quasiparticle breakdown in quantum spin liquid

Post on 11-Feb-2016

47 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

O AK R IDGE N ATIONAL L ABORATORY. Quasiparticle breakdown in quantum spin liquid. Igor Zaliznyak Neutron Scattering Group, Brookhaven National Laboratory. Collaborators M. B. Stone D. Reich, T. Hong C. Broholm. &. What is liquid? no shear modulus - PowerPoint PPT Presentation

TRANSCRIPT

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Quasiparticle breakdown in quantum spin liquidQuasiparticle breakdown in quantum spin liquid

CollaboratorsCollaborators

• M. B. Stone

• D. Reich, T. Hong

• C. Broholm

Igor ZaliznyakIgor Zaliznyak

Neutron Scattering Group, Brookhaven National Laboratory

&&

OAK RIDGE NATIONAL LABORATORY

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

What is quantum liquid?What is quantum liquid?• What is liquid?

− no shear modulus− no elastic scattering = no static correlation of density fluctuations

‹ρ(r1,0)ρ (r2,t)› → 0t → ∞

• What is quantum liquid? − all of the above at T → 0 (i.e. at temperatures much lower than inter-particle interactions in the system)

• Elemental quantum liquids:− H, He and their isotopes− made of light atoms strong quantum fluctuations

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

ε(q)

(Kel

vin)

q (Å-1)

phonon

roton

maxonwhatsgoingon?

Excitations in quantum Bose liquid: superfluid Excitations in quantum Bose liquid: superfluid 44HeHe

Woods & Cowley, Rep. Prog. Phys. 36 (1973)

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

The “cutoff point” of the quasiparticle spectrum in The “cutoff point” of the quasiparticle spectrum in the quantum Bose-liquidthe quantum Bose-liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Spectrum termination in Spectrum termination in 44He: experimentHe: experiment

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

What is quantum spin liquid?What is quantum spin liquid?

• Quantum liquid state for a system of Heisenberg spins

H = J|| SiSi+||+ JSiSi

• Exchange couplings J||, J through orbital overlaps may be different

− J||/J >> 1 (<<1) parameterize quasi-1D (quasi-2D) case

Coupled chains J||/J>> 1

Coupled planes J||/J<<1• no static spin correlations

‹Siα (0)Sj

β (t)› → 0, i.e. ‹Si

α (0)Sjβ (t)› = 0

• hence, no elastic scattering (e.g. no magnetic Bragg peaks)

t → ∞

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Simple example: coupled S=1/2 dimersSimple example: coupled S=1/2 dimers

H = J0 S1S2J0/2 (S1 + S2)2 + const.

Single dimer: antiferromagnetically coupled S=1/2 pair J0 > 0

0 = J0

singlet

triplet

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Simple example: coupled S=1/2 dimersSimple example: coupled S=1/2 dimers(

q)

q/(2)

0 = J0

H = J0 S2iS2i+1J1 (S2i S2i+2)

Chain of weakly coupled dimers

Dispersion (q) ~ J0 + J1cos(q)

J0

J1

triplet

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Dimers in 1D (aka alternating chain)Dimers in 1D (aka alternating chain)

Chains of weakly interacting dimers inCu(NO3)2x2.5D2O

CuCu2+2+ 3d9 S=1/2

E (m

eV)

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Weakly interacting dimers in Cu(NOWeakly interacting dimers in Cu(NO33))22x2.5Dx2.5D22OO

D. A. Tennant, C. Broholm, et. al. PRB 67, 054414 (2003)

Spin excitations never cross into 2-particle continuum and

live happily ever after

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

weak interaction

2D quantum spin liquid: a lattice of frustrated 2D quantum spin liquid: a lattice of frustrated dimersdimers

M. B. Stone, I. Zaliznyak, et. al. PRB (2001)(C4H12N2)Cu2Cl6 (PHCC)

− singlet disordered ground state− gapped triplet spin excitation

strong interaction

CuCu2+2+ 3d9 S=1/2

h

l

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

PHCC: a two-dimensional quantum spin liquidPHCC: a two-dimensional quantum spin liquid

• gap = 1 meV• bandwidth = 1.8 meV

• Single dispersive mode along h

• Single dispersive mode along l

• Non-dispersive mode along k

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Quasiparticle spectrum termination line in PHCCQuasiparticle spectrum termination line in PHCC

max{E2-particle (q)}

min{E2-particle (q)}

E1-particle(q)

Spectrum termination line

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

PHCC: dispersion along the diagonalPHCC: dispersion along the diagonal800

600

400

200

0

Q = (0.5,0,-1.5) resolution-corrected fit

400

300

200

100

0

Q = (0.25,0,-1.25)resolution-corrected fit

200

150

100

50

0

7654321

Q = (0.15,0,-1.15) resolution-corrected fit

Inte

nsity

(cou

nts

in 1

m

in)

200

150

100

50

0

Q = (0.15,0,-1.15) resolution-corrected fit

150

100

50

0

Q = (0.1,0,-1.1) resolution-corrected fit

120

80

40

0

7654321

Q = (0,0,1) resolution-corrected fit

E (meV) E (meV)

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

2D map of the spectrum along both directions2D map of the spectrum along both directions7

6

5

4

3

2

1

0

E (m

eV)

0.4 0.3 0.2 0.1 0

89

100

2

3

4

5

6

Inte

grat

ed in

t (ar

b.)

0.50.40.30.20.10

Total Triplon Continuum

3.02.52.01.51.0 log(intensity)

(0.5,0,-1-l) (h,0,-1-h)

0.20

0.15

0.10

0.05

0

(meV

)0.5 0.4 0.3 0.2 0.1 0

(h 0 -1-h)

•a

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Compare: spectrum end point in helium-4Compare: spectrum end point in helium-4

4

3

2

1

0

(m

eV)

3210Q (Å-1)

a

2

qc

1.0

0.8

0.6

0.4

0.2

0

S(Q

,

) (1/

meV

)

0.150

S(Q

,

)

6420 (meV)

0.40.2

00.15

0

2.6 Å-1b1.3 K

1.85 K

2.25 K

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Summary and conclusionsSummary and conclusions

• Quasiparticle breakdown at E > 2 is a generic property of quantum Bose (spin) fluids– observed in the superfluid 4He

– observed in the Haldane spin chains in CsNiCl3 (I. Zaliznyak, S.-H. Lee and S. V. Petrov, PRL 017202 (2001))

– observed in the 2D frustrated quantum spin liquid in PHCC

• A real physical alternative to the ad-hoc “excitation fractionalization” explanation of scattering continua

• Implications for the high-Tc cuprates: spin gap implies disappearance of coherent spin modes at high E

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Temperature dependence in PHCCTemperature dependence in PHCC

40

20

0

6420 (meV)

60

30

0

Inte

nsity

(cou

nts

/ 2 m

in.)

180

120

60

0180

120

60

0

(0.5 0 -1)

a

6420 (meV)

(0.15 0 -1.15)

c T = 1.5 K T = 10 K T = 15 K T = 20 K

6420 (meV)

(0.5 0 -1.5)

b 800

400

0420

400

200

0420

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Temperature dependence in copper nitrateTemperature dependence in copper nitrate

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Dispersion along the side (Dispersion along the side (ll) in PHCC) in PHCC800

600

400

200

0

Q = (0.5,0,-1.5) resolution-corrected fit

300

200

100

0

Q = (0.5,0,-1.15) resolution-corrected fit

400

300

200

100

0

Q = (0.5,0,-1.1) resolution-corrected fit

400

300

200

100

0

7654321

Q = (0.5 0 -1) resolution-corrected fit

Inte

nsity

(cou

nts

in 1

m

in)

E (meV)

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

What would be a “spin solid”?What would be a “spin solid”?• Heisenberg antiferromagnet with classical spins, S >> 1S >> 1

− ground state has static Neel order (spin density wave with propagation vector q = )

− elastic magnetic Bragg scattering at q =

n n+1

SSnn = S = S0 0 cos(cos(n)n)

− quasiparticles are gapless Goldstone magnons

(q) ~ sin(q)

(q)

q/(2)

0.0 0.2 0.4 0.6 0.8 1.0

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

0.0 0.2 0.4 0.6 0.8 1.0

(q)

− quasiparticles with a gap ≈ 0.4J at q =

2 (q) = 2 + (cq)2

q/(2)

2

1D quantum spin liquid: Haldane spin chain1D quantum spin liquid: Haldane spin chain

− short-range-correlated “spin liquid” Haldane ground state

• Heisenberg antiferromagnetic chain with S = 1S = 1

Quantum Monte-Carlo for 128 spins. Regnault, Zaliznyak & Meshkov, J. Phys. C (1993)

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Spin-quasiparticles in Haldane chains in CsNiClSpin-quasiparticles in Haldane chains in CsNiCl33

NiNi2+2+ 3d8

J = 2.3 meV = 26 K J = 0.03 meV = 0.37 K = 0.014 J

D = 0.002 meV = 0.023 K = 0.0009 J

3D magnetic order below TN = 4.84 Kunimportant for high energies

S=1 S=1 chains

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Spin-quasiparticles in Haldane chains in CsNiClSpin-quasiparticles in Haldane chains in CsNiCl33

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Spectrum termination point in CsNiClSpectrum termination point in CsNiCl33

I. A. Zaliznyak, S.-H. Lee, S. V. Petrov, PRL 017202 (2001)

top related