransporterrorsandstrategiestoimprovethemodelperformanceareareasof active research in the GMAO. While transport issues affect the atmosphericcompositionandcontributetotheestimatederrorsoftheanalysis,theyalsoprovideaninsightintotheperformanceofthemodelandtheassimilationschemeandhelptomapoutfutureimprovementsofboth.Despitethisshortcoming,theClOconcentrationsfromGEOSfollowMLSverycloselyexceptinMarchwhenthemodelgeneratesahighbiasinClO,indicativeofaslightlydelayedchlorinedeactivation.Thistooislikelyaconsequenceofmodeltransporterrorsbutcanalsoberelatedtoerrorsinthechemistrymodelthatrequire further investigation.Wenote that theuncertainties in theozonebehavior inGEOSthatresultfromthesedeficiencieshavebeenestimatedandincludedaserrorbarsinthefinalanalysisinFigure3.SinceClOisdirectlyresponsibleforozonedepletion,thisclose agreement during most of the winter provides confidence in the modelperformancewithrespecttoozoneloss.

GMAO RESEARCH BRIEF Quantifying chemical ozone loss in the Arctic stratosphere with GEOS-STRATCHEM Data Assimilation System

Global Modeling and Assimilation Office NASA Goddard Space Flight Center

4

TheGEOSmodelwritesoutchemicaltendenciesforozone, i.e.ozone’srateofchangedue to chemistry alone, other processes excluded. This allows us to estimate theevolutionoftheozonelossrateandthecumulativechemicalozonechangeduringthewinter-spring.Thetimeseriesofthevortex-averagedchemicalozonetendenciesinpartsperbillionbyvolume(ppbv)perdayisshowninFigure2(bottomleftpanel)asafunctionofpotentialtemperature,aconvenientverticalcoordinateforstratosphericstudies.Here,theverticalrangeis400Kto800K,correspondingtoheightsbetweenabout16kmand30km.Thetoppanelshowsthepoletemperatureat~20kmandthefractionofthepolarvortexilluminatedbysunlight.Asthesunlitfractionreachesabout10%inmid-January,therateofchemicalozonelossacceleratestoabout20ppbv/dayandmaximizesintheendofFebruaryat40ppbv/day.Threedistinctmaximacorrespondto increases inthepoletemperatureinmid-January,thebeginningandtheendofFebruary.Thesejumpsindicateslightdynamicalshiftsofthepositionofthepolarvortexthatslidesoffthepole

Figure1.Timeseriesofvortex-averagedozone(top),HCl(middle),andClO(bottom)atthe480-Kpotentialtemperaturesurface(~20km)fromMLS(black)andGEOS(red).Ozoneisshowninpartspermillionbyvolume(ppmv)andtheotherspeciesinpartsperbillionbyvolume(ppbv).

GMAO RESEARCH BRIEF Quantifying chemical ozone loss in the Arctic stratosphere with GEOS-STRATCHEM Data Assimilation System

Global Modeling and Assimilation Office NASA Goddard Space Flight Center

5

exposing larger portions of its air mass to sunlight, which accelerates photochemicalreactions that release atomic chlorine and strongly depend on solar illumination. Thechlorine-catalyzedozonedepletionislimitedtoelevationsbelowabout26km(potentialtemperatureofabout640K).Theozone lossabovethat level isduetoreactionswithnitrogenoxidesandisreplacedbyrapidphotochemicalproductioninMarch.

Figure3showsthecumulativeozonelossduetochemistrybetween1December2015and31March2016.Themaximum lossof2.1ppmvoccurredat480K (~20km).Thiscorrespondsto66%ofthevortexozoneon1January,asignificantamount,comparedtomostArcticwinters.Thesamepanelshowsthecumulativelossduringtherecordbreakingwinter 2010/2011.Note thatwhile themaximumdepletion thenwas 3.25 ppmv, thecumulative loss computed only up to 12 March 2011 (the approximate date whendepletionwasterminatedin2016)wasaboutthesameas2016.Thisresultindicatesthatthe2015/2016winterwaslikelyontracktomatchtheextremeozonelossseenin2011,

Figure2.(top)Thepercentageofthe480-Kpolarvortexareailluminatedbysunlightasafunctionofday(1December2015to30March2016)isshowninblack.The480-Ktemperatureatthepoleisplottedinblue.(bottom)Thevortex-averageddailyozonetendenciesduetochemistryinppbvperday.

GMAO RESEARCH BRIEF Quantifying chemical ozone loss in the Arctic stratosphere with GEOS-STRATCHEM Data Assimilation System

Global Modeling and Assimilation Office NASA Goddard Space Flight Center

6

anoutcomeprecludedonlyby theunusually earlybreakupof the lower-stratosphericpolarvortexaround12March2016.Theerrorbarsaroundthelosscurveareestimatedfrom the differences between six-hourly ozone forecasts and satellite data calculatedwithinthedataassimilationsystem.

Wenow turn to the spatial distribution of the chlorine compounds and ozone in thecontext of the stratospheric dynamics. Figure 4 shows maps of the GEOS chlorinereservoirspecies,activechlorineandozoneonthe480-Kpotentialtemperaturesurface(approximately20kmabovetheEarth’ssurface)overtheNorthPoleon11Januaryatthebeginningofozonedepletionandon21March2016afterthebreakupofthepolarvortex.ThemapsaregeneratedfromtheGEOSoutput.Thetoprowshowsthesituationinthemid-winter:lowconcentrationsofchlorinenitrateandHClcombinedwithhighquantitiesofClOxwithinthepolarvortexindicatechlorineactivationbutbeforesignificantozonelosscommenceswhenalargerportionofthevortexbecomesilluminatedbysunlight.Inthebottomrow(overtwomonthslater)thereisonlyaremnantofthepolarvortexleft,chlorineisdeactivated(ClONO2haselevatedconcentrations,ClOxisnearlygone)andverylowozonevalues,theresultofearlierchemicalloss,areseeninsidethevortexremnant.Note the consistency of chemistry and dynamics in GEOS: sharp gradients of species’

Figure3.Timeintegrated(December-March)tendencyfromFigure2inppmv(black),thesamefor6December2010–30April2011(solidblue)andfor6December2010–12March2011(dashedblue).Thebarsindicateanerrorenvelopeestimatedfromassimilationofozonedata.

GMAO RESEARCH BRIEF Quantifying chemical ozone loss in the Arctic stratosphere with GEOS-STRATCHEM Data Assimilation System

Global Modeling and Assimilation Office NASA Goddard Space Flight Center

7

concentrations are aligned with the edge of the polar vortex and the chemicalcomposition inside thevortex is verydifferent than in the restof thehemisphere.Ananimatedversionofthese,andsomeadditionalmapsatthe500-Kpotentialtemperaturelevelisavailableathttps://gmao.gsfc.nasa.gov/animations/O3loss_arctic_strat.php.

Finally,wecomparethe2015/2016and2010/2011ozonelosswithinadeeplayerwheremost of the polar ozone resides. Figure 5 shows the cumulative change in the vortexozoneintegratedbetween200hPaand40hPa(~12kmto22km).TheresultsareshowninDobsonunits(DU:1DUcorrespondsto2.69×1020ozonemoleculespersquaremeterwithinthespecified layer).Thecumulative losson10Marchwasabout80DU inbothwinters.Whilethe2016lossceasedquicklyafterthebreakupofthepolarvortexanddidnotexceed90DU,in2011theGEOS-estimatedlossreachedabout126DUinApril.

Figure4.MapsofmodeledClONO2(aande),HCl(bandf),ClOx(candg),andozone(dandh)onthe480-K potential temperature surface on 11 January 2016 (a-d) and 21March 2016 (e-h). The blackcontouristheedgeofthepolarvortex.

GMAO RESEARCH BRIEF Quantifying chemical ozone loss in the Arctic stratosphere with GEOS-STRATCHEM Data Assimilation System

Global Modeling and Assimilation Office NASA Goddard Space Flight Center

8

Conclusion

A new configuration of the GEOS Data Assimilation System with the STRATCHEMchemistrymodelallowedustoproduceadetailedrepresentationofpolarstratosphericozone chemistry during the exceptionally cold (in the stratosphere) 2015/2016 and2010/2011winters.Thechemistrymodelsimulates theevolutionofahostofchlorinespecies consistent with the dynamics of the polar vortex. In particular, there is anexcellentagreementbetweenthevortexchlorinemonoxidefromGEOSandMLSdata.Incombinationwithdataassimilation,themodelallowedustoestimatethemagnitudeandtemporalvariationsofchlorine-catalyzedozonelosswithinthepolarvortexandestimateitserrors.Weconcludedthatthemaximumcumulativechemicalozonelossof2.1ppmvtookplaceatabout20kmabovethesurfaceandwascomparabletotherecordArcticozonedepletionof2011uptothetimeoftheearlypolarvortexbreakupinearlyMarch.In2011,thelosscontinueduntilthebeginningofApril.Theseresultsunderscorethevalueof includingafullstratosphericchemistrymodel infuture data assimilation-based atmospheric reanalyses but also help us identifydeficiencies in transportof stratosphericconstituents inGEOS,whichwillguide futureinvestigationsandmodeldevelopments.

Figure5.Cumulativevortex-averagedchemicalozonelossinthe200hPa–40hPacolumn.Black:2010/2011,red:2015/2016.OzonelossvaluesareexpressedinDobsonunits.Thedatesofthe10hPazonalmeanzonalwindreversalat60°N(6March)andthevortexbreakupat480K(12March)in2016areshownasadottedanddashedline,respectively.

GMAO RESEARCH BRIEF Quantifying chemical ozone loss in the Arctic stratosphere with GEOS-STRATCHEM Data Assimilation System

Global Modeling and Assimilation Office NASA Goddard Space Flight Center

9

Thisworkhasbeendone incollaborationwithourcolleagues in theGMAOandotherinstitutionsandwillbeincludedinapeer-reviewedpublication,Warganetal.(2017)nowinpreparation.

Reference

Wargan,K.,J.E.Nielsen,G.L.Manney,M.L.Santee,N.J.Livesey,Z.D.Lawrence,S.PawsonandL.Coy,2017:ChemicalOzoneLossDuringthe2015/2016ArcticWinterinaGoddardEarthObservingSystemAssimilationExperimentwithStratosphericChemistry.SubmittedtoJ.Geophys.Res.

top related