the spes project: a first step towards eurisol m. cinausero laboratori nazionali di legnaro on...

Post on 20-Dec-2015

218 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

The SPES project: a The SPES project: a first step towards first step towards

EURISOLEURISOLM. CinauseroM. Cinausero

Laboratori Nazionali di LegnaroLaboratori Nazionali di Legnaro

On behalf of the SPES On behalf of the SPES collaborationcollaboration

Outline of the talkOutline of the talk

The project objectivesThe project objectives

The project status The project status

Physics to be addressed Physics to be addressed

ConclusionsConclusions

PRODUCTION OFPRODUCTION OFn-RICH ISOTOPES:n-RICH ISOTOPES:

80 < A < 160 80 < A < 160

RIB INTENSITY:¤ 1013 fissions/s¤ 107-109 rare ions/s on experimental sites¤ RIBs energy: 9-11 MeV/u

SPES: A mid-term ISOL n-rich SPES: A mid-term ISOL n-rich FacilityFacility

Multi-sliceMulti-slice

UCUCx x TargetTarget

p @ 40 p @ 40 MeVMeV

I = 0.2 mAI = 0.2 mA

~1013Fiss./s

SPES LAYOUT AT LNL SPES LAYOUT AT LNL 60x83 m2

Low energy RIB

experiments

Existing Buildings

Ion source

Bunching RFQ

Charge breeder

isobar separation

HV platform

ALICE platform

SRFQPIAVE

TRIPS +TRIPS +TRASCO TRASCO

RFQRFQ

DriverDriverAreaArea

Neutron Neutron facilitiesfacilities

(irradiatio(irradiation,n,

BNCT)BNCT)

TargetTargetAreaArea

TargetLaboratories

Area forpossibledeveloping

IBA Cyclone 70IBA Cyclone 70

The Proton DriverThe Proton DriverCommercial Cyclotron: Beams: H- / D- Variable energy: 15 MeV 70 MeV Extraction system: Stripper for H- / D- Performances: 750µA, 2 beam exits

LINAC: Beam: protons Energy: ~ 43 MeV Av. beam current: up to 0.5 mA Beam pulse length: 200 s Repetition rate: 50 Hz RF frequency: 352.2 MHz

ECR source(TRIPS)

RFQ(room temp.)

DTLCERN Linac4 basic design

(permanent magnet quadrupole focusing)

NeutronFacilities

p @ 42 MeV, up to 20A

SPESHRIBF

The Target Prototype The Target Prototype

SiC Pellets Characteristics:SiC Pellets Characteristics:- Pellets diameter: 13 mmPellets diameter: 13 mm- Pellets distance: 1 mmPellets distance: 1 mm- density: 3.07 g/cmdensity: 3.07 g/cm33

- emissivity: 0.85 emissivity: 0.85 (MEASURED!)(MEASURED!)- specific heat: 670 J/(kg m K)specific heat: 670 J/(kg m K)- conductivity: 30 W/(m K)conductivity: 30 W/(m K)- melting point: 2300°Cmelting point: 2300°C

INITIAL PELLETS INITIAL PELLETS MATERIAL: commercial MATERIAL: commercial

SiC SiC

Type: Hexoloy SG SiC(from “Saint Gobain”)

SCALE 1:5 SCALE 1:5

On-Line Test at HRIBF On-Line Test at HRIBF

1)1) Power dissipation testPower dissipation test2) Production test2) Production test (Yields of exotic Al isotopes )(Yields of exotic Al isotopes )

Data from pyrometer readingwith and without sheldingof the target box.

Aluminum I sotopic Chain

10

100

1000

10000

100000

25.5 26 26.5 27 27.5 28 28.5 29 29.5

Mass (amu)Co

unts

/s

2 microA, 1800°C

5 microA, 1800°C

10 microA, 1800°C

12 microA, 1800°C

2 microA, 1600°C

HRIBF typical exp. conditions

Net Net yield gainyield gain with with SPES configuration!SPES configuration!

Dumper Temperature measurement

600

900

1200

1500

1800

2100

2400

0 100 200 300 400 500 600 700 800

Heater Current [A]

T [°C]

Experimental - Without shields

Experimental - With shields

FEM - Without shields

FEM - With shields

Poly. (Experimental - With shields)

Poly. (Experimental - Without shields)

without shield

with shieldwith shield

UCx pellets productionUCx pellets production

Target System Layout Target System Layout

Front-end: SPES design

Heater: SPES®Target: SPES® (Ø = 4 cm)

SPES Heater

SPES Chamber(made by ALCA-Schio)

Target HandlingTarget Handling

Storage

Movimentation

Beam intensities (I)Beam intensities (I)

1-step: p 40 MeV 0.2 mA on multi-slice direct target (25 gr UCx)

Release times considered:1-step 2 s, 2-step 40 s

Sn isotopes

1,00E+09

1,00E+10

1,00E+11

115 117 119 121 123 125 127 129 131 133 135 137

1-step

2-step

In-target production from M.C.

Beam intensities evaluated considering release, ionization and reaccelerationefficiencies

2-step: d 40 MeV 2mA on thick 12C converter + UCx target (800 gr)

N-rich

1013 fissions/sec

Sn isotopes

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

110 115 120 125 130 135 140

yiel

d (p

ps)

DirectTarget

2step

N-rich

Sn isotopes

Effusion-diffusion effect on isotopes releaseEffusion-diffusion effect on isotopes release

Beam on Target

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

70 80 90 100 110 120 130 140 150

mass

inte

nsi

ty (

sec-

1)

Series1

132Sn

Ga

KrSr

AgIn Sn Cs

ionization efficiencies: (1+) 90% and (n+) 12% for Kr and Xe, (1+) 30% and (n+) 4% for Zn, Sr, Sn, I, Cd

Transport efficiency 50%

Beam intensities (II)Beam intensities (II)

When available the intensities are calculated on the basis of the beam intensities delivered at HRIBF(2005)

mass

Estimated beam intensities available for experiments

Shell evolution (I)Shell evolution (I)Element formation in r-process: quenching of shell-structure?Pfeiffer et al., Z. Phys. A357 (1997) 235

Experimenlal Signatures:

Energies of the excited levels

Nucleon Separation energies

Transition matrix elements

Shell evolution (II)Shell evolution (II)

Extend the level scheme at higher states and toward the n-drip line with the more intense and energetic SPES beams via tranfer reactions

SPES ESTIMATES: up to 138Sn with >105 pps

J. S. Thomas et al. PRC 71, 2005

2H(82Ge,p)83Ge (104 pps) Direct reaction in inverse kinematics

First excited state= (280+ 20) KeV

New studies in progress at HRIBF in the Sn region

(130,132 Sn beams >105 pps)

Critical point symmetries and nuclear phase Critical point symmetries and nuclear phase transitionstransitions

Group Theory : combination of both spatial and isospin symmetries

Harmonic vibrator: U(5)

Deformed symmetric rotor: SU(3)

-unstable nuclei: O(6)

X(5): harmonic vibrator deformed symmetric rotor (F. Iachello PRL 85 2000)

Observables: Energies and lifetimes at j<10h, intra-inter band transition matrix elements

Studied candidates: Gd, Dy (A~150), Ce (A~130)

Spes

1,00E+06

1,00E+07

1,00E+08

1,00E+09

1,00E+10

1,00E+11

84 86 88 90 92 94 96

n-rich Kr isotopes SPES up to 95Kr >107 pps

see e.g. R.M. Clark et al., PRC 68 (2003)

Limiting temperature studies (I)Limiting temperature studies (I)

A = 30÷60

A = 60÷100

A = 100÷140

A = 140÷180

A = 180÷240

J.B. Natowitz et al., PRC 65 2002

Limiting temperature T<Tlim the nuclear system can be described as a nuclear drop T>Tlim the thermodynamically equilibrated nuclear drop cannot survive

J.B. Natowitz et al., PRL 89 2002

Infinite nuclear matter EOS

Limiting temperature studies (II)Limiting temperature studies (II)

Going away from stability….. Besprovany Levit PLB 217(1989)

Zhuxia Li, Min Liu PRC 69 2004

86-95Kr + 90Zr = 176-185Os

90-102Sr + 40,48Ca = 130-,150Ce

114-145Xe + 40,48Ca = 154-193W

Possible reactions with SPES

Neutron captureNeutron capture cross section cross section measurementsmeasurements

¤ Activation Facility (cw beam: I = 30mA)- energy range = 1-300 keV- astrophysics interest (TOT -> MACS)- neutron flux ~ 1010 n/s·cm2

- small samples: 1015 atoms/cm2 -> implantation of SPES RIBs (2 weeks)

139Ba(n,)140Ba massive stars SPES flux ≥1010 pps

Maxwellian Neutron Spectrum

kT=48 keV

Neutron production: Neutron production: 77Li(p,n)Li(p,n)

SPES TIME SCHEDULE SPES TIME SCHEDULE (CYCLOTRON SOLUTION)(CYCLOTRON SOLUTION)

2007 2008 2009 2010 2011 2012 2013

Facility design

Target prototypes

Autorization to construction

Building construction

Target installation and comm

Completion of TRASCO RFQ

Installation and comm of TRASCO RFQ

Ciclotron construction

Installation and comm. Cicl.

Alpi preparation for post acceleration

Installation of RIBs transfer lines and spectrometer

Complete commissioning

ConclusionsConclusions

The construction phase of the SPES facility has started

Definition of key experiments under study

Thanks for your attention!

SPES COLLABORATION SPES COLLABORATION INFN Laboratori Nazionali di Legnaro, Italy:

A.Andrighetto, M.Barbui, G.Bassato, G.Bisoffi, S.Carturan, F.Cervellera, M.Cinausero, P.Colautti, M.Comunian, L.Corradi, A.Dainelli, G.de Angelis, E.Fagotti, E.Fioretto, M.Giacchini, F.Gramegna, M.Lollo, G.Maggioni, P.Mastinu, A.Palmieri, A.Pisent,

M.Poggi, G.Prete, V.Rizzi, A.Stefanini, M.Tonezzer, D.Zafiropoulos

ENEA, Bologna and Faenza, Italy: C.Antonucci, S.Cevolani, C.Petrovich

Dipartimento di Ingegneria Meccanica, University of Padova, Italy:L.Biasetto, P.Colombo, M.Manzolaro, G.Meneghetti

Dipartimento di Costruzione Trasporti,Ingegneria, University of Padova, Italy:C.E. Majorana, V. Salomoni

INFN Laboratori Nazionali del Sud, Catania, Italy:L.Celona, F.Chines, G.Cuttone, G.E.Messina, M.Re, D.Rizzo

Dipartimento di Scienze chimiche, University of Padova, Italy: P.Di Bernardo, P.Zanonato, L.Piga

INFN-Bari, Italy: A.Variale

INFN-Pavia and University of Pavia, Italy: P.Benetti

Dipartimento di Ingegneria Meccanica, University of Trento, Italy: I. Cristofolini, M. De Cecco, R. Oboe,

LNL InstrumentationLNL Instrumentation

ION SOURCE AND RFQ ION SOURCE AND RFQ

Requirement Status

Beam energy 80 keV 80 keV

Total current 70 mA 60 mA

Proton fraction 90 % 85 %

Microwave power frequency

<2 kW at 2.45GHz

0.3-1 kW at 2.45 GHz

Duty factor 100 % (dc) 100 % (dc)

Beam emittance<0.2 π mm

mrad~0.07 π mm

mrad

Reliability ~100 %90 % at 30

mA

Gas flow <2 sccm 0.4-0.6 sccm

TRIPSTRIPS: : developeddevelopedat LNS, now at LNS, now operating at LNL operating at LNL

RFQRFQ: 6 modules: 6 modules- 2 completed, 4 - 2 completed, 4 waitingwaiting the brazing at CERN -the brazing at CERN -

¤¤ Energy: 5 MeV Energy: 5 MeV¤ Current:up to 35 mA¤ Current:up to 35 mA¤ Operation: cw and pulse ¤ Operation: cw and pulse modemode

NEUTRON FACILITIES: BNCTNEUTRON FACILITIES: BNCT

The in-air thermal neutron flux level at SPES-BNCT

is 2∙109cm-2s-1 at beam port

Reaction: 10B(n,)7Li (n capture : 3837 barn)

The method: 10B is chemically carried in the tumour bulk (skin melanoma).The charged particles produced in the reaction deposit their energy inside the cell volume.BNCT is a highly selective method to destroy cells in the tumor tissue.

ALPI ACCELERATORALPI ACCELERATOR

ALPI: a Superconductive

Linear Accelerator for Heavy Ionsbased on QW resonators

(Injector:Injector: PIAVE PIAVE)

YEAR 2006 2007 2008 2009 2011

Eacc

(MV/m)

CR03CR04-CR06CR07-CR20

03

3.6

03.54.2

63.54.2

66

4.2

66

4.2

Energy

(MeV/A)

132Xe20+

132Xe26+

132Sn20+

6.1 7.1 7.911 11

9.1

THERMO-MECHANICALTHERMO-MECHANICALCALCULATIONS I CALCULATIONS I

Proton Beam Power: 8 kW.Fixed Box Temperature: T=2000oC.

Maximum Temperature

2000

2100

2200

2300

2400

0 1 2 3 4 5 6 7 8 9 10 11 12

element

°C

UCx Melting point:

2350°CDEPOSITION IN THE TARGET:1)1) 0.19 kW in the window;2)2) 4.1 kW in the 7 UCx disks;3)3) 1.7 kW into the 3 dump disks; 4)4) 2.2 kW lost outside the disks (due to proton scattering).

TOTAL: 8.19 kW

145 W/g: SAME POWER 145 W/g: SAME POWER DENSITY OF DENSITY OF

HRIBF TARGET HRIBF TARGET

Power Deposition

0

1

2

3

4

5

1 2 3 4

kW

MC calculations (MCNPX code, ORNL model)

(Benchmarked by ANSYS calculations)

THERMO-MECHANICALTHERMO-MECHANICALCALCULATIONS II CALCULATIONS II

Thermal stress (equivalent stress, Pa) arises for differential expansion due to non-uniform temperature distribution.

Thermal stress

components in the 7th disk

(the worst conditions):

static calculations

Thermal analysisThermal analysis based on power deposition data:heat is removed bythermal radiation (fromdisks to box, fixed at T=2000°C, and thenfrom box to chamber).

1

MNMX

XY

Z

Target SPES

.797E+07.291E+08

.502E+08.714E+08

.925E+08.114E+09

.135E+09.156E+09

.177E+09.198E+09

FEB 11 200723:44:17

NODAL SOLUTION

STEP=1SUB =1TIME=1SEQV (AVG)DMX =.571E-03SMN =.797E+07SMX =.198E+09

Disks:

1 st 2 nd 3 rd 4 th 5 th 6 th 7 th

ANSYS Code

Beam

Stress components on the c surface

-150

-100

-50

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20 22

r [mm]

stress [MPa]

radial stress

circumferential stress

axial stress

equivalent stress

Critical value ~ 200MPa

RELEASE CALCULATIONS RELEASE CALCULATIONS

GEANT4GEANT4 (NIMA506(2003),250)Free effusion calculation with Adsorption Desorption on the wallsThe disks are slabsThe temperature is T = 2200 K.

RIBORIBO(M. Santana Leitner Ph.D Thesis) In-grain Diffusion, Inter-grain Effusion, Free Effusion with Adsorp. Desorpt. on the walls, Ionization.The disks may be slabs, powder or fibers The temperature is T = 2200 K.

Cross check with Two Codes :

Geant4 & Ribo

GOOD GOOD AGREEMENT!!

AGREEMENT!!

CALCULATION CONDITIONS:

Container : cylindrical tube

(radius = 4 cm; length = 24 cm)

7 UCx Disks: radius = 3 cm,

th. = 1 mm ( = 2.5 g/cm3)

3 Graphite Disks: radius =3 cm,

th. = 0.2 mm ( = 1.75 g/cm3)

Graphite window: radius =4 cm,

th. = 0.4 mm

Spacing Between disks: 2 cm

Exit length: 12 cm

Effusion

Sticking time (s)

Diffusion

T 1/2 (s)

RESULTSRESULTS:

for 132Sn isotope

¤ Total Effusion time : 0.41 ± 0.02 s Inter-grain eff.: <path> ~ 1 50m <Coll.> ~ 2700 Free effusion: <path> ~ 1.5 m <Coll.> ~ 105

¤ Total Release time: 1.5 ± 0.5 s

with: mean free path = 15 m sticking time = 10-6 s D = 1 s(from ISOLDE data)

Steps 

Activity (Bq)

 

Dose * gram (Sv/h)

 

Total Dose (Sv/h) at 1 m

Total Dose (Sv/h) at 2 m

Total Dose (Sv/h) at 2 m with 2cm

of lead

IRRADIATION (1013 f/s)

1 Days 1.50E+13 6.20E-02 1.77E+00 4.43E-01

4 Days 1.70E+13 6.70E-02 1.92E+00 4.79E-01

7 Days 1.80E+13 6.80E-02 1.94E+00 4.86E-01

14 Days 2.00E+13 7.30E-02 2.09E+00 5.22E-01

COOLING

1 Secs 2.00E+13 7.26E-02 2.08E+00 5.19E-01 5.19E-02

1 Days 3.33E+12 6.82E-03 1.95E-01 4.88E-02 4.88E-03

3 Days 1.78E+12 3.85E-03 1.10E-01 2.75E-02 2.75E-03

14 Days 6.67E+11 1.44E-03 4.12E-02 1.03E-02 1.03E-03

30 Days 1.78E+11 3.85E-04 1.10E-02 2.75E-03 2.75E-04

90 Days 5.00E+10 8.36E-05 2.39E-03 5.98E-04 5.98E-05

10 Years 6.22E+08 5.94E-07 1.70E-05 4.25E-06 4.25E-07

100 Years 1.22E+08 1.01E-07 2.89E-06 7.24E-07 7.24E-08

TARGET HANDLINGTARGET HANDLING

- 14 days of irradiation, 14 days of cooling

- After deposition of the chamber in a lead box it can be manually handled

- handling for 5 minutes –> total dose to operator = 83 Sv

- foreseen 25 runs/year -> Total dose amount for 1 year = 2 mSv (far from 20 mSv max dose/year)

PELLETS CHARACTERIZATION PELLETS CHARACTERIZATION STRUCTURALSTRUCTURAL THERMO-MECHANICALTHERMO-MECHANICAL

SEM PICTURES

EDAX INSPECTION Compositional information(not quantitative)

Sinthering degree(surface)

XRD Analysis (at differentStages of Preparation)

CARBURIZATION SINTERING

Heating Cycle (La)Heating Cycle (La)

1000 1200 1400 1600 1800 20000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SiCA (hexagonal, bulk) SiCG (hexagonal, bulk) SiC xycarb (cubic, porous) Al2O3 Graphite (fine) LaCx

T (°C)

Emissivity MeasurementsEmissivity Measurements

FIRST EMISSIVITY FIRST EMISSIVITY MEASUREMENT AT 2000°C MEASUREMENT AT 2000°C OF SiC AND LaCx AT LNL OF SiC AND LaCx AT LNL

LNL LNL furnace furnace

SECONDARY BEAM SECONDARY BEAM TRANSPORTTRANSPORT

ProtonDriver

UCxTarget

Low res. mass

selection

High res. mass

selection

ChargeBreeder

PIAVE+ ALPI

X+1 X+n

BunchingRFQ- Energy out of the TIS system: 40-60 keV

- Separation: according to the M/q ions ratio- Along the beam line: electrostatic quadrupoles and deflectors- Low resolution mass separator: M/M = 300- High resolution mass separator: M/M = 15 000 (low energy exp. areas)

Proton Proton beambeam

RIB beamRIB beam

Target Target BunkerBunker

Handling zoneHandling zone

ServiceServicess

Target Building: preliminaryTarget Building: preliminary

RIB beamRIB beamRIB beamRIB beam

top related