the influence of tropical cyclones on the predictability of … · 2016. 7. 5. · fig. 5. total...

Post on 21-Jan-2021

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

2014-08

The influence of tropical cyclones on the

predictability of midlatitude weather systems

Jones, Sarah

Karlsruhe Institute of Technology

http://hdl.handle.net/10945/47732

Sarah Jones 1,2, Doris Anwender 1,3, Pat Harr4, Simon Lang1,5,

Martin Leutbecher5, Melinda Peng6, Carolyn Reynolds6

1 Deutscher Wetterdienst, 2 Karlsruhe Insitut für Technologie , 3 MunichRe, 4Naval Postgraduate School, 5ECMWF, 6 Naval Research Laboratory

PANDOWAE – Predictability and Dynamics of Weather Systems in the Atlantic–European Sector (FOR896)

is a research unit of the German Research Council (DFG)

www.pandowae.de

The influence of tropical cyclones on the predictability of midlatitude weather systems

500 hPa geopot. (556 gpdam) fcst 10 Sep. 12 UTC - 12 Sep. 12 UTC

Maemi Std. dev. 500 hPa geopot. of 51 ensemble members

Spagetti plot of 500 hPa geopotential (top) and Hovmöller of 500 hPa Standard deviation of the ensemble members (bottom)

Time

500 hPa geopot. (556 gpdam) fcst 10 Sep. 12 UTC - 13 Sep. 00 UTC

Std. dev. 500 hPa geopot. of 51 ensemble members

Time

Spagetti plot of 500 hPa geopotential (top) and Hovmöller of 500 hPa Standard deviation of the ensemble members (bottom)

500 hPa geopot. (556 gpdam) fcst 10 Sep. 12 UTC - 13 Sep. 12 UTC

Std. dev. 500 hPa geopot. of 51 ensemble members

Time

Spagetti plot of 500 hPa geopotential (top) and Hovmöller of 500 hPa Standard deviation of the ensemble members (bottom)

500 hPa geopot. (556 gpdam) fcst 10 Sep. 12 UTC - 14 Sep. 00 UTC

Std. dev. 500 hPa geopot. of 51 ensemble members

Time

Spagetti plot of 500 hPa geopotential (top) and Hovmöller of 500 hPa Standard deviation of the ensemble members (bottom)

500 hPa geopot. (556 gpdam) fcst 10 Sep. 12 UTC - 14 Sep. 12 UTC

Std. dev. 500 hPa geopot. of 51 ensemble members

Time

Spagetti plot of 500 hPa geopotential (top) and Hovmöller of 500 hPa Standard deviation of the ensemble members (bottom)

500 hPa geopot. (556 gpdam) fcst 10 Sep. 12 UTC - 15 Sep. 00 UTC

Std. dev. 500 hPa geopot. of 51 ensemble members

Time

Spagetti plot of 500 hPa geopotential (top) and Hovmöller of 500 hPa Standard deviation of the ensemble members (bottom)

500 hPa geopot. (556 gpdam) fcst 10 Sep. 12 UTC - 15 Sep. 12 UTC

Std. dev. 500 hPa geopot. of 51 ensemble members

Time

Spagetti plot of 500 hPa geopotential (top) and Hovmöller of 500 hPa Standard deviation of the ensemble members (bottom)

500 hPa geopot. (556 gpdam) fcst 10 Sep. 12 UTC - 20 Sep. 12 UTC

Std. dev. 500 hPa geopot. of 51 ensemble members

Time

Spagetti plot of 500 hPa geopotential (top) and Hovmöller of 500 hPa Standard deviation of the ensemble members (bottom)

ECMWF analysis: 8 Sept. 2005 12 UTC

Typhoon Nabi (2005)

Tropical cyclone Downstream ridging

Downstream trough

Upstream trough

Colours:  Tropopause  Poten0al  Temperature  Contours:  Surface  pressure  

Characteristic development during Extratropical Transition (ET)

Jetstream  

Tropical  cyclone    core  region  

Tropical  cyclone-­‐midla1tude  interface  

Midla1tude  impact  region  

Upstream  trough  

Characteristic interaction

Jet:  advects  developing  anomaly  downstream  

Flow  assoc.  with  anomaly  and  TC  An0cyclone:  westward  propaga0on  

Divergent  flow:  ridge  building  

Bosart and Lackmann (1995) Henderson et al. (1999), Martius (2001) Röbcke, Jones and Majewski (2004) Riemer, Jones and Davis (2008) Harr and Dea (2009) Riemer and Jones (2010) Scheck, Jones and Juckes (2010a,b)

Excitation of a Rossby wave disturbance

Divergent  flow:  ridge  building  

Excitation of a Rossby wave disturbance

Jetstream  

Cyclonic  TC  circula0on  enhances  trough  

Ø  Warm frontogenesis and upper-level ridge building (e.g. Bosart and co-workers, Harr and Elsberry 2000) Ø  Diabatic heating and new PV tower at warm front (e.g. Agusti-Panareda et al.) Ø  Polewards advection of moist air between TC and subtropical high (Torn 2010) Ø  Generation of diabatic Rossby waves

Interaction with low-level baroclinic zone

Forecast from 10.09.2003 12 UTC – 14.09.2003 00 UTC

EOF2 19.0 %

EOF1 29.9 %

EOFs identify synoptic-scale patterns

that dominate variability

EOF-Analysis von Θ on PV = 2 pvu

PC1

PC2

Principal Components give contribution of each

ensemble member to EOFs

2 main patterns of variability: shift / amplitude EOF 1 18.9 %

EOF 2 11.5 %

Analysis method: EOF analysis & fuzzy clustering of principal components

Fcst: 10 Sep. 12 UTC – 14 Sep. 00 UTC

Analysed variable: Potential temperature on dynamic tropopause

Anwender, Harr and Jones 2008

PC1

PC2

EOF 1 18.9 %

EOF 2 11.5 %

Analysis method: EOF analysis & fuzzy clustering of principal components

Fcst: 10 Sep. 12 UTC – 14 Sep. 00 UTC

Analysed variable: Potential temperature on dynamic tropopause

PC1

PC2

Anwender, Harr and Jones 2008

2 main patterns of variability: shift / amplitude

EOF 1 18.9 %

EOF 2 11.5 %

Analysis method: EOF analysis & fuzzy clustering of principal components

Fcst: 10 Sep. 12 UTC – 14 Sep. 00 UTC

Analysed variable: Potential temperature on dynamic tropopause

PC1

PC2

Anwender, Harr and Jones 2008

2 main patterns of variability: shift / amplitude

EOF 1 18.9 %

EOF 2 11.5 %

Analysis method: EOF analysis & fuzzy clustering of principal components

Fcst: 10 Sep. 12 UTC – 14 Sep. 00 UTC

Analysed variable: Potential temperature on dynamic tropopause

PC1

PC2

Anwender, Harr and Jones 2008

2 main patterns of variability: shift / amplitude

EOF 1 18.9 %

EOF 2 11.5 %

Analysis method: EOF analysis & fuzzy clustering of principal components

Fcst: 10 Sep. 12 UTC – 14 Sep. 00 UTC

Analysed variable: Potential temperature on dynamic tropopause

PC1

PC2

Anwender, Harr and Jones 2008

2 main patterns of variability: shift / amplitude

Anwender, Harr and Jones 2008

Tropopause pattern linked to development during ET

Potential temperature on dynamic tropopause (shaded) – surface pressure (contours)

Anwender, Harr and Jones 2008

SVs identify the fastest-growing perturbations within a finite time interval in a linear framework. To initialize the EPS SVs are calculated for different target regions with an optimization time of 48 hours.

Extratropical SVs

Extratropical SVs

Singular vectors in the ECMWF EPS

Lang, Jones, Leutbecher, Peng and Reynolds (2012)

Composites (16. Sep. - 24. Sep.) of vertical integrated Total Energy of initial SVs 1-5

Moist TL95 ≈ 210km

Dry TL95 ≈ 210km

Moist TL255 ≈ 80km

Dry TL255 ≈ 80km

.2

.2

.2

.4

.4

.4

.4

.4

.4

.4 .4

.6

.6

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

95

12

24

36

48

60

72

84

108

200

.2

.2

.2

.4

.4

.4

.4

.4

.4

.4 .4

.6

.6

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

95

12

24

36

48

60

72

84

108

200

.2

.2 .2

.4

.4

.4

.4

.4

.4

.4

.6

.6

.8

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

159

12

24

36

48

60

72

84

108

200

.2

.2 .2

.4

.4

.4

.4

.4

.4

.4

.6

.6

.8

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

159

12

24

36

48

60

72

84

108

200

.2

.2.2

.4

.4

.4

.4

.4

.4

.4

.4

.6

.6

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

255

12

24

36

48

60

72

84

108

200

.2

.2.2

.4

.4

.4

.4

.4

.4

.4

.4

.6

.6

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

255

12

24

36

48

60

72

84

108

200

Fig. 3. Composites of the sum of the vertically integrated total energy (in J kg�1; shaded)of the leading five dry (a, c, e) and moist (b, d, f) initial SVs for initialisation from 16.09.200612 UTC to 24.09.2006 12 UTC and PV (in PVU, black contours) on model level 50 (� 850hPa). a) and b) TL95 resolution, c) and d) TL159 resolution and e) and f) TL255 resolution.

42

.2.2

.2

.4

.4

.4

.4

.4

.4

.4 .4

.6

.6

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

95

12

24

36

48

60

72

84

108

200

.2

.2

.2

.4

.4

.4

.4

.4

.4

.4 .4

.6

.6

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

95

12

24

36

48

60

72

84

108

200

.2

.2 .2

.4

.4

.4

.4

.4

.4

.4

.6

.6

.8

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

159

12

24

36

48

60

72

84

108

200

.2

.2 .2

.4

.4

.4

.4

.4

.4

.4

.6

.6

.8

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

159

12

24

36

48

60

72

84

108

200

.2

.2.2

.4

.4

.4

.4

.4

.4

.4

.4

.6

.6

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

255

12

24

36

48

60

72

84

108

200

.2

.2.2

.4

.4

.4

.4

.4

.4

.4

.4

.6

.6

10°S10°S

5°S 5°S

0°0°

5°N 5°N

10°N10°N

10°W

10°W 5°W

5°W 0°

0° 5°E

5°E 10°E

10°E

255

12

24

36

48

60

72

84

108

200

Fig. 3. Composites of the sum of the vertically integrated total energy (in J kg�1; shaded)of the leading five dry (a, c, e) and moist (b, d, f) initial SVs for initialisation from 16.09.200612 UTC to 24.09.2006 12 UTC and PV (in PVU, black contours) on model level 50 (� 850hPa). a) and b) TL95 resolution, c) and d) TL159 resolution and e) and f) TL255 resolution.

42

Lang, Jones, Leutbecher, Peng and Reynolds (2012)

Singular vectors optimized for tropical belt Lang, Jones, Leutbecher, Peng and Reynolds (2012)

3D Structure TL255 SVs - 17.09.2006 12 UTC

Fig. 5. Total energy (colored surfaces) of the leading TL255 SV from 17 September 200600 UTC and potential vorticity (1PVU; grey surface) of accompanying trajectory. a) initialmoist SV, b) initial dry SV, c) evolved moist SV and d) evolved dry SV; view is from thesouth. e) and f) as c) and d) but view is from the southwest top corner. The colored surfacesenclose 60% of the total energy of the SV. For more explanation see text.

44

Fig. 5. Total energy (colored surfaces) of the leading TL255 SV from 17 September 200600 UTC and potential vorticity (1PVU; grey surface) of accompanying trajectory. a) initialmoist SV, b) initial dry SV, c) evolved moist SV and d) evolved dry SV; view is from thesouth. e) and f) as c) and d) but view is from the southwest top corner. The colored surfacesenclose 60% of the total energy of the SV. For more explanation see text.

44

Moist (TL255) Dry (TL255)

Grey : PV Colored : Total Energy

0 h

48 h

Lang, Jones, Leutbecher, Peng and Reynolds (2012)

Methods used at ECMWF

ANALYSIS  UNCERTAINTY:    -­‐  Ensemble  of  Data  Assimila1ons  (EDA):  ensemble  of  10  4DVar  with  perturbed  observa0ons  and  stochas0c  physics  -­‐  Singular  Vectors  (SVINI):  fastest  growing  perturba0ons  (linear  framework)    MODEL  ERROR:    -­‐   Stochas1c  Kine1c  Energy  BackscaLer  (SKEB):  scheme  to  model  e.g.  errors  by  discre0za0on  -­‐  Stochas1c  perturba1ons  of  parameterised  tendencies  (SPPT):  scheme  to  model  errors  caused  by  parametriza0on  of  processes    

What impact do the different methods have on tropical cyclone forecasts?

Lang, Leutbecher, Jones (2012)

Experiments to quantify impact:

5 Different Ensemble Setups, 4 with only one perturbation method active-> equivalent to approx. 3500 individual global weather forecasts (30 km resolution, 62 vertical levels) and 1400 individual 4DVar analysis.

Analysed perturbation growth and patterns for 13 tropical cyclone cases:

Energy  Growth   Azimuthally  integrated  perturba0on  energy  aNer  48  hours  

Lang, Leutbecher, Jones (2012)

TC track and intensity spread:

Ensemble using all four perturbation methods shows nice track error / spread correspondence

Lang, Leutbecher, Jones (2012)

L

L L

L

Factors modifying waveguide disturbances

Evolution of Rossby waves along the waveguide

Downstream impact of diabatically modified

PV anomalies

T-NAWDEX/DOWNSTREAM 2016

L

L L

L

US: GV

GV: HALO

UK: BAE 146

Partners o Germany: DLR IPA, FX, KIT Karlsruhe, Univ. Mainz o ETH Zürich o US: NPS, NCAR, OU, Princeton, MIT, NOAA o French, UK, CAN contributions envisaged o Links to national weather services: DWD, ECMWF

CAN: NRC Convair 580

Ideal operation period in Sep/Oct 2016: •  strongest storm activity •  Tropical Cyclones •  Polar Vortices

T-NAWDEX/DOWNSTREAM 2016

GB FE 32

Summary Interaction of tropical cyclones and midlatitude wave guide leads to excitation / modification of Rossby wave trains Process often not well captured in NWP models Advances in design of EPS allow for better quantification of uncertainty Additional insight through T-NAWDEX / DOWNSTREAM & further NWP experiments

top related