vorlesung quantum computing ss 08 1 quantum computing

Post on 28-Mar-2015

235 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Vorlesung Quantum Computing SS ‘08

1

Quantum Computing

Vorlesung Quantum Computing SS ‘08

2

Quantum Computing with NMR

Nuclear magnetic resonance

State preparation in an ensemble

Quantum Fourier transform

finding prime factors –Shor’s algorithm

solid state concepts

A

AB12

AB02 B01

Vorlesung Quantum Computing SS ‘08

3

NMR quantum computer

Vorlesung Quantum Computing SS ‘08

4

the qubits in liquid NMRJones in http://arxiv.org/abs/quant-ph/0106067

magnetic moment of nucleus much smaller than of electron (1/1000)

for reasonable S/N 1018 spins

measuring magnetic moment of a single nucleus not possible

qubit: spin 1/2 nucleus

Vorlesung Quantum Computing SS ‘08

5

spins in a magnetic field

mI = -1/2

mI = 1/2

B0ener

gy

magnetic field

E = h = - NħB0 ~ 300 MHz (B0 = 7 T, 1H)

Eint = -zB0 = - NIzB0 = -NmIħB0

mI = 1

population difference ~ 5∙10-5

Vorlesung Quantum Computing SS ‘08

6

spin dynamics

dMx

dt= (My(t)Bz Mz(t)By)

dMy

dt= (Mz(t)Bx Mx(t)Bz)

dMz

dt= (Mx(t)By My(t)Bx)

= My(t)Bz

= - Mx(t)Bz

=

dMdt

= M(t) x B

= Mycos(Lt) - Mxsin(Lt)

= Mxcos(Lt) + Mysin(Lt)

B =00Bz

Vorlesung Quantum Computing SS ‘08

7

spin-lattice relaxation T1

nuclei: T1 ~ hours – dayselectrons: T1 ~ ms

spin system is in excited state

relaxation to ground state due to spin-phonon interaction

read-out within T1

dMz

dt= (Mx(t)By My(t)Bx)

Mz M0

T1

Vorlesung Quantum Computing SS ‘08

8

spin-spin relaxation T2

magnetization in x,y-plane(superposition)

superposition decays because of dephasing

T1 relaxation to ground state

dMx

dt= (My(t)Bz Mz(t)By)

dMy

dt= (Mz(t)Bx Mx(t)Bz)

Mx

T2

My

T2

Vorlesung Quantum Computing SS ‘08

9

spin manipulation

Bloch equations

dMz

dt= (Mx(t)By My(t)Bx)

Mz M0

T1

dMx

dt= (My(t)Bz Mz(t)By)

Mx

T2

dMy

dt= (Mz(t)Bx Mx(t)Bz)

My

T2

B =B1 cos tB1 sin t

B0

magnetic field rotating in x,y-plane

B1<<B0

Vorlesung Quantum Computing SS ‘08

10

spin flipping in lab framehttp://www.wsi.tu-muenchen.de/E25/members/HansHuebl/animations.htm

Vorlesung Quantum Computing SS ‘08

11

NMR technique

x

y

z

B0 ~ 7-10 T

Lieven Vandersypen, PhD thesis: http://arxiv.org/abs/quant-ph/0205193

Brf = 2 = + B1 cos t

00

cos tsin t

0B1

cos t-sin t

0B1

Vorlesung Quantum Computing SS ‘08

12

pulsed magnetic resonance

Lorentz shaped resonance with HWHM = 1/T2*

precessing spin changes flux in coils inducing a voltage signal damped with 1/T2

*

on resonance

off resonance

Fast Fourier Transform (FFT)

Hanning window + zero filling

Vorlesung Quantum Computing SS ‘08

13

FID spectrum

Vorlesung Quantum Computing SS ‘08

14

selective excitation

Pulse shapes

Lieven Vandersypen, PhD thesis: http://arxiv.org/abs/quant-ph/0205193

Vorlesung Quantum Computing SS ‘08

15

rotating frame

xyz

xyz

cos tcos tsin t

- sin t0 0 1

00

=

r z

y

xxr

yr

tt

cos tcos tsin t

- sin t0 0 1

00 cos t

sin t 0

B1

cos t-sin t

0B1+Brf =

r

cos 2t

0Brf =

r 100

B1 -sin 2tB1+

constant

counter-rotating at twice RF

applied RF generates a circularly polarized RF field, which is static in the rotating frame

Vorlesung Quantum Computing SS ‘08

16

chemical shift

The 13C protons feel a different effective magnetic fielddepending on the chemical environment

local electron currents shield the field

the Zeeman splitting changes andthus the resonance frequency

Eint = -ħB0N(i)mI(i) (1-i) i

Cory et al.: Fortschr. Phys. 48 (2000) 9-11, 875

Vorlesung Quantum Computing SS ‘08

17

coupling between nuclear spinsCory et al.: Fortschr. Phys. 48 (2000) 9-11, 875

Ecoup = ħ Jij mI(i) mI(j)

Eint = -ħB0N(i)mI(i) (1-i)i+ ħJij mI(i)mI(j)

i≠j

Vorlesung Quantum Computing SS ‘08

18

state preparation

H H-1

calculation

U

preparation

read-out

|A|

time

time

a mixed ensemble is described by the density matrix

=

system cannot be cooled to pure ground state

Vorlesung Quantum Computing SS ‘08

19

density matrix

= =

() =

pure state: only one state in diagonal occupied with P=1

mixed state: states i occupied with Pi → Tr(

→ Tr(

Vorlesung Quantum Computing SS ‘08

20

states in an ensemble

level occupation follows Boltzmann statistics

mI = -1/2

mI = 1/2

ener

gy

magnetic field

p ~ e =e =–E/kBT -zB0/kBT eb

e-b

for

for

Vorlesung Quantum Computing SS ‘08

21

pseudo pure states

= pp= =

p

p00 eb

e-b00

eb + e-b

1

-zB0/kBTwith e ≈ 1 zB0

kBT

= + 1

10

02n

1 b

-b0

02n

1

density matrix can be written = 2-n (1 + )

access population scales with 2-n (n: number of qubits)

reduced density matrix

Vorlesung Quantum Computing SS ‘08

22

qubit representation

= + 1

10

02n

1 b

-b0

02n

1 1

-10

0Iz =

21

Iz

1

00

021 1

10

021 1

-10

021

Iz

0

10

021 1

10

021 1

-10

021

identity is omitted

Iz

Iz

Vorlesung Quantum Computing SS ‘08

23

time development

H H-1

calculation

U

preparation

read-out

|A|

time

time

Liouville – von Neumann equation

H,^iħ t

(t) = (t=0) = U(t) (t=0) U†(t)ħ- i H t^

e ħ i H t

^

e ^ ^

Vorlesung Quantum Computing SS ‘08

24

time development

eq= + 1

10

021 b

-b0

021

1018 copies of the same nuclear spin

zB0

kBTb = = ħL

2kBT

B =00B0

rotate spin to x,y plane by applying RF pulse 2

(t) = ħ- i H t^

e ħ i H t

^

e

eq= + 21 L

kBT1 Iz

^

(0+)= + 21 L

kBT1 Ix

^

Iy^

21 L

kBT1 Ix

^ cos Lt + sin Lt+=

H = LIz^^

(0+)eq

Vorlesung Quantum Computing SS ‘08

25

refocusing

(0+)= + 21 L

kBT1 Ix

^

2(t) -1 ħ- i H t^

e ħ i H t

^

eIx^

= Ix^ Iy

^cos Lt + sin Lt

if L ≠ r, e.g., due to inhomogeneous B0, the spin picks

up a phase

applying second RF pulse x inverts y-component:

2(t+) -1 Iy^Ix

^ cos Lt sin LtL

Vorlesung Quantum Computing SS ‘08

26

2 qubits

2,3-dibromo-thiophene

Cory et al.: Physica D 120 (1998), 82

b

a

Jab

Vorlesung Quantum Computing SS ‘08

27

ener

gy

Simple CNOT

CNOT operation

spin levels individually addressable

11100100

10110100

spinba

pulse inverts spin population

Vorlesung Quantum Computing SS ‘08

28

coupling between nuclear spinsCory et al.: Fortschr. Phys. 48 (2000) 9-11, 875

chemical shift

qubit coupling(always on)

^H = (aIza + bIz

b + cIzc) ^ ^ ^

+ 2(JabIzaIz

b+JacIzaIz

c+JbcIzbIz

c)^ ^ ^ ^ ^ ^

Vorlesung Quantum Computing SS ‘08

29

CNOT with Alanine

Z:-90ai

bi

ci

Y:-90 Y: 90 X:-90

Y:180 -Y:180

ao

bo

co

Jab

NO operation

Cory et al.: Fortschr. Phys. 48 (2000) 9-11, 875

UNO =iħ

tIzaIz

cJe

tIzaIz

cJe

Iye

Iye

-i 4e

Ixb

2eiħ

Iza

2eiħ

IzaIx

b

e

Iy2

eiħ

Iy2

eiħ

J t Iza Iz

b

e

UCNOT =

top related