transducer models 10 - iowa state universitye_m.350/transducer models 10.pdf · two port and three...

Post on 10-May-2018

217 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Transducer Modeling

Learning Objectives

Two port and three port transducer modelsSittig modelMason modelKLM Model

Acoustic radiation impedance

Transducer sensitivity, impedance

The sound generation process

Transducer model - fields

Reciprocity :( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 1 1 2 2 1 1 2

S

V I V I p p dS− = − ⋅∫ v v n

Consider a P-waveimmersiontransducer:

pressure,velocity fields

p, v

VI

n

S

voltage

current

compressive force

velocity, v(x,ω)

( ) ( )( ) ( )

,

,S

v

F p dS

ω ω

ω ω

=

= ∫v x n

x

Transducer model- ‘lumped’ parameters

so reciprocity becomes:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 2 2 1 1 2V I V I F v F v− = −

Forpiston behavior

( ) ( ) ( ) ( ), ,p dS F vω ω ω ω⋅ =∫ x v x n

VI

Fv

pressure, p(x,ω)

[TA]V

I

F

v

Transducer model - transfer matrix

VI

⎧ ⎨ ⎩

⎫ ⎬ ⎭

=T11

A T12A

T21A T22

A⎡

⎣ ⎢

⎦ ⎥

Fv

⎧ ⎨ ⎩

⎫ ⎬ ⎭

, det T A[ ]= 1

2-Port Transducer Model

From reciprocity

force

VI

F

v velocityA

I

[TA]V F

v

Transducer model - transfer matrix

Sittig model: T A[ ]= TeA[ ]Ta

A[ ]

TeA[ ]=

1 / n n / iω Co

−iω Co 0⎡

⎣ ⎢ ⎤

⎦ ⎥

TaA[ ]= 1

Zba − iZ0

a tan kd / 2( )Zb

a + iZ0a cot kd( ) Z0

a( )2+ iZ0

aZba cot kd( )

1 Zba − 2iZ0

a tan kd / 2( )

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Transducer model - transfer matrix

0

0 33

33

33 0

33

0

33

0 0

/

/

/,

Dp

D

p

Sss

D

ap

ab

k v

v c

c

n h Ch

C S dS d

Z v S

Z

ω

ρ

ρ

β

β

ρ

=

=

=

=

=

wave number of piezoelectric plate

wave speed of the plate, defined in terms of:

plate elastic constant at constant flux density

plate density

constant, defined in terms of:

plate stiffness

clamped capacitance, defined in terms of:

plate area, thickness

plate dielectric impermeability at constant strain

plate acoustic impedance

backing acoustic impedance

Transducer - three port model

IV

F2 , v2F1 , v1

transducer crystalPlating(thickness neglected)

F1

F2

V

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪ = i

Z0a cot kl( ) Z0

a / sin kl( ) h33 / ωZ0

a / sin kl( ) Z0a cot kl( ) h33 / ω

h33 / ω h33 / ω 1/ ω C0

⎢ ⎢ ⎢

⎥ ⎥ ⎥

v1

v2

I

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

V I

F2

v2

F1

v1

3x3 impedance matrix

Transducer - Mason equivalent circuit

v1 v2

V

IF1F2

1: n

C0

- C0

iZ0 /sin(kl)a

- iZ0 tan(kl/2)a - iZ0 tan(kl/2)a

Transducer - KLM equivalent circuit model

1 : φ

- i X

C0V

I

F1

v1

F2

v2l/2 l/2

Z0Z0a a

φ =2M sin(kl/2)

1

X = Z0 M2 sin(kl)a

M = h33 / (ωZ0 )a

Sittig model with crystal facing layers

Backing (Zb )a

crystal facing layers(epoxy bonding, wear plate, etc.)

Acoustic layer: F1

v1

F2

v2

[Tl]

Commercial transducer:[TA] = [TA] [TA] [Tl] ...

F1

v1

⎧ ⎨ ⎩

⎫ ⎬ ⎭

=cos kala( ) −iZ0

a sin kala( )−isin kala( ) / Z0

a cos kala( )⎡

⎣ ⎢

⎦ ⎥

F2

v2

⎧ ⎨ ⎩

⎫ ⎬ ⎭

e a

[TA]V

I

Ft

v

Transducer – radiation into a fluid

At the acoustic port the force and velocity parametersare not independent. We can write ( ) ( ) ( );A a

t rF Z vω ω ω=;A a

rZ … acoustic radiation impedance (a "lumped"parameter that depends on the velocity and pressure distributionat the acoustic port, the port geometry, and the fluid properties)

;A arZ

A

Acoustic radiation impedance

Rayleigh-Sommerfeld integral model of radiation ofwaves into a fluid by a piston transducer

( ) ( ) ( ) ( )exp,

2 S

i v ikrp dS

r

r

ω ρ ωω

π−

=

= −

∫x y

x y

( )( )

( )( ) ( ) ( )

,exp

2a sr

S S

p dSikriZ dS dS

v r

ωωρω

ω π⎧ ⎫−

= = ⎨ ⎬⎩ ⎭

∫∫ ∫

xy x

( )v ω

xyρ… fluid density

c … fluid wave speedk = ω/c

pressure

Greenspan, 1979: showed that for a circular piston transducer of radius a the acoustic radiation impedance obtained from the Rayleigh-Sommerfeld model could be found explicitly in the form

.

J1 … Bessel function

S1 … Struve function

SA = πa2

Acoustic radiation impedance

( ) ( );1 1/ 1 /A a

r AZ cS J ka iS ka kaρ = − −⎡ ⎤⎣ ⎦

Acoustic radiation impedance

>> ka=linspace(0, 25, 100);

>> ka = ka + eps*( ka ==0);

>> Z = 1 -(besselj(1,ka)-i*struve(ka))./ka;

>> plot(ka, abs(Z))

>> xlabel(' ka ')

>> ylabel( ' V/\rhocS')

>> ylabel( ' Z/\rhocS')

0 5 10 15 20 250.5

0.6

0.7

0.8

0.9

1

1.1

1.2

;A ar

A

ZcSρ

ka

Greenspan model of a circular piston transducer

velocity

Fv

Acoustic radiation impedance

Most NDE transducers operate at high frequencies (ka >> 1). At such high frequencies if we canassume piston behavior, for any shaped transducer it can be shown that

;A ar AZ cSρ≅

density, wave speed, area

A

function y = struve(z)num = length(z);y=zeros(1,num);for k = 1:numy(k) = quadl(@struve_arg, 0, 1, [ ],[ ], z(k));end

function y = struve_arg(x, z)

y = (4./pi).*z.*x.^2.*sin(z.*(1-x.^2)).*sqrt(2-x.^2);

Acoustic radiation impedance

( ) ( )

( )

12 2

10

12 2 2

0

2 1 sin 1

4 sin 1 2

zH z t zt dt t x

z x z x x dx

π

π

= − = −

⎡ ⎤= − −⎣ ⎦

this uses

Sensitivity, Impedance

Vin

Iin

;A arZAT⎡ ⎤⎣ ⎦ tF

tv

;A at r tF Z v=

;; 11 12

;21 22

A a A AA e in rin A a A A

in r

V Z T TZI Z T T

+= =

+

inVinI

the electrical characteristics of the transducercan be completely described by its inputimpedance:

Iin

Vin ( );A einZ ω

A

Sensitivity, Impedance

inVinI

The particular sensitivity we will use is:

;21 22

1A tvI A a A A

in r

vSI Z T T

≡ =+

to describe the conversion of electrical signals into acoustic signals, we could use the transducer's sensitivity, SOI, where

tv

tF

OIOSI

=

O … an output (force or velocity)I … an input (voltage or current)

A

Sensitivity, Impedance

;A at r tF Z v=

All the other sensitivities can be found from this sensitivity if the transducer electrical impedance and acoustic radiation impedance are known:

;

;

; ;

/

/

A tvI

in

A A a AtFI r vI

in

A A A etvV vI in

in

A A a A A etFV r vI in

in

vSIFS Z SIvS S ZVFS Z S ZV

=

= =

= =

= =

inVinI

tF

tvA

;A einZ

inI

inV

At vI inv S I=

inVinI

tv

tFA

Sensitivity, Impedance

Thus, we can replace the transfer matrix model of the transducerby a model consisting of an electrical impedance and an ideal "converter" that is defined by the transducer sensitivity:

;A a At r vI inF Z S I=

Entire Sound Generation Process

( )tF ω

transmittingtransducer

cablepulser

( )iV ωoutputforce

( )iV ω ( )tF ω( )Gt ω

Thevenininput voltage

A

( )iV ω

( )eiZ ω

[ ]T ;A einZ

;

At vI in

A at r t

v S I

F Z v

=

=

pulser

cabletransducer

sound generationtransfer function

==

Entire Sound Generation Process

( )tF ω

transmittingtransducer

cablepulser

( )iV ωoutputforce

Thevenininput voltage

A

( )iV ω ( )tF ω( )Gt ω

( ) ( )( ) ( ) ( )

;

; ;11 12 21 22

A a At r vI

G A e A e ei in in i

F Z StV Z T T Z T T Z

ωω

ω= =

+ + +

sound generationtransfer function

References

Ristic, V.M., Principles of Acoustic Devices, John Wiley, 1983

Kino. G.S., Acoustic Waves - Devices, Imaging and Analog Signal Processing, Prentice-Hall, 1987.

Auld, B.A., Acoustic Fields and Waves in Solids, 2nd Ed., Vols. I and II, Krieger Publishing Co. , 1990.

Sacshe, W., and N.N. Hsu,” Ultrasonic transducers for materials testing and their characterization,” in Physical Acoustics, Vol. XIV,Eds. W.P. Mason and R.N. Thurston, 277-406, 1979.

Greeenspan, M., “Piston radiator: some extension of the theory,”J. Acoust. Soc. Am., 65, 608-621, 1979.

top related