volumetric zero-variance-based path guidingjirka/path-guiding-in...volumetric monte-carlo path...

Post on 13-Jul-2020

12 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

S. Herholz: A Unified Manifold Framework for Efficient BRDF Sampling …

Sebastian Herholz1 Yangyang Zhao2 Oskar Elek3

Derek Nowrouzezahrai 2 Hendrik P. A. Lensch1 Jaroslav KΕ™ivΓ‘nek3

Volumetric Zero-Variance-Based

Path Guiding

1University of TΓΌbingen 2McGill University Montreal 3Charles University Prague

MOTIVATION

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding2

MOTIVATION

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding3

MOTIVATION

β€’ A correct physically-based simulation of volumetric effects is crucial for rendering realistic scenes

β€’ In the recent years, brute-force path tracing these effects startedto become applicable in production environments ([Fong2017], [Novak2018])

β€’ Increased complexity of the light transport makes it still challenging

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding4

5

No guiding Guiding

(Our)

10 min10 min

VOLUMETRIC MONTE-CARLO PATH TRACING

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding6

𝑓 𝑋

p 𝑋

β€’ The variance is defined by how well we can generate

random paths proportional to the volumetric light transport:

𝜎2 = 𝑉𝑓(𝑋)

𝑝(𝑋)

𝐼 = ࢱ𝑓 𝑋 𝑑𝑋

VOLUMETRIC MONTE-CARLO PATH TRACING: ZERO-VARIANCE

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding7

𝑓 𝑋

p𝑧𝑣 𝑋 (optimal)

𝐼 = ࢱ𝑓 𝑋 𝑑𝑋

β€’ If the PDF for all paths is proportional to the light transport function

we would get a perfect zero-variance estimator:

𝜎2 = 𝑉𝑓(𝑋)

𝑝𝑧𝑣(𝑋)= 0

We need to know the

shape of 𝒇 𝑿 !

THE 4 SAMPLING DECISIONS:

1. Scatter: π‘ƒπ‘š 𝒙𝑗 , πœ”π‘—

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding8

3. Direction: π‘πœ” πœ”π‘—+1|𝒙𝑗+1, πœ”π‘— 4. Termination: 𝑃𝑅𝑅 𝒙𝑗 , πœ”π‘—βˆ’1

2. Distance: 𝑝𝑑 𝑑𝑗+1|𝒙𝑗 , πœ”π‘—

VOLUMETRIC RANDOM WALK - DECISIONS

π‘₯0

πœ”0

π‘₯𝑗

πœ”π‘—

π‘₯𝑗+1

πœ”π‘—+1

π‘₯π‘€βˆ’1

πœ”π‘€βˆ’1

π‘₯𝑗+2

πœ”π‘—+2

β€’ Path PDF :

𝑝 𝑿 = ΰ·‘

𝑗=1

π‘€βˆ’1

π‘ƒπ‘š … βˆ™ 𝑝𝑑 … βˆ™ π‘πœ” … βˆ™ 1 βˆ’ 𝑃𝑅𝑅 …

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding9

Source of variance

Path segment PDF

VOLUME RENDERING EQUATION

β€’ Incident radiance (volume):

β€’ In-scattered radiance:

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding10

𝐿 π‘₯, πœ” = 𝑇 … β‹… πΏπ‘œ(… ) + ࢱ𝑇 … β‹… πœŽπ‘ (… ) β‹… 𝐿𝑖(… )d𝑑

𝐿𝑖 … = ࢱ𝑓 … β‹… 𝐿(… )dπœ”β€²

Surface contribution Volume contribution

VOLUME RENDERING EQUATION

β€’ Incident radiance (volume):

β€’ In-scattered radiance:

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding11

𝐿 π‘₯, πœ” = 𝑇 … β‹… πΏπ‘œ(… ) + ࢱ𝑇 … β‹… πœŽπ‘ (… ) β‹… 𝐿𝑖(… )d𝑑

𝐿𝑖 … = ࢱ𝑓 … β‹… 𝐿(… )dπœ”β€²

Known Local

Quantities

Transmittance

Phase function

VOLUME RENDERING EQUATION

β€’ Incident radiance (volume):

β€’ In-scattered radiance:

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding12

𝐿 π‘₯, πœ” = 𝑇 … β‹… πΏπ‘œ(… ) + ࢱ𝑇 … β‹… πœŽπ‘ (… ) β‹… 𝐿𝑖(… )d𝑑

𝐿𝑖 … = ࢱ𝑓 … β‹… 𝐿(… )dπœ”β€²

Unknown Light

Transport Quantities

Incident radiance

In-scattered radiancesurface radiance

STANDARD SAMPLING

13

π‘₯𝑗+1π‘₯𝑗 πœ”π‘— π‘₯𝑗+1 πœ”π‘—π‘₯𝑗+1

πœ”π‘—+1

1+2 Scatter and Distance:

β€’ Based on the transmittance

3 Direction:

β€’ Based on the phase function

STANDARD SAMPLING

14

β€’ Based on local albedo or throughput

4 Termination:

π‘₯𝑗

πœ”π‘—π‘₯𝑗+1

CHALLENGES FOR VOLUME SAMPLINGWhy do we need volumetric path guiding?

15

LIGHT SHAFTS

β€’ Light shafts:

- We need to scatter inside the light shaft.

- We need to follow the direction of the light shaft.

- We need to scatter towards the light shaft.

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding16

LIGHT SHAFTS

β€’ Light shafts:

- We need to scatter inside the light shaft.

- We need to follow the direction of the light shaft.

- We need to scatter towards the light shaft.

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding17

LIGHT SHAFTS

β€’ Light shafts:

- We need to scatter inside the light shaft.

- We need to follow the direction of the light shaft.

- We need to scatter towards the light shaft.

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding18

No guiding (1024 spp) Our guiding (1024 spp)

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding19

SUB-SURFACE-SCATTERING

π‘₯

πœ”

β€’ Sub-Surface-Scattering:

- We β€˜often’ need stay close to the surface

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding20

SUB-SURFACE-SCATTERING

π‘₯

πœ”

β€’ Sub-Surface-Scattering:

- We β€˜often’ need to stay close to the surface

- We need to leave the object with the right direction

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding21

No guiding (256 spp) Our guiding (256 spp)

22

DENSE MEDIA

β€’ Dense media (back illuminated):

- We may need to β€˜avoid’ generating a scattering

event even if the transmittance is low

(e.g. strong light source behind the volume).

π‘₯

πœ”

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding23

No guiding (256 spp) Our guiding (256 spp)

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding24

NON-DENSE MEDIA

β€’ Non-dense media (no back illumination):

- We may need to β€˜force’ a scattering event

even if the transmittance is high.

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding25

No guiding (256 spp) Our guiding (256 spp)

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding26

SPECIALIZED SOLUTIONS: SHORTCOMINGS

β€’ Many individual solutions:

β€’ Equiangular Sampling: [Kulla2012]

β€’ Joint-Importance Sampling: [Georgiev2012]

β€’ Zero-Variance Dwivedi Sampling: [Krivanek2014]

[Meng2016]

β€’ Directional (illumination-based) guiding: [Pegoraro2008][Bashford2012]

β€’ Only considering sub-sets or special cases:

β€’ Surface-bounded volumes

β€’ Homogenous or isotropic volumes

β€’ Single scattering

β€’ None of the current methods importance samples the full volumetric light transport!

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding27

SPECIALIZED SOLUTIONS: SHORTCOMINGS

β€’ Many individual solutions:

β€’ Equiangular Sampling: [Kulla2012]

β€’ Joint-Importance Sampling: [Georgiev2012]

β€’ Zero-Variance Dwivedi Sampling: [Krivanek2014]

[Meng2016]

β€’ Directional (illumination-based) guiding: [Pegoraro2008][Bashford2012]

β€’ Only considering sub-sets or special cases:

β€’ Surface-bounded volumes

β€’ Homogenous or isotropic volumes

β€’ Single scattering

β€’ None of the current methods importance samples the full volumetric light transport!

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding28

SPECIALIZED SOLUTIONS: SHORTCOMINGS

β€’ Many individual solutions:

β€’ Equiangular Sampling: [Kulla2012]

β€’ Joint-Importance Sampling: [Georgiev2012]

β€’ Zero-Variance Dwivedi Sampling: [Krivanek2014]

[Meng2016]

β€’ Directional (illumination-based) guiding: [Pegoraro2008][Bashford2012]

β€’ Only considering sub-sets or special cases:

β€’ Surface-bounded volumes

β€’ Homogenous or isotropic volumes

β€’ Single scattering

β€’ None of the current methods importance samples the full volumetric light transport!

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding29

ZERO-VARIANCE-BASEDVOLUMETRIC PATH GUIDING

30

TUE: 30TH JULY TIME: 9:00 AMROOM: 152

TECH TALK:

[Hoogenboom 2008]

ZV-BASED VOLUMETRIC PATH GUIDING: GOALS

β€’ Leverage recent success of local surface guiding methods:

β€’ Extend the concept to volumes

β€’ Consider the complete volumetric light transport:

β€’ No prior assumptions or special cases

β€’ Guide based on the optimal zero-variance decisions

β€’ Replace unknown quantities by estimates:

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding31

𝐿 𝒙, πœ” = ෨𝐿 𝒙, πœ” 𝐿𝑖 𝒙,πœ” = ෨𝐿𝑖 𝒙,πœ”

[Vorba2014],

[Herholz2016],

[Mueller2017]

ZV-BASED VOLUMETRIC PATH GUIDING: CONTRIBUTIONS

β€’ Guiding all local sampling decisions:

β€’ 1+2 Guided product distance sampling:

β€’ 3 Guided product directional sampling:

β€’ 4 Guided Russian roulette and Splitting:

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding32

ZV-BASED VOLUMETRIC PATH GUIDING: CONTRIBUTIONS

β€’ Guiding all local sampling decisions:

β€’ 1+2 Guided product distance sampling:

β€’ 3 Guided product directional sampling:

β€’ 4 Guided Russian roulette and Splitting:

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding33

ZV-BASED VOLUMETRIC PATH GUIDING: CONTRIBUTIONS

β€’ Guiding all local sampling decisions:

β€’ 1+2 Guided product distance sampling:

β€’ 3 Guided product directional sampling:

β€’ 4 Guided Russian roulette and Splitting:

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding34

VOLUME RADIANCE ESTIMATES

35

VOLUME RADIANCE ESTIMATES

β€’ Spatial caches via BSP-tree: max. 2K photons per node:

β€’ Similar 3D structure as PPG [Mueller2017]

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding36

VOLUME RADIANCE ESTIMATES

β€’ Pre-processing step to fit estimates from photons (50M):

β€’ EM-fitting of von Mises-Fisher mixtures (similar to [Vorba2014]’s GMMs)

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding37

VON MISES-FISHER MIXTURE MODELS

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding38

β€’ Spherical Distribution:

β€’ Features (closed-form):

- Sampling

- Convolution

- Product

𝑉 πœ”|Θ =

𝐾

πœ‹π‘–π‘£(πœ”|πœ‡π‘– , πœ…π‘–)

RADIANCE ESTIMATES

β€’ Incident Radiance Distribution β€’ In-Scattered Radiance Distribution

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding39

INCIDENT RAD. TO IN-SCATTERED RAD. TRANSFORMATION

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding40

β€’ Convolution between incident radiance 𝐿 and the phase function 𝑓

βŠ›

INCIDENT RADIANCE ESTIMATES

Ground truth (2K spp) Our estimates (VMM)

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding41

IN-SCATTERED RADIANCE ESTIMATES

Ground truth (2K spp) Our estimates (VMM)

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding42

GUIDED SAMPLING DECISIONS

43

DISTANCE SAMPLING

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding44

2. Scatter distance

1. Volume or surface decision

DISTANCE SAMPLING

β€’ Standard distance PDF:

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding45

1+2. Event distance

𝑝𝑑𝑠𝑑𝑑 … ∝ 𝑇 … β‹… πœŽπ‘  …

GUIDED PRODUCT DISTANCE SAMPLING

β€’ Our guided PDF:

𝑝𝑑𝑧𝑣 … =

𝑇 … β‹… πœŽπ‘  … β‹… ෨𝐿𝑖(… )

෨𝐿(… )Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding46

1+2. Event distance

Our estimates

NAÏVE TABULATED APPROACH

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding47

β€’ NaΓ―ve tabulated approach:

β€’ Step through the complete volume and build a tabulated PDF

β€’ Inefficient (large scenes dense media):

β€’ we always need to evaluated all bins first

OUR INCREMENTAL GUIDED PRODUCT DISTANCE SAMPLING

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding48

β€’ Incremental approach:

β€’ At each step make a local decision, if we scatter inside the bin

β€’ We only need to step until the scattering event happens

Full CDF (30min) Our incremental (30min)

49

Spp: 548

Avg. steps: 18

Spp: 1140

Avg. steps: 4

45 min

No guiding

Spp: 960

relMSE: 1.342

45 min

No guiding Distance guiding

Spp: 960

relMSE: 1.342Spp: 424

relMSE: 0.901

45 min

No guiding (256 spp) Distance guiding (256 spp)

53

β€’ Here, distance sampling is not the main cause of variance!!

DIRECTIONAL SAMPLING

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding54

3. Scatter direction

πœ”π‘—π‘₯𝑗+1

β€’ Standard PDF:

π‘πœ”π‘ π‘‘π‘‘ … ∝ αˆšπ‘“ …

GUIDED PRODUCT DIRECTIONAL SAMPLING

β€’ Our guided PDF:

π‘πœ”π‘§π‘£ … ∝ αˆšπ‘“ … βˆ™ ෨𝐿(… )

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding55

3. Scatter direction

πœ”π‘—π‘₯𝑗+1 πœ”π‘—+1

Our estimates

OUR GUIDED PRODUCT DIRECTIONAL SAMPLING

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding56

Incident radiance VMM

OUR GUIDED PRODUCT DIRECTIONAL SAMPLING

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding57

Incident radiance VMM Phase function VMM

OUR GUIDED PRODUCT DIRECTIONAL SAMPLING

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding58

Product sampling VMM

30 min

59

30 min No guiding

Spp: 2212

relMSE: 0.376

Directional guiding

Spp: 1756

relMSE: 0.048

30 min No guiding

Spp: 2212

relMSE: 0.376

Directional guiding Dist + Direct

Spp: 1756

relMSE: 0.048Spp: 1228

relMSE: 0.034

30 min No guiding

Spp: 2212

relMSE: 0.376

No Guiding

(256 spp)

Product Guiding

(256 spp)

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding63

Illum Guiding

(256 spp)

IMPORTANCE OF THE PRODUCT FOR DENSE ANISOTROPIC MEDIA

GUIDED RUSSIAN ROULETTE AND SPLITTING

4a. Termination 4b. Splitting Distance

Directional

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding64

GUIDED RUSSIAN ROULETTE AND SPLITTING

β€’ Post-sampling compensation strategies:

β€’ Identify, if we did a sub-optimal sampling decision

β€’ Terminate: to increase performance

β€’ Split: bound/reduce sample variance

4b. Splitting

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding65

4a. Termination

GUIDED RUSSIAN ROULETTE AND SPLITTING

β€’ Path contribution: 𝐸[𝑋]β€’ The expected contribution

if we continue the path

β€’ Reference solution: 𝐼‒ the final pixel value

π‘ž =𝐸 𝑋

𝐼

Path contribution

Reference solution

survival prob /

splitting factor

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding66

GUIDED RUSSIAN ROULETTE AND SPLITTING

β€’ Path contribution: 𝐸[𝑋]β€’ The expected contribution

if we continue the path

β€’ Reference solution: 𝐼‒ the final pixel value

π‘ž =𝐸 𝑋

𝐼= 1

Path contribution

Reference solution

survival prob /

splitting factor

Zero-Variance

Estimator

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding67

GUIDED RUSSIAN ROULETTE AND SPLITTING

β€’ If π‘ž ≀ 1: Russian Roulette

β€’ Terminates low contributing paths

β€’ Survival probability: π‘ž

β€’ If π‘ž > 1: Splitting

β€’ Splits an under sampled paths with

a potential high contribution (π‘ž times)

π‘ž =𝐸 𝑋

𝐼

Path contribution

Reference solution

survival prob /

splitting factor

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding68

ESTIMATED PATH CONTRIBUTION

β€’ See course notes or paper for more details

෨𝐿𝑖

𝑿

𝐸 𝑿 = π‘Žβ€²(𝑿) β‹… ෨𝐿𝑖 π‘₯𝑗 , πœ”π‘—βˆ’1

Path throughput: 𝑓(𝑿)/𝑝(𝑿) In-scattered radiance estimate

π‘₯𝑗

πœ”π‘—βˆ’1

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding69

GUIDED RUSSIAN ROULETTE AND SPLITTING: PIXEL ESTIMATE

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding71

β€’ Ray marched cache to integrate: 𝑇 β‹… πœŽπ‘  β‹… ෨𝐿𝑖

No RR

Spp: 468

relMSE: 0.454

45 min

No RR Guided RR

Spp: 468

relMSE: 0.454Spp: 1500

relMSE: 0.174

45 min

No RR Guided RR

Spp: 468

relMSE: 0.454Spp: 1500

relMSE: 0.174

45 min

+ Guided splitting

Spp: 1340

relMSE: 0.066

Guided RR + Guided splitting

Spp: 1500

relMSE: 0.174

Spp: 1340

relMSE: 0.06675

No guiding

Time: 60 min

Spp: 10644

relMSE: 11.58

Distance guiding

Time: 60 min

Spp: 4624

relMSE: 3.520

Distance + directional guiding

Time: 60 min

Spp: 4448

relMSE: 0.468

Distance + directional guiding + GRRS

Time: 60 min

Spp: 3796

relMSE: 0.321

OPEN PROBLEMS AND LIMITATIONSOpen Challenges to make it bullet proof

80

SPATIAL CACHE STRUCTURE

β€’ Naive approach to define the resolution:

β€’ Heuristic based on sample numbers

β€’ Takes time or many samples to model/separate fine features (e.g. thin shafts or caustics)(PPG by [Mueller2017] has the same problem)

β€’ Influences the performance of some sampling methods (e.g. distance)

β€’ Ideal structure should adjust to the light transport characteristics

81

INSUFFICIENT CACHE SIZES

β€’ Shared problem with other 3D caching based guiding approaches(e.g. [Vorba2014], [Mueller2017], …)

β€’ By merging the samples of a spatial cache we blur the directional distribution

β€’ Can lead to incorrect estimates of 𝐿 and 𝐿𝑖

82

Ground truth Our estimate Spatial avg. ground truth

PRODUCTION CHALLENGESHow can we get good guiding estimates?

83

VMM PHASE FUNCTION FITTING: PRE-PROCESSING STEP

β€’ Pre-processing step:β€’ Fitting a VMM for each phase function

β€’ Fitting up to K = 4 componentsβ€’ Details in the course notes

β€’ Open Challenge:β€’ Procedural phase functions or

procedural mixtures?

β€’ How to deal with changing mean cosines (roughening/mollification)?

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding84

VMM PHASE FUNCTION FITTING: PRE-PROCESSING STEP

β€’ Pre-processing step:β€’ Fitting a VMM for each phase function

β€’ Fitting up to K = 4 componentsβ€’ Details in the course notes

β€’ Open Challenge:β€’ Procedural phase functions or

procedural mixtures?

β€’ How to deal with changing mean cosines (roughening/mollification)?

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding85

FITTING/LEARNING THE INCIDENT RADIANCE MIXTURES

Pros:

β€’ Photons directly represents the light transport

β€’ Spatial distribution corresponds to important features (light shaft)

β€’ Number of traced photons can be fixed

β€’ No additional fitting during rendering

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding86

Photon-based pre-processing ([Herholz2019][Vorba2014])

FITTING/LEARNING THE INCIDENT RADIANCE MIXTURES

Cons:

β€’ Pre-processing step:

β€’ Long time to first render iteration

β€’ Complex scenes need bidirectional learning:

β€’ Ping-Pong style [Vorba2014]

β€’ It is not the ideal solution for artists in production

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding87

Photon-based pre-processing ([Herholz2019][Vorba2014])

FITTING/LEARNING THE INCIDENT RADIANCE MIXTURES

Pros:

β€’ First experiments show promising results

β€’ No pre-processing

β€’ Refines spatial and directional distributions in each iteration

β€’ Sample data gets more reliable

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding88

Progressive learning (PPG-style [Mueller2017])

FITTING/LEARNING THE INCIDENT RADIANCE MIXTURES

Cons (open challenges):

β€’ Sample count grows exponential:

β€’ Memory and fitting time increases

β€’ Shorter update rates ?

β€’ Online fitting for mixtures?

β€’ Spatial structure adapts slowly to LT:

β€’ Important for distance sampling

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding89

Progressive learning (PPG-style [Mueller2017])

CONCLUSION

β€’ Even approximate local sampling decisions lead to a good approximation of the globally optimal guiding distribution (and thus significantly reducing MC variance)

β€’ Converges to optimal ZV estimator in the hypothetical limit (i.e., if the approximations were perfect)

β€’ Solely based one guiding structure for alldecisions (incident radiance VMMs)

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding90

THANK YOU

91

REFERENCES

β€’ [Fong2017]: β€œProduction volume rendering”

β€’ [Novak2018]: β€œMonte Carlo methods for volumetric light transport simulation”

β€’ [Kulla2012]: β€œImportance sampling techniques for path tracing in participating media”

β€’ [Georgiev2012]: β€œimportance sampling of low-order volumetric scattering”

β€’ [Krivanek2014]: β€œA zero-variance-based sampling scheme for Monte Carlo subsurface scattering”

β€’ [Meng2016]: β€œImproving the Dwivedi sampling scheme”

β€’ [Vorba2014]: β€œOnline learning of parametric mixture models for light transport simulation”

β€’ [Vorba2016]: β€œAdjoint-driven Russian roulette and splitting in light transport simulation”

β€’ [Herholz2016]: β€œProduct importance sampling for light transport path guiding”

β€’ [Koerner2016]: β€œSubdivision next-event estimation for path-traced subsurface scattering”

β€’ [Mueller2017]: β€œPractical path guiding for efficient light-transport simulation”

β€’ [Hoogenboom2008]: β€œZero-varianceMonte Carlo schemes revisited”

β€’ [Pegoraro2008]:” Sequential Monte Carlo integration in low-anisotropy participating media”

β€’ [Bashford2012]: β€œA significance cache for accelerating global illumination”

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding92

ADJOINT ESTIMATE ACCURACY

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding93

COMPARING AGAINST EQUIANGULAR SAMPLING

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding94

BUMPY SPHERE

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding95

INCREMENTAL GUIDED DISTANCE SAMPLING

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding96

INCREMENTAL GUIDED DISTANCE SAMPLING

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding97

INCREMENTAL GUIDED DISTANCE SAMPLING

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding98

VMM PHASE FUNCTION FITTING: PRE-PROCESSING STEP

β€’ Using up to K = 4 components

β€’ Optimization Problem:

arg miπ‘›Ξ˜π‘“

𝑛=1

𝑁

β„’log(𝑓 πœ”π‘›, … , 𝑉(πœ”π‘›, Ξ˜π‘“))2

β„’log(𝑑,π‘š) = log 𝑑 + πœ– βˆ’ log π‘š + πœ–

πœ– = (1𝑒 βˆ’ 4) βˆ™ max(𝑑1, … , 𝑑𝑛)

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding99

VMM PHASE FUNCTION FITTING

β€’ Manifold representation of the VMM parameters for an HG phase function model for different mean cosines

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding100

top related