umts overview

Post on 18-Nov-2014

167 Views

Category:

Documents

18 Downloads

Preview:

Click to see full reader

TRANSCRIPT

�����

������������

� ������� ������

����

��������������������

�����

������������������

������

RuralOutdoor

Urban/SuburbanOutdoor

Indoor/Low Range

Outdoor

OPERATINGENVIRONMENT

USEREQUIPMENT

SPEEDBIT

RATE

144 kbit/s

384 kbit/s

2,084 kbit/s

500 km/h

120 km/h

10 km/h

�����

�������!�"��"��#�

������$

User Equipment (UE)

UMTS Terrestrial RadioAccess Network (UTRAN)

Switching/Transit/Databases

%����

�������� �!&��'

������(

RadioAccessNetwork

3GMSC/VLR GMSC

PSTN

RadioAccessNetwork

Iur

3GSGSN

Iu-PS

Iu-CS

Iu-CSRNC

RNC

Gs

Signalling connectionTraffic and Signalling connection

IP Networkor

X.25 Network

3GGGSN

Gn GiIu-PS

EIRAUC

HLR

D

Gr Gc

)����

*�#������� �+,�!�+!���

�������-

RNSRNS RNSRNS RNSRNS

Radio NetworkController

(RNC)

UTRANRNSRNS

Radio Network Subsystem (RNS)

Node BNode B

Node B

����

�����.���"�#!�����

��������

New phones

New equipment

Internet browser

Internet Search

http:/www.domain.co.uk

XXXXXXX XXXXXX

XXXXX XXXX

XXXX XXX XX

http:/www.domain.co.ukXXXXXXX XXXXXXXXXXX XXXXXXXXX XXXX

/����

�#0����++���1��������!���

��������

DECTDECT ERANERAN

BRANBRAN GRANGRAN

Broadband RadioAccess Network

GPRS RadioAccess Network

EDGE RadioAccess Network

Digital EnhancedCordless Telephony

UMTS Core Network

$����

The Air Interface (Uu)

Figure 1

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

User Equipment(UE)

Iub

IubRNC

CoreNetwork

Telecommunications Service

UTRAN

Node B

Node B

Iu

Air Interface(Uu)

(����

Air Interface Modes

Figure 2

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

UMTSCore

Network

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

UMTS Terrestrial RadioAccess network (UTRAN)

User Equipment (UE)FDD Mode

User Equipment (UE)TDD Mode

CDMA

Frequency Division Duplex Mode 1Direct Sequence Mode

Time Division Duplex Mode 1TD-CDMA

�-����

ODMA (Opportunity Driven Multiple Access)

Figure 3

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

TDD

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

ODMA

ODMA

Node B

UE in coverageActs as relay

UE inCoverage hole

UE out ofrange

������

Access Stratum (AS) and Non-Access Stratum (NAS)

Figure 4

OSI Layers

L7

L3

L3

L1

Uu Iu

UTRAN

UE Core Network

Relay

AccessStratum

Non-Access Stratum

������

Air Interface Access Stratum

Figure 5

Control Plane Signalling User Plane Information

L3

L2

L1 Physical Layer

Medium AccessControl (MAC)

TransportChannels

LogicalChannels

Radio LinkControl (RLC)

Radio ResourceControl (RRC)

������

Functions of MAC

Figure 12

Logical to TransportChannel Mapping

Selection ofTransport Format

PriorityHandling

Identification ofUEs on Common

Transport Channels

Multiplexing ofPDUs into Transport

Blocks

Traffic VolumeMonitoring Dynamic Transport

Channel Type Switching

MAC FunctionsMAC Functions

Access Class Selectionfor RACH and CPCH

Ciphering for TrM RLC

�%����

Protocol Termination

Figure 6

Physical

MAC

RLC

RRC

Physical

MAC

RLC

RRC

���� � �� �� � �� �� �

Internet Search

������������ � � � � �� � �� �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

UserEquipment Uu

Iub

RadioNetwork

Controller

NodeB

�)����

Logical Channel Types

Figure 7

Control Channels

BCCH PCCH CCCH DCCH OCCCH ODCCH

Traffic Channels

Medium Access Control (MAC)Medium Access Control (MAC)

DTCH ODTCH CTCH

� ����

Logical Channel Types – brief introduction (1)

• Broadcast Control Channel (BCCH)• Downlink system information• BCCH – Constant• BCCH – Variable (constantly updating info)

• Paging Control Channel (PCCH)• Downlink paging messages

�/����

Logical Channel Types – brief introduction (2)

• Common Control Channel (CCCH)• Bidirectional control channel between UE and

network• Used when no RRC connection present

• Dedicated Control Channel (DCCH)• Point-to-point bidirectional channel• Dedicated control information between UE

and network• Used after RRC connection establishment

�$����

Logical Channel Types – brief introduction (3)

• ODMA Common Control Channel (OCCCH)• Bidirectional control channel between Ues• Used when no RRC connection present

• ODMA Dedicated Control Channel (ODCCH)• Point-to-point bidirectional channel• Carrying dedicated control information between UEs• Used after dedicated connection establishment

through RRC connection set-up procedures

�(����

Logical Channel Types – brief introduction (4)

• Shared Channel Control Channel (SHCCH)• Bidirectional control information for uplink and

downlink shared channels

• Dedicated Traffic Channel (DTCH)• Bidirectional• Dedicated point-to-point user information

between UE and network

�-����

Logical Channel Types – brief introduction (5)

• ODMA Dedicated Traffic Channel (ODTCH)• Dedicated point-to-point relay channel

between UEs• Carries user information

• Common Traffic Channel (CTCH)• Point-to-multipoint unidirectional channel• Carrying user information for a specified

group of UEs

������

Transport Channel Types

Figure 8

Common Channels from MAC

RACHCPCH

(FDD only)

FACH USCH(TDD only)

DSCH BCH

Dedicated Channelsfrom MAC

Physical LayerPhysical Layer

DCH ODCH

ORACH PCH

������

Transport Channel Types – brief introduction (1)

• Random Access Channel (RACH)• Contention based uplink channel• Initial access• Non-real-time dedicated control or traffic data

• ODMA Random Access Channel (ORACH)• Similar to RACH• Relay link between UEs

������

Transport Channel Types – brief introduction (2)

• Common Packet Channel (CPCH)• FDD mode only• Contention based• Bursty traffic in shared mode• Fast power control used

• Forward Access Channel (FACH)• Common downlink channel• No power control• Relatively small amounts of data

�%����

Transport Channel Types – brief introduction (3)

• Downlink Shared Channel (DSCH)• Downlink channel used in shared mode by

several UEs• Carries control or traffic data

• Uplink Shared Channel (USCH)• TDD mode only• Uplink channel used in shared mode by

several UEs• Carried control or traffic data

�)����

Transport Channel Types – brief introduction (4)

• Broadcast Channel (BCH)• Downlink broadcast channel• Carries system info across whole cell

• Paging Channel (PCH)• Downlink broadcast channel • Paging &• Notification messages across whole cell

� ����

Transport Channel Types – brief introduction (5)

• Dedicated Channel DCH• Bidirectional user information to/from the UE

• ODMA Dedicated Channel (ODCH)• Dedicated to one UE• Used in the UE to UE relay link

�/����

FDD Mode Logical to Transport Channel Mapping

Figure 9

Logical Channels

MAC

FACH DSCH DCH

BCCH PCCH DCCH CCCH CTCH DTCH

BCH PCH

Physical Layer

CPCH RACH

�$����

UTRAN Architecture

Figure 10

Node B

RadioNetwork

Subsystem(RNS)

Radio NetworkController (RNC)

• Modulation/Demodulation

• Transmission/Reception

• CDMA Physical Channel Coding

• Micro Diversity

• Error Protection

• Closed Loop Power Control

• Radio Resource Control

• Admission Control

• Channel Allocation

• Power Control Thresholds

• Handover Control

• Macro Diversity

• Segmentation/Reassembly

• Ciphering

• Broadcast Signalling

• Open Loop Power Control

�(����

UTRAN Interfaces

Figure 11

Node B

Core Network

Node B Node B

Node B

IuIu

Iur RNCRNC

Iub

Iub IubIub

�-����

The Iu Interface

Figure 12

Core NetworkDomain

RNC

SGSN

MSC/VLR

Circuit-SwitchedDomain

UTRAN

Circuit-SwitchedDomain

Iu-CS

Iu-PS

������

The Use of ATM on the Iu Interface

Figure 13

Core NetworkRNC

SDH (PDH?)

Physical Layer

AAL2AAL5

ATM

AAL2 AAL5

• Synchronous• Variable Bit Rate• Time Critical• Connection Oriented

• Asynchronous• Variable Length Frames• Non-time-critical• Connectionless orConnection-Oriented

������

Multiple Access Schemes

Figure 1

1, 2 and 3

CDMA

TDMA

3

2

1

Sender ReceiverFDMA

Time

Frequency

1 2 3 1 2 3 1 2 3

������

Simplified Spreading Concept

Figure 2

BasebandData

RF

SpreadingCode

Transmitter Receiver

Correlator

RF

BasebandData

SpreadingCode

�%����

Proposed Benefits of CDMA

Figure 3

• Increased spectrum efficiency

• Increased quality

• Imperceptible soft handovers

• Soft blocking

• Single frequency reuse patterns

• Negative signal to noise ratios

• Less expensive/complex radio equipment

• Overlay on existing systems

�)����

Direct Sequence Baseband Spreading

Figure 4

BasebandData

+1

-1

Code

+1

-1

ResultantSpread

BasebandSignal

+1

-1

01 1 1 0

1 1 10 0 1 0 0 1 1 10 0 1 0 0 1 1 10 0 1 0 0 1 1 10 0 1 0 0 1 1 10 0 1 0 0

1 1 10 0 1 00 1 1 10 010 0 1 1 10 0 1 0 0 1 1 10 0 1 0 0 1 1 100100

� ����

Effect of Spreading on TX Bandwidth

Figure 5

Spreading Signal

Non-spreadingSignal

rc 3rb 2rb rb rb 3rb2rb

W/Hz

Frc

Fc

�/����

1��+����#�*��#0 �

• Gp = Chip Rate/User Date Rate = Wc/Wi• Wc = 3.84 MHz, owing to the spectral side

lobes, results in 5 MHz carrier raster.• Spread Signal + Narrow Band Interference.• De-spread Signal & Wideband Noise.• Band-pass filter signal.• Only small proportion of interfering signal

energy passes the filter and remains as residual interference.

• Such a gain has strong narrow interference suppression properties.

�$����

Processing Gain and Narrowband Interference Supression

�(����

�������1��+����#�*��#

• 15 time slots in 10 ms frame.• K = number of slots used for the TDD

service.• W = 3.84 mcps.• R = bitrate.

slotin chipsperiod guard - midamble - slotsin chips

15)Gain Processing( ••= k

RW

Gp

%-����

1��+����#�*��#0 ��

• Owing to the inclusion of additional signal manipulation processing (error control coding, overhead etc.), the resulting processing gain is composed of the spreading part and the coding part.

• More processing gain the system has, the more the power of uncorrelated interfering signals is suppressed in the dispreading process.

• Thus GP is an improvement factor in the SIR of the signal after dispreading.

%�����Figure 6

Direct Sequence Receiver De-spreading

Code

+1

-1

BasebandData

+1

-1

01 1 1 0

1 1 10 0 1 0 0 1 1 10 0 1 0 0 1 1 10 0 1 0 0 1 1 10 0 1 0 0 1 1 10 0 1 0 0

ReceivedSignal

+1

-1

1 1 10 0 1 00 1 1 10 010 0 1 1 10 0 1 0 0 1 1 10 0 1 0 0 1 1 100100

%�����

EXERCISE 1

Code A

Result

ChipSequence

1 0 11 1 1 10 0 0 1 0 1 1 0 1

1 0 11 1 1 10 1 1 0 1 1 1 0 1

+1

-1

+1

-1

+1

-1

%�����

EXERCISE 1 (continued)

Code B

Result

ChipSequence

1 0 11 1 1 10 0 0 1 0 1 1 0 1

1 0 10 1 0 10 1 0 0 1 1 0 0 1

+1

-1

+1

-1

+1

-1

%%����

Processing Gain and Capacity

Figure 7

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

Node B

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

GpProcessing Gain

User contributesPower P and has x–1

interferers

This suggests that:

Gp

Eb / No

�Xmax

%)����

��� �

• Eb/No = (bit energy)/(noise spectral density)• In CDMA, denominator is (noise spectral

density + interference spectral density).• Performance indicator Eb/No is always

related to some quality BLER target.• BLER = long term average block error rate

calculated for the transport blocks.

% ����

����#'��� �

• Prx = received signal power, • I = received interference power,• R = user bitrate, W = chip rate (bandwidth).• Target of fast power control is to keep Eb/No

constant.• Due to fast feedback loop of 1500 Hz, this is

fairly successful.

IP

RW

WI

RP

NE rx

rx

b •==0

%/����

��&#��#'��� �0 �• Calculated differently from the uplink case because the

synchronised orthogonal codes reduce the interference from the serving cell (or cells in soft handover).

• Iown = total power received from the serving cell.• Ioth = total power received from the surrounding

cells.• PN = noise power (thermal and equipment).� α = orthogonality factor, depends on multipath

conditions.

( )Nothown

rx

o

b

PIIP

RW

NE

++−⋅•=

)1(downlink

α

%$����

��&#��#'��� �0 ��

• The codes are fully orthogonal, thus when nomultipath, intereference from serving cell is cancelled and α = 1.

• If two equally strong propagation paths are present, then only half of the interference is cancelled from the receiver point of view and α = 0.5.

%(����

Interference Margin

Figure 8

MinimumReceivedSNR = ?

RequiredSNR = 5 dBGp = 18 dB

(SF 64)

System Losses = 4 dB

Interference margin= Processing gain – (System losses + Required SNROUT)= 18 – (4 + 5)= 9 dB

i.e. This system could process a signal received with a –9 dB SNR.

)-����

Effect on Capacity with Contiguous Coverage

Figure 9

Cell A in isolation10 channels

Interference

Cell B in isolation10 channels

Capacity of Cells A and Bis less than 20 because

of increased interference

Cell A Cell B

)�����

Cell Capacity

Figure 10

Total Cell Capacity = 100 kbit/s

Total Cell Capacity = 100 kbit/s

10 users using10 kbit/s channel

2 users using50 kbit/s channel

)�����

General Synchronisation

Figure 19

���� � �� �� � �� �� �

Internet Search� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XXNode B

UserEquipment

Downlink synchronisation by pilotUplink synchronisation by burst of

preamble or pilot

)�����

Common Pilot Signal

Figure 20

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

Node B

All UEsuse the samecommon pilot

Pilot

Signalling/Traffic

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

)%����

Continuous Pilot Synchronisation

Figure 21

DespreadingOscillator Filter

BasebandData

Code ClockSynchronisationSignal

CarrierDemodulator

RF

))����

Channel Associated Pilot

Figure 22

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

Node B

UEs

Pilot sequences

Traffic/Signalling

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

� � � � � � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

Each channelcarries its own pilot

Traffic/Signalling

) ����

Timing Alignment from a Matched Filter

Figure 23

MATCHEDFILTER

Periodic very short codesequence

Spikes when alignment withincoming very short codes

occurs

)/����

Rake Receiver

Figure 25

RX 2RX 2

RX 1RX 1

RX 3RX 3

ΣCombined

output

Gain phase

CodeCode

Sync.

TcTc TcTc

)$����

Near–Far Problem

Figure 26

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

3 km

UE A

UE B

30 mNode B

Distance Ratio = 30 1000.03

=

Power Ratio with Square Law Propagation= 1002

= 10,000

Interference Margin required = 40 dB

)(����

The Need for Fast Power Control

Figure 27

As UE A comes out ofshadow power must be reducedquickly to avoid degradationof UE B signal

Node B

����� �� �� � �� �� �

Internet Search

������������ � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

Building

A

A

���� � �� �� � �� �� �

Internet Search

������������ � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

BUE A needs

to transmit highpower in shadow ���� � ����

� �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

-����

�,� �+����!���1�&����#!���

� ����������� ��������������������� ������������ �� �������

� � ������������������� ���!�� " !���� ������#�$ %�������� &

� � �������������� ���� ��� !����&

� � �����������'��!������(

� )������������� !��������� �*� !���� �������� �������� ���� �������� !�+�����������������!������ ���&

� ,!������ ���� ��'�� !� ����� ������� ����������������!��������#���+�� ���#����+���� ��� � !�������(

�����

Open Loop Power Control� - ��#� !���� ���������'������������'�

����� ������!�� !��������������#� !�� ��'(

� -���������������������� �� !������+����������������� !� !�����.����*� !��!������������������������� !�����*� !��� !����� �����!�� !���� ��������������� !���������������� �������������� !������������� ������� !�������� ���(

�����

Example of Open Loop Power Control

Figure 27

Initial estimatedtransmit power

UE transmit power

Time

Step increment

Step increment

FirstRandomAccess

SecondRandomAccess

ThirdRandomAccess

�����

����#'2��#0����1�&����#!���

• (PRACH) Preamble Initial Power = CPICH_Tx_Power – CPICH_RSCP + Uplink_interference + Uplink_required_CI

• RSSP = received signal code power measured by UE on active P-CPICH;

• Uplink_interference value broadcast on BCH.• Some control parameters being broadcast in the cell

& the received signal code power (RSCP) being measured by the terminal on the active P-CPICH.

• Based on the value of the open loop power control, the terminal sets the initial power for the first PRACH preamble and for the uplink DCPCCH before starting the inner loop power control.

%����

��&#��#'2��#0����1�&����#!���

• Initial power of control of downlink channel set based on the downlink measurement reports from the UE.

��&#��#'��""�#�,�##���

1�&����#!���

• Determined by the network and the power between the channels can change dynamically.

)����

Power Control at Cell Boundaries

Figure 29

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

Power Control

Increase ininterference here

Power Controlinstructs mobileto turn power up

Node B1

Node B2

����

Soft Handover

Figure 30

Node B1

Node B2

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

Power Control

Power Control B

/����

Soft Handover Region

Figure 31

A B

Soft handover region

Start End

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � �� �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

Two-Cell Case

$����

Soft Handover Region

Figure 31 (continued)

Three-Cell Case

A C

B

Three-wayhandoverRequired

here

(����

Cell Breathing

Figure 32

Low Traffic Load

UE canoperate

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

/-����

Cell Breathing

Figure 32 (continued)

High Traffic Load

UE outof coverage

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � �� �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

Effective coverageshrinks

���� � �� �� � �� �� �

Internet Search

������������ � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

/�����

Sectorisation

Figure 33

Three Sector Six Sector

/�����

��+!�����!��#3��+!�����!��#*��#0 �

• Increasing the number of sectors means the number of users per sector is decreasing, however, number of users per site is increasing.

• This is not proportional to the number of sectors, because the overlap in the sectors is leaking interference from one sector to another.

• For each number of sectors, an optimumbeamwidth exists, optimum being when the number of users is at a maximum.

/�����

��+!�����!��#3 ��+!�����!��#*��#0 ��

• Discrepancy between the practical and theoretical result widens as the number of sectors rises due to interference between the sectors and the effects of the environment, e.g. multipath, sidelobes etc.

site omni of users ofnumber site sectored of users ofnumber

Gain, ionSectorisat =ξ

/%����

Beam Forming Antennas

Figure 33 (continued)

Three Sector12 Beams

Beam formingantenna

multi-beamsupport ofinter-beamhandover

/)����

Adaptive Antennas

Figure 34

Azimuth and radiated powerof beams(s) may be

dynamically adjusted toaccount for traffic distribution

and interference sources

/ ����

���!�#�

• By tilting the antenna, the other-to-own-cell interference ratio, i, is decreasing as the tilting increases.

• Optimum tilting angle of the antenna is 7°to 10°.• Because the antenna main beam is delivering less

power towards the other base station, therefore most of the radiated power is going to the area that is intended to be served by this particular base station.

• At the same time, the network could also serve more users than if the antennas were not tilted.

• Optimum value depends on environment, site, user locations and antenna radiation patterns.

//����

Conceptual Multi-User Detection Receiver

Figure 35

etc.

RakeReceivers

RX 1

RX 2

RX 3

+

–User 1

User 2

User 3

WeightedCorrection

User 1 info+ User 2, 3interference

/$����

FDD and TDD Operation

Figure 1

SatelliteSatellite TDD FDD

1885

FDDTDD

1920

1900

1980 2010 2025 2110 2170 2200

DECTUplink Uplink Downlink Downlink

Duplex 190 MHz

Ch.1

FDD

WCDMA3.84 Mcps

Ch.2

TDD

WB-TDMA/CDMA3.84 Mcps

200 kHz RasterNominal 5 MHz channel spacing

/(����

Physical Layer Functions

Figure 2

• Mapping transport to physical

• Macro diversity

• Error detection

• Forward error correction

• Multiplexing/Demultiplexing

• Rate adjustment

• Power weighting and combining physical channels

• Modulation/Spreading –Demodulation/Despreading

• Synchronisation

• Measurements

• Inner-loop power control

• RF processing

$-����

Uplink and Downlink Code Usage

Figure 3

Cell A Cell C

Cell B

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

UE1

UE1

UE1

UE

Co de 1

Cell C

od e B

UE Code 1

Cell Code A

UE Code 1

Cell Code B

Cell C

ode C

UE Code 1

UE Code 1

Cell Code B

$�����

Two-Stage Coding Process

Figure 4

DownlinkTransmission

Cell

UE

Ch. Code 1Ch.1

Ch.2

Ch.3

Ch.n

Ch. Code 2

Ch. Code 3

Ch. Code n

CellScrambling

Code

UplinkTransmission

UEScrambling

Code

Ch.1

Ch.2

Ch.n

Ch. Code 1

Ch. Code 2

Ch. Code n

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

$�����Figure 5

Main UMTS Code TypesFunction

SynchronisationCodes

ChannelisationCodes

DownlinkScramblingCodes

UplinkScramblingCodes

Type

GolayCodes

OrthogonalVariableSpreadingFactor(OVSF) Codes

ComplexValuedGold CodeSegments

Complex ValuedGold CodeSegments (long)

or

Complex ValuedS(2) Codes(short)

Length Duration Comments

256 chips 66.67µs 1 primary code16 secondary codes

4–512 chips 1.04 µs –133.34 µs

Number and lengthdependent on channeltype and requiredspreading factor

38,400 chipsegment from218–1 chipGold Code

10 ms 512 primary code15 secondary codesassociated with eachprimary

38,400 chipsegment from225–1 chipGold Code

10 ms 16,777,216 codes

66.67 µs256 chips 16,777,216 codes

$�����

Application of Codes to the Air Interface

Figure 6

a) Application of Codes

Real-valuedOVSF Code

Q

I

Real

Imaginary

AnyDownlinkChannel

Serial toParallel

Conversion

Serial toParallel

Conversion

Complex-valuedCell Scrambling

Code

DL Ch. nI+jQI+jQ

$%����

Application of Codes to the Air Interface

Figure 6 (continued)

b) Summation of Downlink Channels

DL Ch.1

DL Ch.2

DL Ch.n

G1

G2

Gn

G is a Weighting Factor

SynchronisationCodes

QPSKModulation

G

ΣΣΣΣΣΣΣΣ

$)����

Uplink Code Application

Figure 7

Higher-layerData 1

Higher-layerData 5

OVSF 1 G

OVSF 3 G

Higher-layerData 3

OVSF 2 G

Higher-layerData 2

Higher-layerData 6

OVSF 1 G

G

Higher-layerData 4

OVSF 2 G

Control

OVSF c Gc

ΣΣΣΣ

ΣΣΣΣ

I+jQQPSK

Modulation

UEScrambling

Code

Real

Imaginary

Q

I

OVSF 3

$ ����

Downlink Physical Channel

Figure 8

DCHLayer 2

Layer 1

P-CCPCH S-CCPCHPCDCH

BCH DSCH

PDSCH

FACH

Physical Channels

PCH

CSICH CPICHAICH

DPCH

DPCCHSCHCD/CA-ICH

AP-AICH

PICH

Transport Channels

$/����

Logical Channels

MAC

FACH DSCH DCH

BCCH PCCHDCCH CCCH

CTCHDTCH

BCH PCH

Physical Layer

CPCH RACH

P-CCPCH PDSCHS-CCPCH DPDCH

DPCH

DPCCH

SCHCSICH CPICHAICHCD/CA-ICH

AP-AICH

PICH

TransportChannels

PRACHPCPCHPhysical

Channels

NB. The bubbles are SAPs, Service Access Points, logical software gateways between the different layersSome channels only originate from and in the Physical Layer, e.g. CSICH etc.

����4���+��0���#����!01,���+���,�##�������#�

�5������5���!�����"�5���!��© Dr Maaruf Ali

$$����

������#!��!���&#��#'1,���+���,�##���6�7

� 1,���+����&#��#'�,���5�,�##��61���87

� ��/��!����� �������-�0

� -!��������� ������������������ ������#

� �������������� ���� !����������1�0�

� ��+�#5�����""�#��#!���1,���+���,�##��6���1�87

� ���� ������1�0�.�2��0������/

� ��������� !������-��1�0

� )������������#�2��0*������� ����� ������#����������#��� ��������� ���� !����(

$(����

������#!��!���&#��#'1,���+���,�##���6��7

� 1��"�����""�#��#!���1,���+���,�##��61��1�87

� ��/��!� ��������� � !�3�0

� 4������������

� ��5�+�!�51,���+����!��,�##��6�1��87

� 3���� �������!����� ������!�#!�������������� !���0

� ��� �������� !��1��0

� ��5�+�!�51,���+����#!����,�##��6�1��87�1��0��������/���5���� ����������������

� 4���1��0�������������� ���� !����������1�0�

� �1��89�1��8:�1�8

(-����

������#!��!���&#��#'1,���+���,�##���6���7

� 1���#��#5�+�!���,�##��61��87

� ��/��!����� ������1�#��#�)����� ���61)7

� ���� ��������89��� �������1�0����#������������������� ��-��1�0

� ��#+,��#���!��#�,�##��6��87

� ��/��!���������#��������!

� ������ ����������������������������!�����

� ������������ �� !�����������#� ������#��� ���������:�������.������ �� ��

(�����

������#!��!���&#��#'1,���+���,�##���6�;7

� ��""�#1���!�,�##��6�1��87

� 1!��������-�0*�1��1�0*��)�0�.�1)�0

� ����� ��!������������� !���/��!�����

� 4��������������1)�0������

� 4� ���� ��!�����������-��������1)�0���������$ )����� *����������1)�0��� ������!��������-��1�0�

������ � �������1�0(

� +.����!��#�#5�+�!���,�##��6��87

� ��/��!��������+���� ����)����� ���6�)7(

� ���� ����;����������������� �� �

� <�� ������������������ ����� ������ !�� �������������� ����������

(�����

1,���+���,�##��������""�#1�+'�!�,�##��6�1�87++���

� �1�8< ++���1���"���+.����!��#�#5�+�!���,�##��610��87

� ������1���+���� ���������� ��

� ���������� !� !��1���#�� �� ����� ����� !���

� ���� ����;� !�������������������

� =!��!��� !�������������������������� � ���������

(�����

1,���+���,�##��������""�#1�+'�!�,�##��6�1�87++���

� �1�8< ��������#��!�+!��#��,�##������#"�#!�#5�+�!���,�##��6��0�0��87

� ���� ����;� !������������ � ���������������

� �1�8< �!�!���#5�+�!���,�##��6����87

� �-)�0����� !��������� ���� !��)�0� �������� ��1�0��!��������!���������� �

� -�� !� ���������������� �� ����������!

(%����

Brief Intro to Uplink Physical Channels (I)

� 1,���+����#5�"++����,�##��61��87

� ��/��!�$ ��� � ��������

� �����!�#!������������� !��������8��0

� ��5�+�!�51,���+���,�##��6�1�87

� ���� ������ !���0� ����� ��!

� �����/���5�������� ��

$ 1���

$ ,����� �1������ ���6,1�7

$ ,����� �2��� �������� ����)����� ��6,2�)7

()����

Brief Intro to Uplink Physical Channels (II)

� ��5�+�!�51,���+����!��,�##��6�1��87

� ���� ��������0

� ��5�+�!�51,���+����#!����,�##���1��8

� ���� ������/���5�����

� �1��0�.��1��0���,��� �# !� �������1�0

� �1�8:�1��89�1��8

( ����

Uplink Physical Channel

Figure 9

DCHLayer 2

Layer 1CPCH RACH

PhysicalChannels

PCPCH

DPDCH

PRACHDPCH

DPCCH

Transport Channels

(/����

Brief Intro to Uplink Physical Channels (III)

� 1,���+����""�#1�+'�!�,�##��61�1�87

� ���������������' � ����� ��!������!��!���������

$ ������������

$ ����������� � ���������

$ 1������ ��������

$ ����#��� (

($����

Frame Structure

Figure 10

0 1 71

Superframe Duration 720 ms

0 1 2 3 4 5 6 7 8 9 11 12 13 1410

Radio Frame Duration 10 ms

0 2 4,0944

Hyperframe Duration 40.96 s

Timeslot Duration666.7 µs2,560 chips

2

((����

Structure of the SCH

Figure 11

256 chips

10 ms Frame

2,560 chips

PrimarySCH

SecondarySCH

Slot 14Slot 0 Slot 1

Cp

Cs

= Primary Synchronisation Code

= Secondary Synchronisation Code, one of 16 codes in a15-code sequence from a set of 64

CpCp

CsCs

Cp

Cs

�--����

Uplink DPCH Slot Structure

Figure 12

Data

0 1 n–1 14

Radio Frame 10 ms

DPDCH

n N+1 1312

I

TPCTFCI FBIQ Pilot

DPCCH

Slot Duration 666.7 µs 2,560 chips

N+1

�-�����

Random Access Procedures

Figure 16

Note B: The Uplink Access preambles begin on low power and gradually increase untilan acquisition indicator is received.

Note A: Figures shown with AICH transmission timing set to 0.

UplinkAccessSlots

10 ms radio frame 10 ms radio frame

5,120 chips

4,096 chips

Note B

Preamble Preamble

1 2 3 4 5 6 7 10 11 12 13 14 1598

15,360 chips 15,360 chips

3 access slots 3 access slots

AcquisitionIndicator

DownlinkAICH

Data bitsData

Pilot bitsControl

2,560 chips

TFCI

0 14Slots

7,680chips

10 ms message part (or 20 ms)

�-�����

Random Access Message Part

Figure 16

PILOTNpilot Bits (8)

Bits per Slot

DataNdata Bits

10 x 2k (k = 0,1 ….3)

TCFINTCFI Bits (2)

Slot – NN – 1 N + 1 N + 2

Spreading Factor 2562k

666.7 µs2,560 chips

IData

QControl

�-�����

PCPCH/AICH Timing

Figure 19

AP-AICH CD-ICH

5,120chips

A-Ps

P0P1 P1

CDPCPCH (Uplink)

7,680chips

7,680chips

7,680chips

Information control3 slots 3 slots 3 slots

0 or 8 slotspower controlpreamble

DPCCH (Downlink)

Power control, pilot and CPCH

�-%����

Downlink DPCH Slot Structure

Figure 24

0 1 N–1 n n+1 12 13 14

Radio Frame 10 ms

I

QData 1 TPC TFCI Data 2 Pilot

Slot Duration 666.7 µs, 2,560 chips

DPDCH DPCCH DPDCH DPCCH

�-)����

Multiple Downlink DPCHs

Figure 26

TransmissionPower

PhysicalChannel 1

DPDCH DPDCH

TPC TFCI

TransmissionPower

PhysicalChannel 2

TransmissionPower

One Slot (2,560 chips)

Pilot

PhysicalChannel n

�- ����

TDD Switching Points

Figure 32

0 1 2 3 4 5 6 7 8 9 11 12 13 1410

Single Switching Point

0 1 2 3 4 5 6 7 8 9 11 12 13 1410

Multiple Switching Point

DL UL DL

DL UL DL UL DL UL DL UL DL UL DL UL DL UL DL

Frame 10 ms

�-/����

Variable Spreading or Variable Codes

Figure 33

Code 1 High Bit RateLow SpreadingFactor

TS N–1 TS N TS N+1 TS N+2

666.7 µs

Code 1Code 2Code 3Code 4Code 5Code 6

Low Bit RateHigh SpreadingFactor

�-$����

Resource Unit

Figure 34

Time

Frequency

Co d

e

Timeslot

RadioChannelCode

10 ms

1 2 3 4 5 6 7 8 9 1011 12 13 14

�-(����

Transport to Physical Channel Mapping

Figure 36

ORACHORACH DCHDCH ODCHODCH

CommonControlPhysicalChannel(CCPCH)

CommonControlPhysicalChannel(CCPCH)

BCHBCH RACHRACHFACHFACH PCHPCH

PhysicalRandomAccessChannel(PRACH)

PhysicalRandomAccessChannel(PRACH)

DedicatedPhysicalChannel(DPCH)

��-����

Burst Types

Figure 36

Timeslots666.7 µs

GP

96chips

Data symbols61,122,244,488,976

976 chips

Data symbols61,122,244,488,976

976 chips

Midamble

512 chips

BURST TYPE 1

BURST TYPE 2

GP

96chips

Data symbols69,138,276,552,1104

1104 chips

Data symbols69,138,276,552,1104

1104 chips

Midamble

256 chips

�������

Cell Update Causes

Figure 17

RNC

Node B

Node BIub

Iub���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

������������ � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

Page

UEPaging Response

UEUplink Data

Transmission���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

UEPeriodic

UECell Reselection

12

6

39

�������

UTRAN Registration Area (URA) Update

Figure 18

RNTI Allocation Complete

UTRAN specifiesNew assigned URAand optionally allocates new RNTI

UE storesvalid URAs

URA Update

UE stores onlyassigned URA

URA Update CompleteIncluding Assigned URA, New RNTI

���� � �� �� � �� �� �

Internet Search

������������ � � � � �� � �� �

XXXXXX X XX X

XXXXX XXXXXXXX X XX XX

UserEquipment UTRAN

�������

Handover and External Reselection Related Procedures

Figure 19

RNC BSC

UMTSCore Network

GSMCore Network

Node Bmicro

Node Bmacro

Node Bmacro BTS

Hard Handoverwithin UTRAN

Soft Handoverwithin UTRAN

Hard Handoveroutside UTRAN

Reselectionoutside UTRAN

��%����

Measurement Control

Figure 20

���� � �� �� � �� �� �

Internet Search

������������ � � � � �� � �� �

XXXXXX X XX X

XXXXX XXXXXXXX X XX XX

UE

Node B

RRC

Measurement Control RNC

Iub

Uu

• Measurement type• Measurement identity number• Measurement command• Measurement objects• Measurement quantity• Reporting quantities• Measurement reporting criteria• Reporting mode

��)����

UE Measurements

Figure 21

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

Node B Micro

GSMBTS

Intra-frequency

Node B

Node B

Intra-frequencyDownlinkQuality

UE

RLCBuffer

UplinkTrafficVolume Internal TX power

RSSI

Local Measurement

Inter-frequency

Inter-system

�� ����

Transmitter Characteristics

Figure 15

Power Class Max O/P Power Tolerance

1 +33 dBm 2 W +1 dB / –3 dB

2 +27 dBm 0.5 W +1 dB / –3 dB

3 +24 dBm 0.25 W +1 dB / –3 dB

4 +21 dBm 0.125 W ±±±±2 dB

Minimum power better than –50 dBm

Step size –1 dB and 3 dB

Receiver sensitivity for BER better than 0.001

DPCH_Ec = –117 dBm / 3.84 Mcps

��/����

Source Codec Bit Rates for the AMR Codec

Figure 16

AMR_10.20 10.20 kbit/s

AMR_7.95 7.95 kbit/s

AMR_7.40 7.40 kbit/s (IS-641)

SID = Silence Descriptor Frame

Codec Mode Source Codec Bit Rate

AMR_12.20 12.20 kbit/s (GSM EFR)

AMR_5.90 5.90 kbit/s

AMR_5.15 5.15 kbit/s

AMR_4.75 4.75 kbit/s

AMR_6.70 6.70 kbit/s (PDC-EFR)

AMR_SID 1.80 kbit/s

��$����

Requirement for Synchronisation

Figure 22

Cell Scrambling Code Derived from SCH

BCCH Spreading Code Known

BCCH Rate Known

Code Time Alignments Derived from SCH

Slot/Frame Time Alignments Derived from SCH

��(����

PLMN Types

Figure 23

ANSI IS-41ANSI IS-41 GSM MAPGSM MAP

PLMN IDNetwork ID (NID)System ID (SID)

���� � �� �� � �� �� �

Internet Search

������������ � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

��-����

UL/DL Closed Loop Power Control

Figure 27

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

Node B

UE

∆∆∆∆DPCCH = = = = ∆∆∆∆DPCCH x TPC_cmd

where TPC_cmd = +1, –1, 0

Physical Layer carries TPC BitsHigher Layer Signalling

Indicates ∆∆∆∆TPCand Algorithm to be used

Higher Layer Signalling

Carries SIR target

Outer loop Power Control

SIRest ↔↔↔↔SIRtarget

Physical Layer carries TPC Bits

�������

�����56�##��74���1�&����#!���

• 1500 Hz dynamic adjustment.� ����#'���!�����50�����6�##��0����71�&����#!���

• Used to set power of DPCH and PCPCH.• Base station receives target SIR from u/l outer-loop

power control located in the RNC and compares it with the estimated SIR on the pilot symbol of the uplink DPCCH once every slot.

• If received SIR > SIR_target, base station transmits TPC_down to UE or downlink DPCCH.

• If SIR < SIR_target, then base station transmits TPC_up to UE.

�������

��&#��#'���!�����50����6�##��4���71�&����#!���

• Sets power of downlink DPCH.• Terminal receives from higher layers the BLER

target set by the RNC for the downlink outer-loop power control together with other control parameters and estimates the downlink SIR from the pilot symbols of the downlink DPCH.

• If SIR > SIR_target, UE transmits TPC_down to base station, otherwise UE transmits TPC_up.

• TPC commands sent on uplink DPCCH and simultaneously control the power of DPCCH and its corresponding DPDCHs in downlink by same amount.

�������

2�!��0����1�&����#!���

• Maintain quality of the communication at the bearer service quality requirement, producing adequate target SIR for the inner-loop power control, for each DCH belonging to the same RRC connection.

• Frequency of outer loop power control: 10-100 Hz.

��%����

����#'2�!��0����1�&����#!���

• Operates within SRNC, setting a target SIR in the base station for each individual u/l inner loop power control according to the estimated u/l quality, e.g. BLER or BER for that particular RRC connection.

• CRC of the data stream is used as the quality measure, if CRC is OK, SIR is lowered, otherwise increased.

• Step sizes from 0.1 to 1.0 dB.• One outer-loop power controller for each RRC

connection.• One u/l outer-loop power control entity for each

DCH within the same RRC connection.• The signalling link DCCH is selected to transmit the

new common target SIR to the base station.

��)����

��&#��#'2�!��0����1�&����#!���

• Implemented in the UE, target SIR value for the d/l inner-loop power control is adjusted by the UE using a proprietary algorithm that provides the same measured quality (BLER) as the quality target set by the RNC.

• If CPCH is employed, the quality target signalled by the RNC is the d/l DPCCH BER, otherwise a BLER target value is provided to the UE.

1�&����#!�������#���"������5��5�• To speed up the convergence of the SIR close to

the target SIR after each transmission gap as quickly as possible.

�� ����

SSDT

Figure 32

12

3

SRNC

���� � �� �� � �� �� �

Internet Search

������������ � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

Node B

lub

Node B

Node B1

lub

lub

DPDCCH/

DPCCH

DPCCH only

DPCCH only

UE nominatesNode B

as Primary

��/����

UMTS Handover Types

Figure 33

A = intra-frequencyB = inter-frequencyC = inter-system

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

GSM

UMTSMacro

UMTSMacro

UMTSMicro

UE

HardC

HardB

SoftA

��$����

Intra- and Inter-Frequency Measurements

Figure 34

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

UMTS Macro

UMTS Macro

UMTS MacroF1

F1

F1

UMTS Macro

UMTS Macro

F1

F2

F1

UE

UMTS Micro

Rake receiver is only able to see neighbourcells on the same frequency

��(����

Macro and Micro Diversity

Figure 36

RNC

���� � �� �� � �� �� �

Internet Search

���������� �� � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXXXXXX XXX XX

UE

Macro Diversity Combiningat RNC for Soft Handover

Node B

Node B

Micro DiversityCombining at

Node B forSofter Handover

Cell B

Cell A SoftHandover

SofterHandover

��-����

Example of a Soft Handover

Figure 37

3.Time

1. 2.

Cell C

Cell B

Cell A

Quality

Timer

MacroAdd

Threshold

MacroReplacement

Threshold

Timer

MacroRemove

Threshold

Timer

Timer

�������

Transmit Diversity

Figure 40

���� � �� �� � �� �� �

Internet Search

������������ � � � � �� � � � �

XXXXXXX XXX

XXXXX XXXX

XXXX XXX XX

UE

Node B

FBI bit used in closed loop mode

Multipath set fromantenna TX 2

Multipath set fromantenna TX 1

TX 2

TX 1

�������

Any Questions ?Any Questions ?

top related